
1/17

unit42.paloaltonetworks.com /originlogger/

OriginLogger: A Look at Agent Tesla’s Successor
Jeff White ⋮ ⋮ 9/13/2022

By Jeff White

September 13, 2022 at 6:00 AM

This post is also available in: 日本語 (Japanese)

Executive Summary
On March 4, 2019, one of the most well-known keyloggers used by criminals, called Agent Tesla, closed up shop due
to legal troubles. In the announcement message posted on the Agent Tesla Discord server, the keylogger’s
developers suggested people switch over to a new keylogger: “If you want to see a powerful software like Agent
Tesla, we would like to suggest you OriginLogger. OriginLogger is an AT-based software and has all the features.”
OriginLogger is a variant of Agent Tesla. As such, the majority of tools and detections for Agent Tesla will still trigger
on OriginLogger samples.

Recently, when sitting down to analyze some malware tagged as Agent Tesla, I was surprised to learn I was actually
looking at something else. This fact revealed itself to me when I began analyzing the malware families’ configurations
at scale after creating tooling to extract them.

In this blog, I will cover the OriginLogger keylogger malware, how it handles the string obfuscation for configuration
variables and what I found when looking at the extracted configurations that allowed for better identification and
further pivoting.

Palo Alto Networks customers receive protections from both OriginLogger and its predecessor malware Agent Tesla
through Cortex XDR and the Next-Generation Firewall with cloud-delivered security services including WildFire and
Advanced Threat Prevention.

Related Unit 42 Topics Agent Tesla

Table of Contents
OriginLogger Builder

 Dropper Lure
 OriginLogger Configuration

 Identifying OriginLogger Through Artifacts
 Malicious Infrastructure

 Conclusion

https://unit42.paloaltonetworks.com/originlogger/
https://unit42.paloaltonetworks.com/author/jeff-white/
https://unit42.paloaltonetworks.jp/originlogger/
https://unit42.paloaltonetworks.com/unit42-analyzing-various-layers-agentteslas-packing/
https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://www.paloaltonetworks.com/network-security/security-subscriptions
https://www.paloaltonetworks.com/network-security/wildfire
https://www.paloaltonetworks.com/network-security/advanced-threat-prevention
https://unit42.paloaltonetworks.com/tag/agenttesla/

2/17

OriginLogger Builder

When I began researching OriginLogger, I could find little to no public information about it. There are several Agent
Tesla-related analysis blogs that I now recognize as pertaining to OriginLogger – sometimes tagged as
“AgentTeslav3” – but otherwise, the public internet is pretty light on relevant information.

During my search, I stumbled across a YouTube video posted in 2018 (before Agent Tesla closed up shop) by a
person selling “fully undetectable” (FUD) tools. This person showed off the OriginLogger tools with a link to buy it
from a known site that traffics in malware, exploits and the like.

Figure 1. OriginLogger feature highlights (Source: screenshots of the OriginLogger sale page from a YouTube video on Origin

Figure 2. OriginLogger feature list.

Additionally, they showed both the web panel and the malware builder.

Figure 3. OriginLogger web panel (Source: OriginLogger YouTube video).

https://www.youtube.com/watch?v=o-MDujYrtto

3/17

Figure 4. OriginLogger builder.

The image of the builder shown in Figure 4 was particularly interesting to me as it provided a default string – – that
might be unique to this application. Sure enough, a content search on VirusTotal shows one matching file (SHA256:
595a7ea981a3948c4f387a5a6af54a70a41dd604685c72cbd2a55880c2b702ed) uploaded on May 17, 2022.

Figure 5. VirusTotal search for string.

Downloading and attempting to run this file resulted in errors due to missing dependencies; however, knowing the
builder’s filename, OriginLogger.exe, allowed me to expand the search and locate a Zip archive (SHA256:
b22a0dd33d957f6da3f1cd9687b9b00d0ff2bdf02d28356c1462f3dbfb8708dd) containing all of the files required to run
OriginLogger.

