
1/12

decoded.avast.io /davidalvarez/linux-threat-hunting-syslogk-a-kernel-rootkit-found-under-development-in-the-wild/

Linux Threat Hunting: ‘Syslogk’ a kernel rootkit found under
development in the wild
⋮ 6/13/2022

by David Álvarez and Jan Neduchal
 June 13, 202213 min read

Introduction

Rootkits are dangerous pieces of malware. Once in place, they are usually really hard to detect. Their
code is typically more challenging to write than other malware, so developers resort to code reuse from
open source projects. As rootkits are very interesting to analyze, we are always looking out for these
kinds of samples in the wild.

Adore-Ng is a relatively old, open-source, well-known kernel rootkit for Linux, which initially targeted
kernel 2.x but is currently updated to target kernel 3.x. It enables hiding processes, files, and even the
kernel module, making it harder to detect. It also allows authenticated user-mode processes to interact
with the rootkit to control it, allowing the attacker to hide many custom malicious artifacts by using a
single rootkit.

In early 2022, we were analyzing a rootkit mostly based on Adore-Ng that we found in the wild,
apparently under development. After obtaining the sample, we examined the .modinfo section and
noticed it is compiled for a specific kernel version.

As you may know, even if it is possible to ‘force load’ the module into the kernel by using the --force
flag of the insmod Linux command, this operation can fail if the required symbols are not found in the
kernel; this can often lead to a system crash.

insmod -f {module}

https://decoded.avast.io/davidalvarez/linux-threat-hunting-syslogk-a-kernel-rootkit-found-under-development-in-the-wild/
http://10.10.0.46/data-production/pdf_1655153857_b022c3.html
https://github.com/yaoyumeng/adore-ng
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image.png
https://man7.org/linux/man-pages/man8/insmod.8.html

2/12

We discovered that the kernel module could be successfully loaded without forcing into a default Centos
6.10 distribution, as the rootkit we found is compiled for a similar kernel version.

While looking at the file’s strings, we quickly identified the PgSD93ql hardcoded file name in the kernel
rootkit to reference the payload. This payload file name is likely used to make it less obvious for the
sysadmin, for instance, it can look like a legitimate PostgreSQL file.

Using this hardcoded file name, we extracted the file hidden by the rootkit. It is a compiled backdoor
trojan written in C programming language; Avast’s antivirus engine detects and classifies this file as
ELF:Rekoob – which is widely known as the Rekoobe malware family. Rekoobe is a piece of code
implanted in legitimate servers. In this case it is embedded in a fake SMTP server, which spawns a shell
when it receives a specially crafted command. In this post, we refer to this rootkit as Syslogk rootkit, due
to how it ‘reveals’ itself when specially crafted data is written to the file /proc/syslogk .

Analyzing the Syslogk rootkit
The Syslogk rootkit is heavily based on Adore-Ng but incorporates new functionalities making the
user-mode application and the kernel rootkit hard to detect.

Loading the kernel module

To load the rootkit into kernel space, it is necessary to approximately match the kernel version used for
compiling; it does not have to be strictly the same.

vermagic=2.6.32-696.23.1.el6.x86_64 SMP mod_unload modversions

For example, we were able to load the rootkit without any effort in a Centos 6.10 virtual machine by using
the insmod Linux command.

After loading it, you will notice that the malicious driver does not appear in the list of loaded kernel
modules when using the lsmod command.

Revealing the rootkit

The rootkit has a hide_module function which uses the list_del function of the kernel API to remove the
module from the linked list of kernel modules. Next, it also accordingly updates its internal
module_hidden flag.

Fortunately, the rootkit has a functionality implemented in the proc_write function that exposes an
interface in the /proc file system which reveals the rootkit when the value 1 is written into the file
/proc/syslogk.

https://www.linuxvmimages.com/images/centos-6/
https://www.postgresql.org/
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image3.png
https://malpedia.caad.fkie.fraunhofer.de/details/elf.rekoobe
https://www.linuxvmimages.com/images/centos-6/
https://linux.die.net/man/8/insmod
https://linux.die.net/man/8/lsmod
https://www.kernel.org/doc/html/v5.8/core-api/kernel-api.html#c.list_del
https://www.kernel.org/doc/html/v5.8/core-api/kernel-api.html

3/12

Once the rootkit is revealed, it is possible to remove it from memory using the rmmod Linux command.
The Files section of this post has additional details that will be useful for programmatically uncloaking the
rootkit.

