
1/6

By Yarden Shafir

An End to KASLR Bypasses?
windows-internals.com/an-end-to-kaslr-bypasses

Edit: this post initially discussed the new changes only in the context of KASLR bypasses. In

reality this new event covers other suspicious behaviors as well and the post was edited to

reflect that. The title is left as it was for convenience.

In recent years, in addition to mitigating and patching specific malware or exploits, Microsoft

is targeting bug classes. With a wide range of mitigations, such as zero-initialized pool

allocations, CET, XFG and the most recent CastGuard, exploiting bugs is becoming more and

more challenging. On top of that, there is improved visibility into malware and exploit

techniques through ETW and specifically the Threat Intelligence ETW channel, available to

EDRs.

In 23H2 preview builds, Microsoft is introducing a new ETW event, this time aimed at NT

APIs that could point at various suspicious behaviors.

Syscall Usage Visibility

With this new change, Microsoft is focusing on several system calls that normally shouldn’t

be used by many applications but might be used by exploits either in their pre- or post-

exploitation stage for various purposes, such as KASLR bypasses, VM detection or physical

memory access. Many of the cases covered by this new event are already restricted to

privileged processes — some require privileges reserved to admin or system processes, others

restricted to low IL or untrusted callers. But an attempt to call any of those system calls could

indicate suspicious activity, so it could be interesting regardless.

Until now, the only way EDRs could detect this type of activity was to place user-mode hooks

on all the different NtQuery functions that leak kernel pointers. For many reasons, this is

not ideal. Microsoft has been trying to keep EDRs away from user-mode hooks for a while,

mostly by adding ETW events that allow EDRs to consume the same information through

non-invasive means (though asynchronously and with no blocking capabilities).

Keeping up with this trend, Windows 11 23H2 adds a new ETW event to the Threat

Intelligence channel – THREATINT_PROCESS_SYSCALL_USAGE . This ETW event is generated

to indicate that a non-admin process has made an API call to an API + information class that

could indicate some unusual (and potentially malicious) activity. This event will be generated

for information classes in two APIs:

NtQuerySystemInformation

https://windows-internals.com/an-end-to-kaslr-bypasses/

2/6

NtSystemDebugControl

These APIs have many information classes and many of them are “innocent” and commonly

used by many applications. To avoid spamming information that isn’t interesting or useful,

the following information classes will generate an ETW event:

SystemModuleInformation

SystemModuleInformationEx

SystemLocksInformation

SystemStackTraceInformation

SystemHandleInformation

SystemExtendedHandleInformation

SystemObjectInformation

SystemBigPoolInformation

SystemExtendedProcessInformation

SystemSessionProcessInformation

SystemMemoryTopologyInformation

SystemMemoryChannelInformation

SystemCoverageInformation

SystemPlatformBinaryInformation

SystemFirmwareTableInformation

SystemBootMetadataInformation

SystemWheaIpmiHardwareInformation

SystemSuperfetchInformation + SuperfetchPrefetch

SystemSuperfetchInformation + SuperfetchPfnQuery

SystemSuperfetchInformation + SuperfetchPrivSourceQuery

SystemSuperfetchInformation + SuperfetchMemoryListQuery

SystemSuperfetchInformation + SuperfetchMemoryRangesQuery

SystemSuperfetchInformation + SuperfetchPfnSetPriority

SystemSuperfetchInformation + SuperfetchMovePages

SystemSuperfetchInformation + SuperfetchPfnSetPageHeat

SysDbgGetTriageDump

SysDbgGetLiveKernelDump

These information classes are included for different reasons – some are known to leak kernel

addresses, some can be used for VM detection, another used in hardware persistence, and

some indicate previous knowledge of physical memory that most applications should not

have. Overall, this new event covers various indicators that an application isn’t behaving as it

should.

Every mitigation must also take into consideration the potential performance impact, and

ETW event generation can slow down the system when done in a code path that is called

frequently. So, a few restrictions apply to this:

http://www.alex-ionescu.com/?p=82
https://twitter.com/gsuberland/status/996079563536027649
https://evasions.checkpoint.com/techniques/firmware-tables.html
https://persistence-info.github.io/Data/wpbbin.html

3/6

1. The events will only be generated for user-mode non-admin callers. Since Admin-

>Kernel is not considered a boundary on Windows, many mitigations don’t apply to

admin processes to lower the performance impact on the system.

2. An event will only be generated once per information class for each process. This means

if NtQuerySystemInformation is called 10 times by a single process, all with the

same information class, only one ETW event will be sent.

3. The event will only be sent if the call succeeded. Failed calls will be ignored and will not

generate any events.