Figure 6. Bundled files in Zip archive.

The settings.ini file contains the configuration the builder will use, and in Figure 7 we can see the previous search
string listed under SmartWords.

https://www.virustotal.com/gui/file/595a7ea981a3948c4f387a5a6af54a70a41dd604685c72cbd2a55880c2b702ed
https://www.virustotal.com/gui/file/b22a0dd33d957f6da3f1cd9687b9b00d0ff2bdf02d28356c1462f3dbfb8708dd

4/17

Figure 7. OriginLogger Builder settings.ini file.

The file profile.origin contains the embedded username/password that a customer registers with when purchasing
OriginLogger.

5/17

Figure 8. OriginLogger builder login screen.

Amusingly, if you flip around the values in the profile file, the plaintext password is revealed.

Figure 9. Contents of profile.origin file.

Figure 10. OriginLogger builder login screen with threat actor password revealed in plaintext.

6/17

When a user logs in, the builder attempts to authenticate with the OriginLogger servers to validate the subscription.

At this point, I had two versions of the builder. The first one (b22a0d*), contained in the Zip file, was compiled Sept. 6,
2020. The other, which contained the SmartWords string (595a7e*), was compiled on June 29, 2022, just about two
years after the first.

The later version makes its authentication request over TCP/3345 to IP 23.106.223[.]46. Since March 3, 2022, this IP
has resolved to the domain originpro[.]me. This domain has resolved to the following IP addresses:

23.106.223[.]46
204.16.247[.]26

 31.170.160[.]61

The second IP, 204.16.247[.]26, stands out due to resolving these other OriginLogger related domains:

originproducts[.]xyz
origindproducts[.]pw

 originlogger[.]com

Things get more interesting when looking at the older builder. This one attempts to reach out to a different IP address
for the authentication.

Figure 11. PCAP showing remote IP address.

Unlike the IP addresses associated with originpro[.]me, 74.118.138[.]76 does not resolve to any OriginLogger
domains directly but instead resolves to 0xfd3[.]com. Pivoting on this domain shows it contains both DNS MX and
TXT records for mail.originlogger[.]com.

Beginning around March 7, 2022, the domain in question began resolving to IP 23.106.223[.]47, which is one value
higher in the last octet than the IP used for originpro[.]me, which used 46.

These two IP addresses have shared multiple SSL certificates:

SHA1 Serial Number Common
Name IPs O

2dec9fdf91c3965960fecb28237b911a57a543e2 38041735159378560318847695768150611562 WIN-
4K804V6ADVQ

23.10
23.10

7a7e732229287c1d53a360e08201616179217117 133152806647474295963986900899009859692 WIN-
4K804V6ADVQ

23.10
23.10
74.11
204.1

3b3cf8039b779d93677273e09961203ffaac2d6f 89480234209393487842197137895395039274 WIN-
4K804V6ADVQ

23.10
23.10
74.11
204.1

Table 1. Shared SSL certificates.

The RDP login screens for both of the servers beginning with IP 23.106.223.X show a Windows Server 2012 R2
server with multiple accounts.

https://community.riskiq.com/search/certificate/sha1?query=2dec9fdf91c3965960fecb28237b911a57a543e2
https://community.riskiq.com/search/certificate/serialNumber?query=38041735159378560318847695768150611562
https://community.riskiq.com/search/certificate/subjectCommonName?query=WIN-4K804V6ADVQ
https://community.riskiq.com/search/certificate/sha1?query=7a7e732229287c1d53a360e08201616179217117
https://community.riskiq.com/search/certificate/serialNumber?query=133152806647474295963986900899009859692
https://community.riskiq.com/search/certificate/subjectCommonName?query=WIN-4K804V6ADVQ
https://community.riskiq.com/search/certificate/sha1?query=3b3cf8039b779d93677273e09961203ffaac2d6f
https://community.riskiq.com/search/certificate/serialNumber?query=89480234209393487842197137895395039274
https://community.riskiq.com/search/certificate/subjectCommonName?query=WIN-4K804V6ADVQ

7/17

Figure 12. RDP login screen for 23.106.223[.]46.