Overview of the Syslogk rootkit features
Apart from hiding itself, making itself harder to detect when implanted, Syslogk can completely hide the
malicious payload by taking the following actions:

The hk_proc_readdir function of the rootkit hides directories containing malicious files,
effectively hiding them from the operating system.
The malicious processes are hidden via hk_getpr – a mix of Adore-Ng functions for hiding
processes.
The malicious payload is hidden from tools like Netstat; when running, it will not appear in the list
of services. For this purpose, the rootkit uses the function hk_t4_seq_show.
The malicious payload is not continuously running. The attacker remotely executes it on demand
when a specially crafted TCP packet (details below) is sent to the infected machine, which inspects
the traffic by installing a netfilter hook.
It is also possible for the attacker to remotely stop the payload. This requires using a hardcoded
key in the rootkit and knowledge of some fields of the magic packet used for remotely starting
the payload.

We observed that the Syslogk rootkit (and Rekoobe payload) perfectly align when used covertly in
conjunction with a fake SMTP server. Consider how stealthy this could be; a backdoor that does not load
until some magic packets are sent to the machine. When queried, it appears to be a legitimate service
hidden in memory, hidden on disk, remotely ‘magically’ executed, hidden on the network. Even if it is
found during a network port scan, it still seems to be a legitimate SMTP server.

For compromising the operating system and placing the mentioned hiding functions, Syslogk uses the
already known set_addr_rw and set_addr_ro rootkit functions, which adds or removes writing
permissions to the Page Table Entry (PTE) structure.

After adding writing permissions to the PTE, the rootkit can hook the functions declared in the hks
internal rootkit structure.

PTE Hooks
Type of the function Offset Name of the function
Original hks+(0x38) * 0 proc_root_readdir

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image8.png
https://linux.die.net/man/8/rmmod
https://www.drkns.net/kernel-who-does-magic/
https://github.com/ksaravan910/FileCloakingRootkit/blob/master/rootkit.c#L64
https://github.com/ksaravan910/FileCloakingRootkit/blob/master/rootkit.c#L81
https://www.kernel.org/doc/gorman/html/understand/understand006.html

4/12

Hook hks+(0x38) * 0 + 0x10 hk_proc_readdir
Original hks+(0x38) * 1 tcp4_seq_show
Hook hks+(0x38) * 1 + 0x10 hk_t4_seq_show
Original hks+(0x38) * 2 sys_getpriority
Hook hks+(0x38) * 2 + 0x10 hk_getpr

The mechanism for placing the hooks consists of identifying the hookable kernel symbols via
/proc/kallsyms as implemented in the get_symbol_address function of the rootkit (code reused
from this repository). After getting the address of the symbol, the Syslogk rootkit uses the udis86 project
for hooking the function.

Understanding the directory hiding mechanism

The Virtual File System (VFS) is an abstraction layer that allows for FS-like operation over something that
is typically not a traditional FS. As it is the entry point for all the File System queries, it is a good
candidate for the rootkits to hook.

It is not surprising that the Syslogk rootkit hooks the VFS functions for hiding the Rekoobe payload stored
in the file /etc/rc-Zobk0jpi/PgSD93ql .

The hook is done by hk_root_readdir which calls to nw_root_filldir where the directory filtering
takes place.

As you can see, any directory containing the substring -Zobk0jpi will be hidden.

The function hk_get_vfs opens the root of the file system by using filp_open. This kernel function
returns a pointer to the structure file, which contains a file_operations structure called f_op that
finally stores the readdir function hooked via hk_root_readdir.

