decoded.avast.io /davidalvarez/linux-th reat-hunting-syslogk-a-kernel-rootkit-found-under-development-in-the-wild/

Linux Threat Hunting: ‘Syslogk’ a kernel rootkit found under
development in the wild

:6/13/2022

by David Alvarez and Jan Neduchal
June 13, 202213 min read

Introduction

Rootkits are dangerous pieces of malware. Once in place, they are usually really hard to detect. Their
code is typically more challenging to write than other malware, so developers resort to code reuse from
open source projects. As rootkits are very interesting to analyze, we are always looking out for these
kinds of samples in the wild.

Adore-Ng is a relatively old, open-source, well-known kernel rootkit for Linux, which initially targeted
kernel 2.x but is currently updated to target kernel 3.x. It enables hiding processes, files, and even the
kernel module, making it harder to detect. It also allows authenticated user-mode processes to interact
with the rootkit to control it, allowing the attacker to hide many custom malicious artifacts by using a
single rootkit.

In early 2022, we were analyzing a rootkit mostly based on Adore-Ng that we found in the wild,
apparently under development. After obtaining the sample, we examined the .modinfo section and
noticed it is compiled for a specific kernel version.

As you may know, even if it is possible to ‘force load’ the module into the kernel by using the --force

flag of the insmod Linux command, this operation can fail if the required symbols are not found in the
kernel; this can often lead to a system crash.

insmod -f {module}

1/12

https://decoded.avast.io/davidalvarez/linux-threat-hunting-syslogk-a-kernel-rootkit-found-under-development-in-the-wild/
http://10.10.0.46/data-production/pdf_1655153857_b022c3.html
https://github.com/yaoyumeng/adore-ng
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image.png
https://man7.org/linux/man-pages/man8/insmod.8.html

We discovered that the kernel module could be successfully loaded without forcing into a default Centos
6.10 distribution, as the rootkit we found is compiled for a similar kernel version.

While looking at the file’s strings, we quickly identified the PgSD93g1 hardcoded file name in the kernel
rootkit to reference the payload. This payload file name is likely used to make it less obvious for the
sysadmin, for instance, it can look like a legitimate PostgreSQL file.

Address Length String

Using this hardcoded file name, we extracted the file hidden by the rootkit. It is a compiled backdoor
trojan written in C programming language; Avast’s antivirus engine detects and classifies this file as
ELF:Rekoob — which is widely known as the Rekoobe malware family. Rekoobe is a piece of code

implanted in legitimate servers. In this case it is embedded in a fake SMTP server, which spawns a shell
when it receives a specially crafted command. In this post, we refer to this rootkit as Sys1ogk rootkit, due

to how it ‘reveals’ itself when specially crafted data is written to the file /proc/syslogk.

Analyzing the Syslogk rootkit

The syslogk rootkit is heavily based on Adore-Ng but incorporates new functionalities making the
user-mode application and the kernel rootkit hard to detect.

Loading the kernel module

To load the rootkit into kernel space, it is necessary to approximately match the kernel version used for
compiling; it does not have to be strictly the same.

vermagic=2.6.32-696.23.1.e16.x86_ 64 SMP mod unload modversions

For example, we were able to load the rootkit without any effort in a Centos 6.10 virtual machine by using
the insmod Linux command.

After loading it, you will notice that the malicious driver does not appear in the list of loaded kernel
modules when using the Ismod command.

Revealing the rootkit

The rootkit has a hide module function which uses the list_del function of the kernel API to remove the

module from the linked list of kernel modules. Next, it also accordingly updates its internal
module hidden flag.

Fortunately, the rootkit has a functionality implemented in the proc write function that exposes an
interface in the /proc file system which reveals the rootkit when the value 1 is written into the file

/proc/syslogk.