When further searching for this domain, I came across the GitHub profile for user 0xfd3, which contains the two
repositories shown in Figure 13.

Figure 13. User 0xfd GitHub.

I’ll circle back to these later in the blog when looking at the code, but (spoiler alert) they are also used in
OriginLogger.

Dropper Lure

8/17

Before diving into the malware, I’ll quickly cover the dropper that led to the sample I set out to analyze. As both Agent
Tesla and OriginLogger are commercialized keyloggers, the initial droppers will vary greatly between campaigns and
should not be considered unique to either. I present the below as a real-world example of an attack dropping
OriginLogger and show that they can be quite convoluted and obfuscated.

The initial lure document is a Microsoft Word file (SHA256:
ccc8d5aa5d1a682c20b0806948bf06d1b5d11961887df70c8902d2146c6d1481). When opened, this document
displays a photo of a passport for a German citizen, along with a credit card. I’m not quite sure how enticing this
would be as a lure for a normal user, but either way, you’ll note the inclusion of numerous Excel Worksheets below
the image, as shown in Figure 14.

Figure 14. Lure document.

Each of these sheets are contained in separate embedded Excel Workbooks and are exactly the same:

dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-
2003_Worksheet.xls

 dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-
2003_Worksheet1.xls

 dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-
2003_Worksheet10.xls

 dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-
2003_Worksheet2.xls

 dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-
2003_Worksheet3.xls

 dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-
2003_Worksheet4.xls

 dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-
2003_Worksheet5.xls

 dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-

https://www.virustotal.com/gui/file/ccc8d5aa5d1a682c20b0806948bf06d1b5d11961887df70c8902d2146c6d1481

9/17

2003_Worksheet6.xls
dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-
2003_Worksheet7.xls
dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-
2003_Worksheet8.xls
dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-
2003_Worksheet9.xls

Within each Workbook is a singular macro that simply saves a command to execute at the following location:

C:\Users\Public\olapappinuggerman.js

Figure 15. Excel VBA macro.

Once run, this will download and execute via MSHTA the contents of the file at
hxxp://www.asianexportglass[.]shop/p/25.html. A screenshot of the website is shown in Figure 16.

Figure 16. Website to appear legitimate.

This file contains an embedded obfuscated script in the middle of the document as a comment.

https://attack.mitre.org/techniques/T1218/005/

10/17

Figure 17. Website hidden comment.

Unescaping the script reveals the code shown in Figure 18, which downloads the next payload from a BitBucket
snippet
(hxxps://bitbucket[.]org/!api/2.0/snippets/12sds/pEEggp/8cb4e7aef7a46445b9885381da074c86ad0d01d6/files/snippet.txt)
and establishes persistence with a scheduled task named calsaasdendersw that runs every 83 minutes and uses
MSHTA again to execute the script contained within hxxp://www.coalminners[.]shop/p/25.html.

Figure 18. Unescaped script.

The snippet hosted on the BitBucket website contains further obfuscated PowerShell code and two binaries encoded
and compressed.

The first of the two files (SHA256: 23fcaad34d06f748452d04b003b78eb701c1ab9bf2dd5503cf75ac0387f4e4f8) is a
C# reflective loader using CSharp-RunPE. This tool is used to hollow out a process and inject another executable
inside of it; in this case, the keylogger payload will be placed inside the aspnet_compiler.exe process.

Figure 19. PowerShell command to execute method contained in dotNet assembly.

Note the projFUD.PA class that the Execute method is called from. Morphisec released a blog in 2021 called
“Revealing the Snip3 Crypter, a highly evasive RAT loader,” where they analyze a crypter-as-a-service and fingerprint
the crypter’s author using this artifact.