Of course, this feature is not new at all. You can check the source code of Adore-Ng and see how it is
implemented on your own.

Understanding the process hiding mechanism

In the following screenshot, you can see that the Syslogk rootkit (code at the right margin of the
screenshot) is prepared for hiding a process called PgSD93ql. Therefore, the rootkit seems more
straightforward than the original version (see Adore-Ng at the left margin of the screenshot). Furthermore,
the process to hide can be selected after authenticating with the rootkit.

https://github.com/milabs/kmod_hooking/blob/master/module-init.c#L237
https://github.com/vmt/udis86
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image11.png
https://www.unix.com/man-page/suse/9/filp_open
https://github.com/torvalds/linux/blob/master/include/linux/fs.h#L956
https://github.com/torvalds/linux/blob/master/include/linux/fs.h#L939
https://man7.org/linux/man-pages/man3/readdir.3.html
https://github.com/yaoyumeng/adore-ng/blob/master/adore-ng.c#L300

5/12

The Syslogk rootkit function hk_getpr explained above, is a mix of adore_find_task and
should_be_hidden functions but it uses the same mechanism for hiding processes.

Understanding the network traffic hiding mechanism

The Adore-Ng rootkit allows hiding a given set of listening services from Linux programs like Netstat.
It uses the exported proc_net structure to change the tcp4_seq_show() handler, which is invoked by the
kernel when Netstat queries for listening connections. Within the adore_tcp4_seq_show() function,
strnstr() is used to look in seq->buf for a substring that contains the hexadecimal representation of the
port it is trying to hide. If this is found, the string is deleted.

In this way, the backdoor will not appear when listing the connections in an infected machine. The
following section describes other interesting capabilities of this rootkit.

Understanding the magic packets

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image10.png
https://github.com/yaoyumeng/adore-ng/blob/master/adore-ng.c#L178
https://github.com/yaoyumeng/adore-ng/blob/master/adore-ng.c#L193
https://github.com/yaoyumeng/adore-ng/blob/522c80a2dc043c2d523256472becc88c90d66337/adore-ng.c#L662
https://github.com/yaoyumeng/adore-ng/blob/522c80a2dc043c2d523256472becc88c90d66337/adore-ng.c#L835
https://github.com/torvalds/linux/blob/master/net/ipv4/tcp_ipv4.c#L2695
https://github.com/yaoyumeng/adore-ng/blob/master/adore-ng.c#L688
https://github.com/yaoyumeng/adore-ng/blob/master/adore-ng.c#L697
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image6.png

6/12

Instead of continuously running the payload, it is remotely started or stopped on demand by sending
specially crafted network traffic packets.

These are known as magic packets because they have a special format and special powers. In this
implementation, an attacker can trigger actions without having a listening port in the infected machine
such that the commands are, in some way, ‘magically’ executed in the system.

Starting the Rekoobe payload

The magic packet inspected by the Syslogkrootkit for starting the Rekoobe fake SMTP server is
straightforward. First, it checks whether the packet is a TCP packet and, in that case, it also checks the
source port, which is expected to be 59318.

Rekobee will be executed by the rootkit if the magic packet fits the mentioned criteria.

Of course, before executing the fake service, the rootkit terminates all existing instances of the program
by calling the rootkit function pkill_clone_0. This function contains the hardcoded process name
PgSD93ql; it only kills the Rekoobe process by sending the KILL signal via send_sig.

To execute the command that starts the Rekoobe fake service in user mode, the rootkit executes the
following command by combining the kernel APIs: call_usermodehelper_setup,
call_usermodehelper_setfns, and call_usermodehelper_exec.

/bin/sh -c /etc/rc-Zobk0jpi/PgSD93ql

The Files section of this post demonstrates how to manually craft (using Python) the TCP magic
packet for starting the Rekoobe payload.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image4.png
https://docs.huihoo.com/doxygen/linux/kernel/3.7/kernel_2signal_8c_source.html#l01490
https://www.kernel.org/doc/htmldocs/kernel-api/API-call-usermodehelper-setup.html
http://www.hep.by/gnu/kernel/kernel-api/API-call-usermodehelper-setfns.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-call-usermodehelper-exec.html

7/12

In the next section we describe a more complex form of the magic packet.