2/12

https://www.linuxvmimages.com/images/centos-6/
https://www.postgresql.org/
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image3.png
https://malpedia.caad.fkie.fraunhofer.de/details/elf.rekoobe
https://www.linuxvmimages.com/images/centos-6/
https://linux.die.net/man/8/insmod
https://linux.die.net/man/8/lsmod
https://www.kernel.org/doc/html/v5.8/core-api/kernel-api.html#c.list_del
https://www.kernel.org/doc/html/v5.8/core-api/kernel-api.html

=
File Edit View Search Terminal Help

[root@centos6 Desktop]# lsmod | grep syslogk
[root@centos6 Desktopl# echo 1>/proc/syslogk
[root@centos6 Desktop]# lsmod | grep syslogk
syslogk 120282 ©
[root@centos6 Desktopl# |

Once the rootkit is revealed, it is possible to remove it from memory using the rmmod Linux command.
The Files section of this post has additional details that will be useful for programmatically uncloaking the
rootkit.

Overview of the Syslogk rootkit features

Apart from hiding itself, making itself harder to detect when implanted, Sys1ogk can completely hide the
malicious payload by taking the following actions:

e The hk proc readdir function of the rootkit hides directories containing malicious files,
effectively hiding them from the operating system.

e The malicious processes are hidden via hk getpr —a mix of Adore-Ng functions for hiding
processes.

e The malicious payload is hidden from tools like Netstat; when running, it will not appear in the list
of services. For this purpose, the rootkit uses the function hk_t4 seq show.

e The malicious payload is not continuously running. The attacker remotely executes it on demand
when a specially crafted TCP packet (details below) is sent to the infected machine, which inspects
the traffic by installing a netfilter hook.

e |tis also possible for the attacker to remotely stop the payload. This requires using a hardcoded
key in the rootkit and knowledge of some fields of the magic packet used for remotely starting
the payload.

We observed that the Sys1ogk rootkit (and Rekoobe payload) perfectly align when used covertly in

conjunction with a fake SMTP server. Consider how stealthy this could be; a backdoor that does not load
until some magic packets are sent to the machine. When queried, it appears to be a legitimate service
hidden in memory, hidden on disk, remotely ‘magically’ executed, hidden on the network. Even if it is
found during a network port scan, it still seems to be a legitimate SMTP server.

For compromising the operating system and placing the mentioned hiding functions, Syslogk uses the

already known set_addr_rw and set_addr_ro rootkit functions, which adds or removes writing
permissions to the Page Table Entry (PTE) structure.

After adding writing permissions to the PTE, the rootkit can hook the functions declared in the hks
internal rootkit structure.

PTE Hooks
Type of the function Offset Name of the function
Original hks+(0x38) * 0 proc_root_readdir

3/12

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image8.png
https://linux.die.net/man/8/rmmod
https://www.drkns.net/kernel-who-does-magic/
https://github.com/ksaravan910/FileCloakingRootkit/blob/master/rootkit.c#L64
https://github.com/ksaravan910/FileCloakingRootkit/blob/master/rootkit.c#L81
https://www.kernel.org/doc/gorman/html/understand/understand006.html

Hook hks+(0x38) * 0 + 0x10 hk_proc_readdir
Original hks+(0x38) * 1 tcp4_seq_show
Hook hks+(0x38) * 1 + 0x10 hk_t4 seq_show
Original hks+(0x38) * 2 sys_getpriority
Hook hks+(0x38) * 2 + 0x10 hk_getpr

The mechanism for placing the hooks consists of identifying the hookable kernel symbols via
/proc/kallsyms as implemented in the get symbol address function of the rootkit (code reused
from this repository). After getting the address of the symbol, the Sys1ogk rootkit uses the udis86 project
for hooking the function.

Understanding the directory hiding mechanism

The Virtual File System (VFS) is an abstraction layer that allows for FS-like operation over something that
is typically not a traditional FS. As it is the entry point for all the File System queries, it is a good
candidate for the rootkits to hook.

It is not surprising that the Syslogk rootkit hooks the VFS functions for hiding the Rekoobe payload stored
inthe file /etc/rc-Zobk0jpi/PgSD93gl .