The second of the two files (SHA256:
cddca3371378d545e5e4c032951db0e000e2dfc901b5a5e390679adc524e7d9c) is the OriginLogger payload.

OriginLogger Configuration

As previously stated, the original intention of this analysis was to automate and extract configuration-related details
from the keylogger. To achieve this, I started by looking at how the configuration-related strings are used.

I won’t be diving into any of the actual functionality of the malware as it’s fairly standard and mirrors analysis of older
Agent Tesla variants. Just as the threat actors’ advertisements state, the malware uses tried and true methods and
includes the ability to keylog, steal credentials, take screenshots, download additional payloads, upload your data in a
myriad of ways and attempt to avoid detection.

To start extracting configuration-related details, I needed to figure out how the user-supplied data is stored in the
malware; it turned out to be straightforward. The builder will take the dynamic string values and concatenate them
into a giant blob of text which is then encoded and stored in a byte array to be decoded at runtime. Once the malware

https://github.com/NYAN-x-CAT/CSharp-RunPE/blob/master/RunPE/RunPE.cs
https://blog.morphisec.com/revealing-the-snip3-crypter-a-highly-evasive-rat-loader

11/17

runs and hits a particular function that needs a string, such as the HTTP address to upload screenshots to, it will pass
the offset and string length to a function that will then carve out the text at that location within the blob.

To illustrate, below you can see the decoding logic used for the main blob of text.

Figure 20. OriginLogger plaintext blob decoding.

Each byte is XOR’d by the index of the byte within the byte array, and again XOR’d by the value 170 to reveal the
plaintext.

For each sample generated by the builder, this blob of text will differ depending on what’s configured, so offsets and
positioning will change. Looking at the raw text shown in Figure 21 is helpful, but without splicing it up, it becomes
hard to determine where the boundaries end or begin.

Figure 21. Plaintext blob.

It also does not help when it comes time to analyze the malware, as you won’t be able to discern when or where
something is used. To figure this next piece out, I needed to look at how OriginLogger handles the splicing.

Below you can see the function responsible for carving out the string, followed by the beginning of the individual
methods containing the offset and length.

12/17

Figure 22. OriginLogger string functions.

In this case, if the B() method is called at some point by the malware, it will pass 2, 2, 27 to the obfuscated nameless
function at the top of the image. The first integer is used for the array index where the decoded string will be stored.
The second (offset) and third (length) integers are then passed to the GetString function to obtain the text. For this
particular entry, the resulting value – [– is used during the creation of the HTML page it
uploads to display the stolen data.

Knowing how the string parsing works, I could then automate the extraction of these strings. To start, it helps to look
at the underlying intermediate language (IL) assembly instructions.

Figure 23. OriginLogger IL instructions for string function.

For each of these lookups, the structure of the function block will remain the same. At index 6-8 in Figure 23, you will
see three ldc.i4.X instructions where X dictates an integer value that will be pushed onto the stack before calling the
previously described splicing function. This overall structure creates a framework that can then be used to match all
of the corresponding functions in the binary for parsing.

Leveraging this, I wrote a script to identify the encoded byte array, determine the XOR values and then splice up the
decoded blob in the same fashion the malware uses it. With this, you can scroll through the decoded strings and look

13/17

for things of interest. Once something is identified, knowing the offset and subsequent function name, you can pivot
into the part of the malware that leverages them.

Figure 24. OriginLogger decoded strings.

From here, I started renaming the obfuscated methods to reflect their actual values, which made analysis easier on
the eyes.

Figure 25. OriginLogger FTP upload function.

It should be noted that the same string deobfuscation can be achieved by using de4dot and its dynamic string
decryption feature by specifying the string types as delegate and identifying the tokens of interest. This works
extremely well for single file analysis.