Stopping the Rekoobe payload

Since the attacker doesn’t want any other person in the network to be able to kill Rekoobe, the magic
packet for killing Rekoobe must match some fields in the previous magic packet used for starting
Rekoobe. Additionally, the packet must satisfy additional requirements – it must contain a key that is
hardcoded in the rootkit and located in a variable offset of the magic packet. The conditions that are
checked:

1. It checks a flag enabled when the rootkit executes Rekoobe via magic packets. It will only
continue if the flag is enabled.

2. It checks the Reserved field of the TCP header to see that it is 0x08.
3. The Source Port must be between 63400 and 63411 inclusive.
4. Both the Destination Port and the Source Address, must to be the same that were used

when sending the magic packet for starting Rekoobe.
5. Finally, it looks for the hardcoded key. In this case, it is: D9sd87JMaij

The offset of the hardcoded key is also set in the packet and not in a hardcoded offset; it is calculated
instead. To be more precise, it is set in the data offset byte (TCP header) such that after shifting the
byte 4 bits to the right and multiplying it by 4, it points to the offset of where the Key is expected to be
(as shown in the following screenshot, notice that the rootkit compares the Key in reverse order).

In our experiments, we used the value 0x50 for the data offset (TCP header) because after shifting it
4 bits, you get 5 which multiplied by 4 is equal to 20. Since 20 is precisely the size of the TCP Header, by
using this value, we were able to put the key at the start of the data section of the packet.

If you are curious about how we implemented this magic packet from scratch, then please see the
Files section of this blog post.

Analyzing Rekoobe
When the infected machine receives the appropriate magic packet, the rootkit starts the hidden
Rekoobe malware in user mode space.

It looks like an innocent SMTP server, but there is a backdoor command on it that can be executed when
handling the starttls command. In a legitimate service, this command is sent by the client to the
server to advise that it wants to start TLS negotiation.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image12.png

8/12

For triggering the Rekoobe backdoor command (spawning a shell), the attacker must send the byte
0x03 via TLS, followed by a Tag Length Value (TLV) encoded data. Here, the tag is the symbol %, the
length is specified in four numeric characters, and the value (notice that the length and value are arbitrary
but can not be zero).

Additionally, to establish the TLS connection, you will need the certificate embedded in Rekoobe.

See the Files section below for the certificate and a Python script we developed to connect with
Rekoobe.

The origin of Rekoobe payload and Syslogk rootkit

Rekoobe is clearly based on the TinySHell open source project; this is based on ordering observed in
character and variables assignment taking place in the same order multiple times.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image9.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image5.png
https://github.com/creaktive/tsh/blob/master/tshd.c#L693

9/12

On the other hand, if you take a look at the Syslogk rootkit, even if it is new, you will notice that there
are also references to TinySHell dating back to December 13, 2018.

The evidence suggests that the threat actor developed Rekoobe and Syslogk to run them together. We
are pleased to say that our users are protected and hope that this research assists others.

Conclusions

One of the architectural advantages of security software is that it usually has components running in
different privilege levels; malware running on less-privileged levels cannot easily interfere with processes
running on higher privilege levels, thus allowing more straightforward dealing with malware.

On the other hand, kernel rootkits can be hard to detect and remove because these pieces of malware
run in a privileged layer. This is why it is essential for system administrators and security companies to be
aware of this kind of malware and write protections for their users as soon as possible.