The hook is done by hk root readdir which calls to nw_root filldir where the directory filtering
takes place.

mov ~s1, offset aZobk®jpi
mov] ; haystack
mov

mow
mow
mow

call

As you can see, any directory containing the substring -zobk0jpi will be hidden.

The function hk_get vfs opens the root of the file system by using filp_open. This kernel function
returns a pointer to the structure file, which contains a file operations structure called f_op that
finally stores the readdir function hooked via hk _root readdir.

Of course, this feature is not new at all. You can check the source code of Adore-Ng and see how it is
implemented on your own.

Understanding the process hiding mechanism

In the following screenshot, you can see that the Sys1ogk rootkit (code at the right margin of the
screenshot) is prepared for hiding a process called PgsSD93g1. Therefore, the rootkit seems more

straightforward than the original version (see Adore-Ng at the left margin of the screenshot). Furthermore,
the process to hide can be selected after authenticating with the rootkit.

a/12

https://github.com/milabs/kmod_hooking/blob/master/module-init.c#L237
https://github.com/vmt/udis86
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image11.png
https://www.unix.com/man-page/suse/9/filp_open
https://github.com/torvalds/linux/blob/master/include/linux/fs.h#L956
https://github.com/torvalds/linux/blob/master/include/linux/fs.h#L939
https://man7.org/linux/man-pages/man3/readdir.3.html
https://github.com/yaoyumeng/adore-ng/blob/master/adore-ng.c#L300

The syslogk rootkit function hk getpr explained above, is a mix of adore_find_task and
should_be_hidden functions but it uses the same mechanism for hiding processes.

Understanding the network traffic hiding mechanism

The Adore-Ng rootkit allows hiding a given set of listening services from Linux programs like Netstat.
It uses the exported proc_net structure to change the tcp4 seq show() handler, which is invoked by the
kernel when Netstat queries for listening connections. Within the adore tcp4 seq show() function,
strnstr() is used to look in seg->buf for a substring that contains the hexadecimal representation of the
port it is trying to hide. If this is found, the string is deleted.

Graph for adore.tcpd_seq_show (secondary), Graph for hk_t4_seq_show (primary) X

In this way, the backdoor will not appear when listing the connections in an infected machine. The
following section describes other interesting capabilities of this rootkit.

Understanding the magic packets

5/12

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image10.png
https://github.com/yaoyumeng/adore-ng/blob/master/adore-ng.c#L178
https://github.com/yaoyumeng/adore-ng/blob/master/adore-ng.c#L193
https://github.com/yaoyumeng/adore-ng/blob/522c80a2dc043c2d523256472becc88c90d66337/adore-ng.c#L662
https://github.com/yaoyumeng/adore-ng/blob/522c80a2dc043c2d523256472becc88c90d66337/adore-ng.c#L835
https://github.com/torvalds/linux/blob/master/net/ipv4/tcp_ipv4.c#L2695
https://github.com/yaoyumeng/adore-ng/blob/master/adore-ng.c#L688
https://github.com/yaoyumeng/adore-ng/blob/master/adore-ng.c#L697
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image6.png

Instead of continuously running the payload, it is remotely started or stopped on demand by sending
specially crafted network traffic packets.

These are known as magic packets because they have a special format and special powers. In this
implementation, an attacker can trigger actions without having a listening port in the infected machine
such that the commands are, in some way, ‘magically’ executed in the system.

Starting the Rekoobe payload

The magic packet inspected by the Sys1ogkrootkit for starting the Rekoobe fake SMTP server is
straightforward. First, it checks whether the packet is a TCP packet and, in that case, it also checks the
source port, which is expected to be 59318.

Rekobee will be executed by the rootkit if the magic packet fits the mentioned criteria.

is_tcp_p

movZXx

mov

lea ~h ax*4]

movZX byte ptr [r13+8Ch]
movzZx h ptr [ri13+6Dh]
shr

and

jz

word ptr [r13+@],
is_source_port 59318

Of course, before executing the fake service, the rootkit terminates all existing instances of the program
by calling the rootkit function pkill clone 0. This function contains the hardcoded process name

PgsSD93ql; it only kills the Rekoobe process by sending the KILL signal via send_sig.

