
1/15

New Threat: B1txor20, A Linux Backdoor Using DNS
Tunnel

blog.netlab.360.com/b1txor20-use-of-dns-tunneling_en/

Background

Since the Log4J vulnerability was exposed, we see more and more malware jumped on
the wagon, Elknot, Gafgyt, Mirai are all too familiar, on February 9, 2022, 360Netlab's
honeypot system captured an unknown ELF file propagating through the Log4J
vulnerability. What stands out is that the network traffic generated by this sample
triggered a DNS Tunnel alert in our system, We decided to take a close look, and indeed,
it is a new botnet family, which we named B1txor20 based on its propagation using the
file name "b1t", the XOR encryption algorithm, and the RC4 algorithm key length of 20
bytes.

In short, B1txor20 is a Backdoor for the Linux platform, which uses DNS Tunnel
technology to build C2 communication channels. In addition to the traditional backdoor
functions, B1txor20 also has functions such as opening Socket5 proxy and remotely
downloading and installing Rootkit.

Another interesting point is that we found that many developed features are not put into
use (in IDA, there is no cross-reference); some features have bugs. we presume that the
author of B1txor20 will continue to improve and open different features according to
different scenarios, so maybe we will meet B1txor20's siblings in the future.

B1txor20 Overview

We have captured a total of four different B1txor20 samples, their functions are almost
the same, a total of 15 function numbers are supported, according to these functions,
B1txor20 can be characterized as: using DNS Tunnel to establish C2 channel, support
direct connection and relay, while using ZLIB compression, RC4 encryption, BASE64
encoding to protect the traffic of the backdoor Trojan, mainly targets ARM, X64 CPU
architecture of the Linux platform.

The main features currently supported are shown below.

1. SHELL
2. Proxy
3. Execute arbitrary commands
4. Install Rootkit
5. Upload sensitive information

Its basic flowchart is shown below.

https://blog.netlab.360.com/b1txor20-use-of-dns-tunneling_en/

2/15

Reverse Analysis

We choose the sample on February 09, 2022 as the main object of analysis, and its basic
information is shown as follows.

MD5:0a0c43726fd256ad827f4108bdf5e772
ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses
shared libs), for GNU/Linux 2.6.18, stripped
Packer:None

The sample of B1txor20 is dynamically linked, so it is relatively easy to reverse. Simply
put, when B1txor20 executes, it will first disguise itself as a [netns] process, run a single
instance through the PID file /var/run/.netns.pid , and then use /etc/machine-id ,
/tmp/.138171241 or /dev/urandom to generate the BotID, then decrypt the domain

name used for DNS Tunnel and the RC4 secret key used to encrypt the traffic and test
the connectivity of the DNS server, and finally use DNS Tunnel to send registration

3/15

information to C2 and wait for the execution of the commands issued by C2. Here we will
not go into details about the regular functions, we will take a look at the DNS Tunnel
implementation of the B1txor20.

B1txor20 uses the following code snippet to read 32 bytes from /etc/machine-id , or
/tmp/.138171241 , for generating BotId, and if it fails, a 16 bytes of data will be

generated via /dev/urandom and will be written to the previous 2 files.

The following code snippet shows the process of BotId calculation.

Taking the machine-id value ab3b49d10ec42c38b1093b8ce9ad12af of our VM as an
example, the following equivalent python code can be used to calculate the value of BotId
as 0x125d.

4/15

import struct
id='ab3b49d10ec42c38b1093b8ce9ad12af'
values=struct.unpack("<16H",id)
sum=0
for i in values:
sum ^= i
print hex(sum)
if sum&0xff <0xf:
sum+=0x10
if sum>>8 < 0xf:
sum+=0x1000
print hex(sum) # sum=0x125d

Decryption

B1txor20 decrypts the domain name and RC4 secret key stored in the sample with the
following code snippet.

Its principle is very simple, it is a single-byte xor operation, where xor_key is 49 D3 4F

A7 A2 BC 4D FA 40 CF A6 32 31 E9 59 A1 .