IoCs

Syslogk sample

68facac60ee0ade1aa8f8f2024787244c2584a1a03d10cda83eeaf1258b371f2

Rekoobe sample
11edf80f2918da818f3862246206b569d5dcebdc2a7ed791663ca3254ede772d

Other Rekoobe samples

fa94282e34901eba45720c4f89a0c820d32840ae49e53de8e75b2d6e78326074

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image7.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image2.png

10/12

fd92e34675e5b0b8bfbc6b1f3a00a7652e67a162f1ea612f6e86cca846df76c5

12c1b1e48effe60eef7486b3ae3e458da403cd04c88c88fab7fca84d849ee3f5

06778bddd457aafbc93d384f96ead3eb8476dc1bc8a6fbd0cd7a4d3337ddce1e

f1a592208723a66fa51ce1bc35cbd6864e24011c6dc3bcd056346428e4e1c55d

55dbdb84c40d9dc8c5aaf83226ca00a3395292cc8f884bdc523a44c2fd431c7b

df90558a84cfcf80639f32b31aec187b813df556e3c155a05af91dedfd2d7429

160cfb90b81f369f5ba929aba0b3130cb38d3c90d629fe91b31fdef176752421

b4d0f0d652f907e4e77a9453dcce7810b75e1dc5867deb69bea1e4ecdd02d877

3a6f339df95e138a436a4feff64df312975a262fa16b75117521b7d6e7115d65

74699b0964a2cbdc2bc2d9ca0b2b6f5828b638de7c73b1d41e7fe26cfc2f3441

7a599ff4a58cb0672a1b5e912a57fcdc4b0e2445ec9bc653f7f3e7a7d1dc627f

f4e3cfeeb4e10f61049a88527321af8c77d95349caf616e86d7ff4f5ba203e5f

31330c0409337592e9de7ac981cecb7f37ce0235f96e459fefbd585e35c11a1a

c6d735b7a4656a52f3cd1d24265e4f2a91652f1a775877129b322114c9547deb

2e81517ee4172c43a2084be1d584841704b3f602cafc2365de3bcb3d899e4fb8

b22f55e476209adb43929077be83481ebda7e804d117d77266b186665e4b1845

a93b9333a203e7eed197d0603e78413013bd5d8132109bbef5ef93b36b83957c

870d6c202fcc72088ff5d8e71cc0990777a7621851df10ba74d0e07d19174887

ca2ee3f30e1c997cc9d8e8f13ec94134cdb378c4eb03232f5ed1df74c0a0a1f0

9d2e25ec0208a55fba97ac70b23d3d3753e9b906b4546d1b14d8c92f8d8eb03d

29058d4cee84565335eafdf2d4a239afc0a73f1b89d3c2149346a4c6f10f3962

7e0b340815351dab035b28b16ca66a2c1c7eaf22edf9ead73d2276fe7d92bab4

af9a19f99e0dcd82a31e0c8fc68e89d104ef2039b7288a203f6d2e4f63ae4d5c

6f27de574ad79eb24d93beb00e29496d8cfe22529fc8ee5010a820f3865336a9

d690d471b513c5d40caef9f1e37c94db20e6492b34ea6a3cddcc22058f842cf3

e08e241d6823efedf81d141cc8fd5587e13df08aeda9e1793f754871521da226

da641f86f81f6333f2730795de93ad2a25ab279a527b8b9e9122b934a730ab08

e3d64a128e9267640f8fc3e6ba5399f75f6f0aca6a8db48bf989fe67a7ee1a71

d3e2e002574fb810ac5e456f122c30f232c5899534019d28e0e6822e426ed9d3

7b88fa41d6a03aeda120627d3363b739a30fe00008ce8d848c2cbb5b4473d8bc

50b73742726b0b7e00856e288e758412c74371ea2f0eaf75b957d73dfb396fd7

8b036e5e96ab980df3dca44390d6f447d4ca662a7eddac9f52d172efff4c58f8

8b18c1336770fcddc6fe78d9220386bce565f98cc8ada5a90ce69ce3ddf36043

f04dc3c62b305cdb4d83d8df2caa2d37feeb0a86fb5a745df416bac62a3b9731

72f200e3444bb4e81e58112111482e8175610dc45c6e0c6dcd1d2251bacf7897