To execute the command that starts the Rekoobe fake service in user mode, the rootkit executes the

following command by combining the kernel APIs: call _usermodehelper_setup,
call_usermodehelper_setfns, and call_usermodehelper_exec.

/bin/sh -c /etc/rc-zZobk0jpi/PgSD93qgl

The Files section of this post demonstrates how to manually craft (using Python) the TCP magic
packet for starting the Rekoobe payload.

6/12

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image4.png
https://docs.huihoo.com/doxygen/linux/kernel/3.7/kernel_2signal_8c_source.html#l01490
https://www.kernel.org/doc/htmldocs/kernel-api/API-call-usermodehelper-setup.html
http://www.hep.by/gnu/kernel/kernel-api/API-call-usermodehelper-setfns.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-call-usermodehelper-exec.html

In the next section we describe a more complex form of the magic packet.

Stopping the Rekoobe payload

Since the attacker doesn’t want any other person in the network to be able to kill Rekoobe, the magic
packet for killing Rekoobe must match some fields in the previous magic packet used for starting
Rekoobe. Additionally, the packet must satisfy additional requirements — it must contain a key that is
hardcoded in the rootkit and located in a variable offset of the magic packet. The conditions that are
checked:

1. It checks a flag enabled when the rootkit executes Rekoobe via magic packets. It will only

continue if the flag is enabled.
2. It checks the Reserved field of the TCP header to see that it is 0x08.

3. The Source Port must be between 63400 and 63411 inclusive.

4. Both the Destination Port and the Source Address, mustto be the same that were used
when sending the magic packet for starting Rekoobe.

5. Finally, it looks for the hardcoded key. In this case, itis: D9sd87JMaij

The offset of the hardcoded key is also set in the packet and not in a hardcoded offset; it is calculated
instead. To be more precise, it is set in the data offset byte (TCP header) such that after shifting the

byte 4 bits to the right and multiplying it by 4, it points to the offset of where the Key is expected to be
(as shown in the following screenshot, notice that the rootkit compares the Key in reverse order).

i) =

MoV ZX

gdsad

In our experiments, we used the value 0x50 for the data offset (TCP header) because after shifting it
4 bits, you get 5 which multiplied by 4 is equal to 20. Since 20 is precisely the size of the TCP Header, by
using this value, we were able to put the key at the start of the data section of the packet.

If you are curious about how we implemented this magic packet from scratch, then please see the
Files section of this blog post.

Analyzing Rekoobe

When the infected machine receives the appropriate magic packet, the rootkit starts the hidden
Rekoobe malware in user mode space.

It looks like an innocent SMTP server, but there is a backdoor command on it that can be executed when
handling the starttls command. In a legitimate service, this command is sent by the client to the

server to advise that it wants to start TLS negotiation.

7/12

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image12.png

centos@centos6:~/Desktop
File Edit View Search Terminal Help
[centos@centos6 Desktop]$ telmet 127.0.8.1 39678
Trying 127.8.8.1...
Connected to 127.8.0.1.
Escape character is *~]'.
220 example.com SMTP

B

250-example. com

250-5TARTTLS

250 SMTPUTF8

starttls L
220 Ready to start TLS 3

For triggering the Rekoobe backdoor command (spawning a shell), the attacker must send the byte
0x03 via TLS, followed by a Tag Length Value (TLV) encoded data. Here, the tag is the symbol %, the

length is specified in four numeric characters, and the value (notice that the length and value are arbitrary
but can not be zero).