To support requirement 2 and keep track of which information class were involved by a

process, a new field was added to the EPROCESS structure:

union
 {

 unsigned long SyscallUsage;
 struct

 {
 struct /* bitfield */

 {
 unsigned long SystemModuleInformation : 1; /* bit position: 0

*/
 unsigned long SystemModuleInformationEx : 1; /* bit position: 1

*/
 unsigned long SystemLocksInformation : 1; /* bit position: 2

*/
 unsigned long SystemStackTraceInformation : 1; /* bit position:

3 */
 unsigned long SystemHandleInformation : 1; /* bit position: 4

*/
 unsigned long SystemExtendedHandleInformation : 1; /* bit

position: 5 */
 unsigned long SystemObjectInformation : 1; /* bit position: 6

*/
 unsigned long SystemBigPoolInformation : 1; /* bit position: 7

*/
 unsigned long SystemExtendedProcessInformation : 1; /* bit
position: 8 */

 unsigned long SystemSessionProcessInformation : 1; /* bit

position: 9 */
 unsigned long SystemMemoryTopologyInformation : 1; /* bit

position: 10 */
 unsigned long SystemMemoryChannelInformation : 1; /* bit

position: 11 */
 unsigned long SystemCoverageInformation : 1; /* bit position:

12 */
 unsigned long SystemPlatformBinaryInformation : 1; /* bit

4/6

position: 13 */
 unsigned long SystemFirmwareTableInformation : 1; /* bit
position: 14 */

 unsigned long SystemBootMetadataInformation : 1; /* bit

position: 15 */
 unsigned long SystemWheaIpmiHardwareInformation : 1; /* bit

position: 16 */
 unsigned long SystemSuperfetchPrefetch : 1; /* bit position: 17

*/
 unsigned long SystemSuperfetchPfnQuery : 1; /* bit position: 18

*/
 unsigned long SystemSuperfetchPrivSourceQuery : 1; /* bit

position: 19 */
 unsigned long SystemSuperfetchMemoryListQuery : 1; /* bit

position: 20 */
 unsigned long SystemSuperfetchMemoryRangesQuery : 1; /* bit

position: 21 */
 unsigned long SystemSuperfetchPfnSetPriority : 1; /* bit

position: 22 */
 unsigned long SystemSuperfetchMovePages : 1; /* bit position:

23 */
 unsigned long SystemSuperfetchPfnSetPageHeat : 1; /* bit

position: 24 */
 unsigned long SysDbgGetTriageDump : 1; /* bit position: 25 */

 unsigned long SysDbgGetLiveKernelDump : 1; /* bit position: 26

*/
 unsigned long SyscallUsageValuesSpare : 5; /* bit position: 27

*/
 }; /* bitfield */

 } SyscallUsageValues;
 };

The first time a process successfully invokes one of the monitored information classes, the bit

corresponding to that information class is set – this happens for admin processes, even if the

ETW event isn’t sent for those processes. An ETW event is only sent if the bit is not set,

guaranteeing that an event is only sent once for every class. And while there is no API to

query this EPROCESS field, it does have the nice side effect of leaving a record of which

information classes are used by each process – something to look at if you analyze a system!

(But only if the Syscall Usage event is enabled in the system, otherwise the bits don’t get set).

Examining the Data

Currently nothing is enabling this event, and no one consumes it, but I expect to see

Windows Defender start using it soon, and hopefully other EDRs as well. I went and enabled

this event manually to see whether those “suspicious” APIs get used on a regular machine,

5/6

using my I/O ring exploit as a sanity test (since I know it uses NtQuerySystemInformation

to leak kernel pointers). Here are some of the results from a few minutes of normal

execution:

dx -g @$cursession.Processes.Where(p =>
p.KernelObject.SyscallUsage).Select(p => new {Name = p.Name, SyscallUsage =
p.KernelObject.SyscallUsage})

Obviously, there are a few information classes that are used pretty frequently on the

machine, with the main one (so far) being SystemFirmwareTableInformation . Those

common classes might get ignored by EDRs early on, and therefore become more popular

with exploits that will be able to abuse them. Other classes are not as common and are more

unique to exploits, though valid software may use it as well, resulting in false detections.

Conclusion

Does this mean there are no more API-based KASLR bypasses? Or that all existing exploits

will immediately get detected? Probably not. EDRs will take a while to start registering for

these events and using them, especially since 23H2 will only be officially released some time

next fall and it’ll probably be another year or two until most security products realize this

https://windows-internals.com/wp-content/uploads/2022/11/Screenshot_20221122_111650.png

6/6

event exists. And since this event is sent to the Threat Intelligence channel, which only PPLs

can register for, many products can’t access this or other exploit-related events at all.

Besides, even for the security products that will register for this event, this isn’t a world-

changing addition. This ETW event simply replaces a few user-mode hooks that some EDRs

were already using, without supplying entirely new capabilities. This event will enable EDRs

to get information for some additional calls done by malicious processes, but that is only a

single step in an exploit and will undoubtedly lead to many false positive if security products

rely on it too heavily. And anyway, this event only covers some known indicators, leaving

many others as potential bypasses

To summarize, this is a cool addition that I hope security products will use to add another

layer of visibility into potential exploits. While it’s not a game changer just yet, it’s definitely

something for both EDRs and exploit developers to consider in the near future.