The decryption process is equivalent to the CyberChef implementation in the following
figure, which shows that the domain name is .dns.webserv.systems and the RC4
secret key is EnLgLKHhy20f8A1dX85l .

5/15

Measure the connectivity of DNS servers

B1txor20 tests the connectivity of 3 DNS (8.8.8.8:53, 8.8.8.4:53, 194.165.16.24:443)
servers with the following code snippet.

The principle is to use res_mkquery API to build the DNS request message for
"google.com", then send the request via res_send , and as long as it can be sent
successfully, the network is considered to be connected to the corresponding DNS server,
and they are saved for subsequent use.

6/15

The actual traffic generated by Bot and 194.165.16.24 is as follows.

C&C Communication

When the above preparations are completed, B1txor20 enters the final stage, using DNS
Tunnel to establish communication with C2 and wait for the execution of the commands
sent by C2.

Generally speaking, the scenario of malware using DNS Tunnel is as follows:

Bot sends the stolen sensitive information, command execution results, and any
other information that needs to be delivered, after hiding it using specific encoding
techniques, to C2 as a DNS request; After receiving the request, C2 sends the
payload to the Bot side as a response to the DNS request. In this way, Bot and C2
achieve communication with the help of DNS protocol.

In such a network structure, there are 3 key points:

1:C2 must support the DNS protocol
 2: Specific encoding techniques

 3: The way DNS requests are sent

7/15

The following section will analyze the technical details of B1txor20's communication
around these points, in conjunction with the traffic generated by B1txor20 in practice.

0x01:Locating C2

Through the traffic in the above figure, we can see that the SLD used by B1txor20 is
webserv.systems, and using the DIG command, we can see that this SLD is point to IP
194.165.16.24; and the DNS resolution service is turned on at this IP 194, so we can
determine that the C2 of B1txor20 is exactly 194.165.16.24.

0x02:Generate Tunnel domain name

The format of B1txor20's Tunnel domain name is Base64-Like

String+.dns.websrv.systems . It is obvious that the front Base64 string is the
information sent by Bot to C2, how is it generated?

First, the B1txor20 packet has a pre-construction process, which can be seen in the
format of 0xFF + BotId + 0xFF + Stage + 0xFF + TaskInfo , 0xFF is used to
separate different items, and when the construction is finished, according to different
Stage values, different tasks will fill the TaskInfo section accordingly.

8/15

Take the above task as an example, the Stage value is 1. Through the gather_info
function, the information of "sysinfo_uptime,uid,hostname" is filled into TaskInfo , and
they are separated by0x0a.

When the required information is ready, B1txor20 uses theprocess_queryfunction to
further process the above information, which includes three processes: ZLIB
compression, RC4 encryption, and Base64 encoding.

The secret key used in RC4 encryption is the string "EnLgLKHhy20f8A1dX85l" mentioned
in the previous decryption section, and the Alphabet String used in Base64 is
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789^_ .

Finally, B1txor20 adds 1 byte of status and 4 bytes of random string before the Base64
string generated above, and then splices it with domain, which is the final domain name
to be queried. The value of status is ['0', '1', '2'], 0 means that the current query is
truncated, the subsequent query and the current should be spelled into the same; 1
means that when the query is complete.

9/15

Let's take a look at the actual generated query
1HQoOKPvBKs8yqO1tTUQkCqGWN9anB4RAGWhnJy8A.dns.webserv.systems , removing

the first 5 bytes, and the .dns.webserv.systems part to get
KPvBKs8yqO1tTUQkCqGWN9anB4RAGWhnJy8A , then use Base64 decoding, RC4

decryption, ZLIB decompression, you can get the following raw data.

From the data content and format, it can correspond with our previous description one by
one, indicating that our previous analysis is correct.

Botid =0x125d
Stage=1
sysinfo.uptime = 34
uid=30
hostname=debian

0x3:Send DNS request

When the above domain name construction is complete, B1txor20 generates and sends
DNS requests using the RES series API.

10/15

There are 3 ways to send DNS requests, depending on the previous test of DNS
connectivity.