B backdoor_client.py (~/Desktop) - gedit - e o x
File Edit View Search Tools Documents Help mr—— - = . -
File Edit View Search Terminal Help
[BEopen v Fsave | &y Undo SR [centos@centos6 Desktop]$ python backdoor client.py (2]
220 example.com SMTP
¢ backdoor_client.py X
= 250-example. com
import socket 250-STARTTLS
;QEZ " i?;e 250 swTPUTFS
ST = 127.0.0.1¢ 220 Ready to start TLS
PORT = 42678
client = socket.socket(socket.AF_INET, socket.SOCK STREAM) Shel Lopud
client.setsockopt(socket.SOL SOCKET, socket.SO REUSEADDR, 1) wd
e i /home/ centos/Desktop
= . : [root@centosé Desktop]#
printicions recvizos [root@centos esktopls
client.send ("\r\n") ShetTowhoani
print(client. recv(200)) [vhoami
tine.sleep(1) root
printictiont reevi200)) o eentore peiontt
. ! 2t 'tos6 Desktop]#
ssl_client = ss socket(client, certfile="./cert.pen’) rootecentost Desktop]

Shell
ssUclient. send(b" Ul

2%)
ssl_client.send(b"\r\n")
ssl_client.settimeout (1)
ssl_client. recv()
whiTe True:
command = raw_input(*\nshell>")
pi

command = command .encode ()
ssl_client.send(comnand)
try:
Receiving stdin, stdout, stderr
while True:
print(ssl_client.recv())
except ssL.SSLError:
pass

Python v Tab Width: 8 v Ln6, Col 13 INS li

Additionally, to establish the TLS connection, you will need the certificate embedded in Rekoobe.

See the Files section below for the certificate and a Python script we developed to connect with
Rekoobe.

The origin of Rekoobe payload and Syslogk rootkit

Rekoobe is clearly based on the TinySHell open source project; this is based on ordering observed in
character and variables assignment taking place in the same order multiple times.

8/12

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image9.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image5.png
https://github.com/creaktive/tsh/blob/master/tshd.c#L693

&« c & github.com/creaktive/tsh/blob/master/tshd.c#L693

=l returnf 47 };
691 L
692

+» |BO3 shell[@] = "/"; shell[4] = "/";
694 chell[1] = "b"; shell[5] = 's";
695 shell[2] = 'i"; shell[&s] = 'h';
606 shell[3] = "n"; shell[7] = '\8";

G5 execl({ shell, shell + 5, "-c", temp, (char *) @ };

On the other hand, if you take a look at the Sys1ogk rootkit, even if it is new, you will notice that there
are also references to TinySHe11 dating back to December 13, 2018.

68facacbleelade 12a8f8f2024T87244c2584a1a03d10cdaB3eeaf1258b3 7112 x -

n: 5F 63 75 7 GF &< rurr nnr _mmde S

home/ user [Des
p/tinyshell _
1213_radom

I oudr s

The evidence suggests that the threat actor developed Rekoobe and Syslogk to run them together. We
are pleased to say that our users are protected and hope that this research assists others.

Conclusions

One of the architectural advantages of security software is that it usually has components running in
different privilege levels; malware running on less-privileged levels cannot easily interfere with processes
running on higher privilege levels, thus allowing more straightforward dealing with malware.

On the other hand, kernel rootkits can be hard to detect and remove because these pieces of malware
run in a privileged layer. This is why it is essential for system administrators and security companies to be
aware of this kind of malware and write protections for their users as soon as possible.

loCs
Syslogk sample
e 68facaco0eeladelaa8f8f2024787244c2584a1a03d10cda83eecafl258b371£f2

Rekoobe sample

o 11edf80£2918da818£3862246206b569d5dcebdc2a7’7ed791663ca3254ede772d

Other Rekoobe samples

o £294282e34901ebad5720c4£89a0c820d32840ae49e53de8e75b2d6e78326074

9/12

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image7.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image2.png