Recall that I mentioned in the OriginLogger Builder section of this blog that I’d circle back to the GitHub repositories of
the 0xfd3 user. Take a look in Figure 26 at the Chrome Password Recovery code uploaded in March 2020 after
OriginLogger took Agent Tesla’s prominence in the keylogger world.

https://github.com/de4dot/de4dot

14/17

Figure 26. Chrome Password Recovery.

Compare Figure 26 to the code from the OriginLogger sample with renamed methods shown in Figure 27.

Figure 27. OriginLogger Chrome password stealing function.

15/17

Look familiar? These types of similarities abound as OriginLogger has continued development where Agent Tesla left
off.

Identifying OriginLogger Through Artifacts
Using this tooling, I extracted 1,917 different configurations, which gives insight into the exfiltration methods used and
allows for clustering of samples based on the underlying infrastructure.

This is where I began to understand that what I was looking at wasn’t Agent Tesla but instead a different keylogger –
OriginLogger. Two particular exfiltration methods that both showed multiple references to “origin” in some fashion led
me to connect the dots.

For example, one of the URLs configured for a sample to upload keylogger and screenshot data to was
hxxps://agusanplantation[.]com/new/new/inc/7a5c36cee88e6b.php. This URL is no longer active so I started
searching for historical information about it to understand what was on the receiving end of these HTTP POST
requests. By plugging in the domain to URLScan.io, it showed login pages for the panel in the same directory but,
more importantly, that the OriginLogger web panel (SHA256:
c2a4cf56a675b913d8ee0cb2db3864d66990e940566f57cb97a9161bd262f271) was observed on this host at the time
of scanning four months ago.

Figure 28. URLScan.io scan history for domain.

Similarly, one of the exfiltration methods is through Telegram bots. To utilize them, OriginLogger requires a Telegram
bot token to be included so the malware can interact with it. This provides another unique opportunity to analyze the
infrastructure in use. In this case, I can use the token to query Telegram with what equates to a whoami command
and observe the names used by the bot creator. Below are a handful of examples showing relevant naming.

"id":2046248941,"is_bot":true,"first_name":"origin","username":"mailerdemon_bot"
 "id":1731070785,"is_bot":true,"first_name":"@CodeOnce_bot","username":"PWORIGIN_bot"

 "id":1644755040,"is_bot":true,"first_name":"ORIGINLOGGER","username":"softypaulbot"
 "id":1620445910,"is_bot":true,"first_name":"ORIGINLOGS","username":"badboi450hbot"
 "id":2081699912,"is_bot":true,"first_name":"Zara","username":"Zaraoriginbot"

 "id":5054839999,"is_bot":true,"first_name":"Origin Poster","username":"origin_post_bot"

Malicious Infrastructure

https://urlscan.io/search/#agusanplantation.com

16/17

Like other keyloggers that are commercially sold, OriginLogger is used by a wide variety of people for various
malicious purposes around the globe. In the past, I’ve written about taking a deeper look at the victims of keyloggers
and what analyzing their screenshots can reveal about the potential intentions of the attackers. In this blog post, I will
summarize some observations of the data extracted from the corpus of OriginLogger samples I collected. Most
samples had multiple exfiltration techniques configured and I’ll cover each one below.

SMTP is still the primary mechanism used for exfiltrating data and was identified in 1,909 samples. This is most likely
because:

The traffic will blend in with normal user traffic better than other included protocols.It’s relatively easy for
attackers to obtain stolen e-mail accounts.
E-mail providers usually offer a large amount of storage space.

There were 296 unique e-mail recipient addresses for the stolen data and 334 unique e-mail account credentials
used to send them.

FTP was configured in 1,888 samples using 56 unique FTP servers and 79 unique FTP accounts, with multiple
accounts logging to different directories, likely based on different campaigns. Across the accessible servers, which
were limited to 11 of the 56, there are 442 unique victims, with some victims being logged hundreds of times.