1.Send to public dns (8.8.8.8, 8.8.4.4)
 2.Send directly to C2 (194.165.16.24)
 3.Send to local dns (nameserver in /etc/resolv.conf)

In this way, it is faster, but less concealed and easy to be detected and traced; in this way,
1 and 3 are more concealed, but a little slower.

0x4:Process C2 payload

After the Bot sends the DNS request in the above way, it waits for the execution of the C2
instruction, which is stored in the response message of the DNS request in the format of
Status(1 byte):Body , where the Body part also uses "ZLIB compression, RC4

encryption, BASE64 encoding " protection method.

11/15

For example, the actual command "1VSE6NZwczNMm2zgaXeLkZro=" is received in the
following figure.

Body part for "VSE6NZwczNMm2zgaXeLkZro=", After decoded by Base64, RC4
decryption, you can get the following format of data, and then decompression of the red

part , you get the final instruction FF 02 FF 0A FF , you can see that its format and the
format generated by the above query is consistent, at this point it can be known that Bot
will go to perform 0x02 function, so that Bot's round of interaction with C2 is complete.

C&C instructions

B1txor20 supports a total of 14 instructions, and the correspondence between instruction
number and function is shown in the following table.

Cmd ID Function

0x1 Beacon/Heartbeat

0x2 Upload system info

0x3 Create "/dev/pamd" (unix domain socket) which can get a shell

0x4 Exec arbitrary system cmd via popen

0x5 Traffic forwarding

0x6 Write File

0x7 Read File

0x8 Deliver info via "/var/tmp/.unetns"(unix domain socket)，Not used

0x9 Upload specific info，Not used

0x10 Stop proxy service

12/15

Cmd ID Function

0x11 Start proxy service

0x1a Create proxy service

0x21 Reverse shell

0x50 Upload "/boot/conf- XXX" info，Not used

0x51 install M3T4M0RPH1N3.ko rootkit

In the table, "Not used" means that this function has the corresponding processing code
in the sample, but it is not called. We are not sure if these codes are used for debugging
or in other scenarios.

We found that some functions are buggy in their implementation, such as 0x3, which uses
the remove function to delete the socket file after bind the domain socket, which makes
the socket unconnectable and thus the whole function is useless.

Small note

We noticed the domain name has been registered for 6 years, which is kind unusual?

webserv.systems createddate 2021-02-08 15:13:22
webserv.systems updateddate 2021-02-24 22:27:23
webserv.systems expiresdate 2027-02-08 15:13:22

Contact us

Readers are always welcomed to reach us on Twitter or email us to netlab at 360 dot cn.

IOC

C2

webserv.systems
194.165.16.24:53
194.165.16.24:443

https://twitter.com/360Netlab

13/15

Scanner

14/15

104.244.73.126 Luxembourg|Luxembourg|Unknown 53667|FranTech_Solutions
109.201.133.100 Netherlands|North_Holland|Amsterdam
43350|NForce_Entertainment_B.V.
162.247.74.27 United_States|New_York|New_York_City 4224|The_Calyx_Institute
166.78.48.7 United_States|Texas|Dallas 33070|Rackspace_Hosting
171.25.193.78 Sweden|Stockholm_County|Stockholm
198093|Foreningen_for_digitala_fri-_och_rattigheter
185.100.87.202 Romania|Bucharest|Unknown 200651|Flokinet_Ltd
185.129.62.62 Denmark|Region_Hovedstaden|Copenhagen 57860|Zencurity_ApS
185.220.100.240 Germany|Bavaria|Nuremberg 205100|F3_Netze_e.V.
185.220.100.241 Germany|Bavaria|Nuremberg 205100|F3_Netze_e.V.
185.220.100.242 Germany|Bavaria|Nuremberg 205100|F3_Netze_e.V.
185.220.100.243 Germany|Bavaria|Nuremberg 205100|F3_Netze_e.V.
185.220.100.246 Germany|Bavaria|Nuremberg 205100|F3_Netze_e.V.
185.220.100.249 Germany|Bavaria|Nuremberg 205100|F3_Netze_e.V.
185.220.100.250 Germany|Bavaria|Nuremberg 205100|F3_Netze_e.V.
185.220.100.252 Germany|Bavaria|Nuremberg 205100|F3_Netze_e.V.
185.220.100.254 Germany|Bavaria|Nuremberg 205100|F3_Netze_e.V.
185.220.100.255 Germany|Bavaria|Nuremberg 205100|F3_Netze_e.V.
185.220.101.134 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.136 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.140 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.143 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.144 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.151 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.155 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.161 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.162 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.164 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.166 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.168 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.172 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.174 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.176 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.181 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.191 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.34 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.37 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.39 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.40 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.42 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.43 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.46 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.5 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.50 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.51 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.53 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.54 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.56 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.57 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.220.101.61 Netherlands|North_Holland|Amsterdam 200052|Feral.io_Ltd
185.56.80.65 Netherlands|South_Holland|Capelle_aan_den_IJssel
43350|NForce_Entertainment_B.V.
193.218.118.158 Ukraine|Kiev|Unknown None;
194.32.107.159 Romania|Romania|Unknown None;
194.32.107.187 Romania|Romania|Unknown None;
194.88.143.66 Italy|Lombardy|Metropolitan_City_of_Milan
49367|Seflow_S.N.C._Di_Marco_Brame'_&_C.
199.195.250.77 United_States|New_York|New_York_City 53667|FranTech_Solutions