£d92e34675e5b0b8bfbcoblf3alla’652e67al62fleabtl2fbe86bccal846df’76c5
12clbled8effe60eef7486b3ae3e458dad403cd04c88c88fab7fca84d849%ee3£5
06778bddd457aafbc93d384£9%6ead3eb8476dclbc8ab6tfbdlcd7a4d3337ddcele
£1a592208723a66fablcelbc35cbd6864e24011c6dc3becd056346428e4elc55d
55dbdb84c40d9dc8cbaat83226cal0a3395292¢cc8£884bdc523a44c2£d431c7b
df90558a84cfcf80639£32b31aecl87b813df556e3cl55a05af91dedfd2d7429
160ctb90b81£369£5ba%929%9abalb3130cb38d3c90d629£fe91b31fdefl76752421
b4d0£0d652£907ed4e77a9453dcce’7810b75eldc5867debb9%bealedecdd02d877
3a6£339df95el138a436a4feff64df312975a262£al6b75117521b7d6e7115d65
74699p0964a2cbdc2bc2d9calb2b6£5828b638de7c73bld4le7fe26ctc2£3441
7a599f£4a58cb0672albbe%912ab57fcdcd4b0e2445ecSbc653£7£3e7a7dldc627E
fd4e3cfeeb4el0£61049a88527321af8c77d95349caf6loe86d7££41£5ba203e5E
31330c0409337592e9de7ac98lcecb7£37¢ce0235£96e459fefbd585e35cllala
c6d735b7a4656a52£3cd1d24265e4£2a91652£1a7758771290322114c9547deb
2e81517eed4172c43a2084beld584841704b3£602cafc2365de3bcb3d899e4£b8
b22£55e476209adb43929077be83481lebda7e804d117d77266b186665e4b1845
a93b9333a203e7eed197d0603e78413013bd5d8132109%bef5ef93b36b83957c¢
870d46c202fcc72088££5d8e71cc0990777a7621851df10ba74d0e07d419174887
cal2ee3f30elc997cc9dB8e8£13ec94134cdb378c4eb03232£5ed1df74c0a0alfo
9d2e25ec0208a55fba87ac70b23d3d3753e90906b4546d1b14d8c92£8d8eb03d
29058d4cee84565335eafdf2d4a239afc0a73£1b89d3¢c2149346a4c6£10£3962
7e0b340815351dab035b28blbcabbalclc/eat22edf9ead73d2276fe7d92bab4
af9%al19£99e0dcd82a31e0c8fc68e89d104e£203907288a203f6d2ed4f63ae4dbc
6£27de574ad79eb24d93beb00e29496d8cfe22529fc8ee5010a820£3865336a9
d690d471b513¢c5d40caef9fle37¢c94db20e6492b34eaba3cddcc22058£842¢cE3
e08e241d6823efedf81dl41cc8£d5587el13df08aeda9el1793£754871521da226
da641£86£81£6333£2730795de93ad2a25ab279a527b8b%e9122b934a730ab08
e3d64al28e9267640£8fc3e6bab399f75f6f0acaba8db48bf989fec7a’eela’l
d3e2e002574fb810ac5e456£122c30£232¢c5899534019d28e0e6822e426ed9d3
7b88fad41d6al3aedal20627d3363b739%9a30£e00008ce8d848c2cbbbb4473d8bc
50b73742726b0b7e00856e288e758412¢c74371ea2f0eaf75b957d73dtb396£d7
8b036e5e96ab980df3dcad4390d6f447d4cab62a7eddac9t52d172e£££4c58£8
8b18cl336770fcddcofe78d9220386bce565£98cc8adaba90ceb9ce3ddf36043
£04dc3c62b305cdb4d83d8dt2caal2d37feeb0a86fbba745df4l6bac62a3b9731
12£200e3444bb4e81e58112111482e8175610dc45cbelcbdcdld2251bact7897
dl129481955£24430247d6cc4atf975e4571b5at7cl6e36814371575be07e72299
6£c03c92dee363dd88e50e89062dd8a22£e88998aff7de723594ec916c348d0a
fcaZ2ea3e471a0d612ceb0abec8738085£076ad022£70£78c3£8c83d1b2££7896b
2fea3bc88c8142£a299%9a4ad9169£8879fc76726c71e4b3e06a04d568086d3470
178b23e7eded2a671£fa396dd0bac5d790bca777ec4b2cf4b464d76509edl2c51a
3bff2cbbfc24£c99d925126ecbbeb95d395a85bc736a395aa£4719¢c301cbbfd4
14a33415e95d104cfbcflacaff9586£78f7ec3fftb26efd0683c468edeat98£d7