Web uploads to the OriginLogger panel followed closely behind and were configured in 1,866 samples, uploading
to 92 unique URLs. When analyzing these URLs, the PHP file used for the upload showed a pattern of alphanumeric
characters in the filename, with a couple of additional patterns presenting themselves in the directory structure.
Looking into the source code of the web panel as shown in Figure 29 shows that the PHP filename is an MD5 value
of some random bytes and is placed in the /inc/ (incoming) directory.

Figure 29. OriginLogger source code for setup.php.

Keep in mind that many keylogger purchasers may not have much technical experience and tend to use a “full
service” vendor that creates everything for them so that all they are required to do is distribute the keylogger. I
suspect this is a reason for a lot of the URIs having similar structures. For example, the structure
http://<ipaddress>/<name>/inc/<md5>.php is repeated throughout, and the first level of the directory shows values
unlikely to be generated automatically – possibly account-related:

b0ss/inc
 rich/inc

 divine/inc
 ma2on/inc
 darl/inc

 jboy/inc
 newmoney/inc

Likewise, this directory structure changes the inc to mawa and prepends webpanel to the name:

webpanel-roth/mawa
 webpanel-qwerty/mawa

 webpanel-dawn/mawa
 webpanel-charles/mawa

 webpanel-muti/mawa

https://unit42.paloaltonetworks.com/keybase-threat-grows-despite-public-takedown-a-picture-is-worth-a-thousand-words/

17/17

webpanel-ghul/mawa
webpanel-reza/mawa

For the last exfiltration method, we have Telegram identified in 1,732 samples with 181 unique Telegram bots
receiving the stolen data. In addition to being able to issue a whoami for the bot, we’re able to query for information
related to the channels where stolen information was uploaded. The most prominent of the channels are below with
the details currently in use:

Count Channel Bio Owner Bot Name

41 Invest in bitcoin now and attain financial
freedom Alaa Ahmed obomike_bot

25 Free Cannabis 🌵🌵 Cry_ptoSand sales3w7_bot, oasisx_bot,
valiat073_bot

21 Atrium Investment Ltd: We Help You ACHIEVE
YOUR LIFE GOALS Doris E. Athey Tino08Bot

20 Self Discipline, Consistency and humanity. Lucas Grayson Odion2023bot
18 Come Closer Anthony Forbes Anthonyforbes2023bot
14 Think it, Code It CodeOnce DeSpartan PWORIGIN_bot
12 Dream cha$er 4L Lurgard da Great johnwalkkerBot

11 coder..no system is safe.. Private crypt
100$..knowledge is power 💯💯

☠The Devil☠👹👿(do
not disturb)) Skiddoobot

10 PhD Engineering Alexander Macbill swft_bot

Table 2. Prominent Channels

Finally, one feature that is not utilized very often is the ability for OriginLogger to download an additional payload after
infecting the victim system. In the samples discussed here, only two were configured to download additional malware.

Conclusion

OriginLogger, much like its parent Agent Tesla, is a commoditized keylogger that shares many overlapping similarities
and code, but it’s important to distinguish between the two for tracking and understanding. Commercial keyloggers
have historically catered to less advanced attackers, but as illustrated in the initial lure document analyzed here, this
does not make attackers any less capable of using multiple tools and services to obfuscate and make analysis more
complicated. Commercial keyloggers should be treated with equal amounts of caution as would be used with any
malware.

Luckily, in this instance, because of the similarities between the two aforementioned keyloggers, detections and
protections carried over from one generation to the next – albeit with slightly inaccurate signature naming.

Palo Alto Networks customers receive protections from both OriginLogger and its predecessor malware Agent Tesla
through Cortex XDR and the Next-Generation Firewall with cloud-delivered security services including WildFire and
Advanced Threat Prevention.

https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://www.paloaltonetworks.com/network-security/security-subscriptions
https://www.paloaltonetworks.com/network-security/wildfire
https://www.paloaltonetworks.com/network-security/advanced-threat-prevention