d129481955f24430247d6cc4af975e4571b5af7c16e36814371575be07e72299

6fc03c92dee363dd88e50e89062dd8a22fe88998aff7de723594ec916c348d0a

fca2ea3e471a0d612ce50abc8738085f076ad022f70f78c3f8c83d1b2ff7896b

2fea3bc88c8142fa299a4ad9169f8879fc76726c71e4b3e06a04d568086d3470

178b23e7eded2a671fa396dd0bac5d790bca77ec4b2cf4b464d76509ed12c51a

3bff2c5bfc24fc99d925126ec6beb95d395a85bc736a395aaf4719c301cbbfd4

14a33415e95d104cf5cf1acaff9586f78f7ec3ffb26efd0683c468edeaf98fd7

11/12

8bb7842991afe86b97def19f226cb7e0a9f9527a75981f5e24a70444a7299809

020a6b7edcff7764f2aac1860142775edef1bc057bedd49b575477105267fc67

6711d5d42b54e2d261bb48aa7997fa9191aec059fd081c6f6e496d8db17a372a

48671bc6dbc786940ede3a83cc18c2d124d595a47fb20bc40d47ec9d5e8b85dc

b0d69e260a44054999baa348748cf4b2d1eaab3dd3385bb6ad5931ff47a920de

e1999a3e5a611312e16bb65bb5a880dfedbab8d4d2c0a5d3ed1ed926a3f63e94

fa0ea232ab160a652fcbd8d6db8ffa09fd64bcb3228f000434d6a8e340aaf4cb

11edf80f2918da818f3862246206b569d5dcebdc2a7ed791663ca3254ede772d

73bbabc65f884f89653a156e432788b5541a169036d364c2d769f6053960351f

8ec87dee13de3281d55f7d1d3b48115a0f5e4a41bfbef1ea08e496ac529829c8

8285ee3115e8c71c24ca3bdce313d3cfadead283c31a116180d4c2611efb610d

958bce41371b68706feae0f929a18fa84d4a8a199262c2110a7c1c12d2b1dce2

38f357c32f2c5a5e56ea40592e339bac3b0cabd6a903072b9d35093a2ed1cb75

bcc3d47940ae280c63b229d21c50d25128b2a15ea42fe8572026f88f32ed0628

08a1273ac9d6476e9a9b356b261fdc17352401065e2fc2ad3739e3f82e68705a

cf525918cb648c81543d9603ac75bc63332627d0ec070c355a86e3595986cbb3

42bc744b22173ff12477e57f85fa58450933e1c4294023334b54373f6f63ee42

337674d6349c21d3c66a4245c82cb454fea1c4e9c9d6e3578634804793e3a6d6

4effa5035fe6bbafd283ffae544a5e4353eb568770421738b4b0bb835dad573b

5b8059ea30c8665d2c36da024a170b31689c4671374b5b9b1a93c7ca47477448

bd07a4ccc8fa67e2e80b9c308dec140ca1ae9c027fa03f2828e4b5bdba6c7391

bf09a1a7896e05b18c033d2d62f70ea4cac85e2d72dbd8869e12b61571c0327e

79916343b93a5a7ac7b7133a26b77b8d7d0471b3204eae78a8e8091bfe19dc8c

c32e559568d2f6960bc41ca0560ac8f459947e170339811804011802d2f87d69

864c261555fce40d022a68d0b0eadb7ab69da6af52af081fd1d9e3eced4aee46

275d63587f3ac511d7cca5ff85af2914e74d8b68edd5a7a8a1609426d5b7f6a9

031183e9450ad8283486621c4cdc556e1025127971c15053a3bf202c132fe8f9

Files

Syslogk research tools

Rekoobe research tool

rekoobe_backdoor_client.py
cert.pem

IoC repository

The Syslogk and Rekoobe rootkit research tools and IoCs are in our IoC repository.

2022 Copyright © Avast Software s.r.o.

https://github.com/avast/ioc/blob/master/SyslogkRootkit/Research%20Tools/rekoobe_backdoor_client.py
https://github.com/avast/ioc/blob/master/SyslogkRootkit/Research%20Tools/cert.pem
https://github.com/avast/ioc/tree/master/SyslogkRootkit

12/12