10/12

e 8bb7842991afe86b97defl9f226cb7e0a9£9527a75981£5e24a70444a7299809
e 020a6b7edcff7764f2aacl860142775edeflbc057bedd49b575477105267fc67
e 6711d5d42b54e2d261bb48aa7997fa9191aec059fd081lc6f6ed96d8dbl7a372a
e 48671bc6dbc786940ede3a83ccl8c2d124d595a47fb20bc40d47ec9d5e8b85dce
e p0d69e260a44054999baal348748cf4b2dleaab3dd3385bb6ad5931££47a920de
e 1999%9a3e5a611312el6bb65bb5a880dfedbab8d4d2c0abd3edled926a3£f63e94
e falea232abl60a652fcbd8d6db8ffa09fd64bcb3228£000434d6a8e340aafdch
e 11edf80£2918da818£3862246206b569d5dcebdc2a7ed791663ca3254ede772d
e 73bbabc65£884£89653a156e432788b5541a169036d364c2d769f6053960351f
e 8ec87deel3de3281d55f7d1d3b48115a0f5e4ad4lbfbeflealB8ed96ac529829c8
e 8285ee3115e8c71c24ca3bdce313d3cfadead283¢c31a116180d4c261lefbol0d
e 958bcedl1371b68706fcae0f929%9a18fa84d4a8al99262c2110a7clcl2d2bldce?
e 38f357c32f2c5ab5e56€a40592e339%bac3b0cabd6a903072b9d35093a2edlcb75
e bcc3d47940ae280c63b229d21c50d25128b2al5ea42fe8572026£88£32ed0628
e 08al273ac9d6476e9a9%0356b261£fdc17352401065e2fc2ad3739%9e3£82e68705a
e cf525918cb648c81543d9603ac75bc63332627d0ec070c355a86e3595986¢cbb3
o 42bc744b22173£f£12477e57£85£a58450933e1¢c4294023334b54373f6£63ee4?2
e 337674d6349c21d3c66a4245c82cb454fealc4e9c9d6e3578634804793e3a6d6
e 4effa5035febbbafd283ffae544a5e4353eb568770421738b4b0bb835dad573b
e 5p8059€a30c8665d2c36da024al170b31689¢c4671374b5b9%b1a93c7cad7477448
e bd07ad4ccc8fa67e2e80b9c308decl40calae9c027£a03£2828e4bbbdbabc7391
e pf09ala7896e05b18c033d2d62f70eadcac85e2d72dbd8869e12b61571c0327e
e 79916343b9%3a5a7ac7b7133a26b77b8d7d0471b3204ecae78a8e8091bfel9dc8c
e c32e559568d2f6960bc41ca0560ac8£459947e170339811804011802d2£87d69
e 864c261555fced40d022a68d0b0eadb7ab69dabaf52af081fdld%e3eced4acedt
e 275d63587f3ac511d7ccab5ff85af2914e74d8b68edd5a7a8a1609426d5b7£6a9
e 031183e9450ad8283486621c4cdc556e1025127971¢c15053a3bf202c132fe8£9

Files
Syslogk research tools

Rekoobe research tool

¢ rekoobe backdoor_client.py
e cert.pem

loC repository

The Syslogk and Rekoobe rootkit research tools and 10Cs are in our |oC repository.

2022 Copyright © Avast Software s.r.o.

11/12

https://github.com/avast/ioc/blob/master/SyslogkRootkit/Research%20Tools/rekoobe_backdoor_client.py
https://github.com/avast/ioc/blob/master/SyslogkRootkit/Research%20Tools/cert.pem
https://github.com/avast/ioc/tree/master/SyslogkRootkit

12/12