15/15

23.129.64.216 United_States|Washington|Seattle 396507|Emerald_Onion
23.154.177.4 North_America_Regions|North_America_Regions|Unknown None;
45.13.104.179 France|Ile-de-France|Paris 57199|MilkyWan
45.154.255.147 Sweden|Stockholm_County|Stockholm 41281|KeFF_Networks_Ltd
45.61.185.90 United_States|United_States|Unknown 8100|QuadraNet_Enterprises_LLC
46.166.139.111 Netherlands|South_Holland|Capelle_aan_den_IJssel
43350|NForce_Entertainment_B.V.
5.2.69.50 Netherlands|Flevoland|Dronten 60404|Liteserver_Holding_B.V.
51.15.43.205 Netherlands|North_Holland|Haarlem 12876|Online_S.a.s.
62.102.148.68 Sweden|Stockholm_County|Akersberga 51815|IP-Only_Networks_AB
62.102.148.69 Sweden|Stockholm_County|Akersberga 51815|IP-Only_Networks_AB
81.17.18.62 Switzerland|Canton_of_Ticino|Unknown 51852|Private_Layer_INC

Downloader

hxxp://179.60.150.23:8000/xExportObject.class
ldap://179.60.150.23:1389/o=tomcat
hxxp://194.165.16.24:8229/b1t_1t.sh
hxxp://194.165.16.24:8228/b1t
hxxp://194.165.16.24:8228/b1t
hxxp://194.165.16.24:8228/_run.sh
hxxp://194.165.16.24:8228/run.sh
hxxp://194.165.16.24:8228/share.sh
hxxp://194.165.16.24:8228/b1t
hxxp://194.165.16.24:8228/run.sh
hxxp://194.165.16.24:8228/run.sh
hxxp://194.165.16.24:8229/b4d4b1t.elf

Sample MD5

027d74534a32ba27f225fff6ee7a755f
0a0c43726fd256ad827f4108bdf5e772
24c49e4c75c6662365e10bbaeaeecb04
2e5724e968f91faaf156c48ec879bb40
3192e913ed0138b2de32c5e95146a24a
40024288c0d230c0b8ad86075bd7c678
43fcb5f22a53a88e726ebef46095cd6b
59690bd935184f2ce4b7de0a60e23f57
5f77c32c37ae7d25e927d91eb3b61c87
6b42a9f10db8b11a15006abced212fa4
6c05637c29b347c28d05b937e670c81e
7ef9d37e18b48de4b26e5d188a383ec8
7f4e74e15fafaf3f8b79254558019d7f
989dd7aa17244da78309d441d265613a
dd4b6e2750f86f2630e3aea418d294c0
e82135951c3d485b7133b9673194a79e
fd84b2f06f90940cb920e20ad4a30a63

