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Analyzing the PayloadRestrictions.dll Export Address Filtering

This post is a bit different from my usual ones. It won’t cover any new security features or
techniques and won’t share any novel security research. Instead, it will guide you through the
process of analyzing an unknown mitigation through a real-life example in Windows
Defender Exploit Guard (formerly EMET). Because the goal here is to show a step-by-step,
real life research process, the post will be a bit disorganized and will follow a more organic
and messy train of thought.

A brief explanations of the Windows Defender Exploit Guard: formerly known as EMET, this
is a DLL that gets injected on demand and implements several security mitigations such as
Export Address Filtering, Import Address Filtering, Stack Integrity Validations, and more.
These are all disabled by default and need to be manually enabled in the Windows security
settings, either for a specific process or for the whole system. Since it was acquired by
Microsoft, these mitigations are implemented in PayloadRestrictions.dll, which can be found
in C:\Windows\System32 .

This post will follow one of these mitigations, named Export Address Filtering (or EAF). This
tutorial will demonstrate a step-by-step guide for analyzing this mitigation, using both
dynamic analysis in WinDbg and static analysis in IDA and Hex Rays. I'll try to highlight the

things that should be focused on when analyzing a mitigation and show that even with partial

information we can reach useful conclusions and learn about this feature.

First, we'll enable EAF in calc.exe in the Windows Security settings:
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Program settings: calc.exe
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—1 Override system settings
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Apply Cancel

We don’t know anything about this mitigation yet other than that one line descriptions in the
security settings, so we’ll start by running calc.exe under a debugger to see what happens.
Immediately we can see PayloadRestrictions.dll get loaded into the process:

3k o ook kook ok k ok Rk k ok path Validation summar‘y Hokkkkokkokkokkkkk
Response Time (ms) Location
Deferred srv*
Deferred SRV*https://msdl.microsoft.com/download/symbols
Symbol search path is: srv*;SRV*https://msdl.microsoft.com/download/symbols
Executable search path is:
: 0PPO7ff7 ae3fo000 00OR7ff7 ae3fbeoe calc.exe
. 00BO7ffe 40090000 QOOO7ffe 40221000 ntdll.dll
: POPO7ffe 1ae40000 0POA7ffe 1laeb2000 :\WINDOWS\System32\verifier.dll
: PPPO7ffe 1a3doo00 00OR7ffe 1a4c4000 : \WINDOWS\SYSTEM32\PayloadRestrictions.dll
: 6PPB7ffe 3dd90POD OBBR7ffe 3dealoBd :\WINDOWS\System32\ucrtbase.dll
: 6PPO7ffe 3d730000 PBOO7ffe 3dacado® :\WINDOWS\System32\kernelbase.dll
: PePR7ffe 3deboooe oeeR7ffe 3df72000 :\WINDOWS\System32\kernel32.d1l1
: 0B 7ffe 3e520000 0VLO7ffe 3ed02000 :\WINDOWS\System32\SHELL32.d11
: @eee7ffe” 3dadoeee ©vee7ffe  3db6a0o0 : \WINDOWS\System32\msvcp_win.d11l

QAR QEQRMA D QAR - C LA L] d

And almost right away we get a guard page violation:
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0:000> g

ModLoad: ©0087ffe” 3e4e0000 00007ffe 3511000 C:\WINDOWS\System32\IMM32.DLL
ModLoad: ©00e7ffe 3fe70000 ©0R07ffe 3ff61000 C:\WINDOWS\System32\SHCORE.d11
(6540.3dc8): Guard page violation - code 80@0@001 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

ntdll!LdrpSnapModule+0x23b:

00007 ffe 400ac23b 448b431c mov r8d,dword ptr [rbx+1Ch] ds:00007ffe’ 3da6416c=00334178
0:000> k

# Child-SP RetAddr Call Site

00 ©0PPOT5 d2b5ec20 ©VVO7ffe 4009aac3 ntdll!LdrpSnapModule+0x23b

91 ©00eef5 d2b5edfe @vVVV7ffe 40092958 ntdll!LdrpProcessWork+0x43

092 000000f5 d2b5eedd 00OO7ffe 400afO6C ntdll!LdrpDrainWorkQueue+0x184

What is in this mysterious address and why does accessing it throw a guard page violation?

To start finding out the answer to the first question we can run !address to get a few more
details about the address causing the exception:

laddress oooo7ffe 3da6416¢

Usage: Image

Base Address: oooo7ffe*3d8bgooo

End Address: oooo7ffe *3da7aoo00

Region Size: 00000000 001¢1000 ( 1.754 MB)

State: 00001000 MEM_COMMIT

Protect: 00000002 PAGE_READONLY

Type: 01000000 MEM_IMAGE

Allocation Base: oooo7ffe3d730000

Allocation Protect: 00000080 PAGE_EXECUTE_WRITECOPY

Image Path: C:\WINDOWS\System32\kernelbase.dll

Module Name: kernelbase

Loaded Image Name:

Mapped Image Name:

More info: <u>lmv m kernelbase</u>

More info: <u>!lmi kernelbase</u>

More info: <u>In ox7ffe3da6416¢c</u>

More info: <u>!dh ox7ffezd730000</u>

<u> </u>

<u> </u>

Content source: 1 (target), length: 15e94

Now we know that this address is in a read-only page inside KernelBase.dll. But we don’t
have any information that will help us understand what this page is and why it’s guarded.
Let’s follow the suggestion of the command output and run !dh to dump the headers of
KernelBase.dll to get some more information (showing partial output here since full output is
very long):

!dh ox7ffe3d730000
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File Type: DLL

FILE HEADER VALUES

8664 machine (X64)

7 number of sections
FE317FBo time date stamp Sat Feb 21 05:53:36 2105
o file pointer to symbol table

0 number of symbols

Fo size of optional header
2022 characteristics
Executable

App can handle >2gb addresses
DLL

OPTIONAL HEADER VALUES
20B magic #

14.30 linker version

188000 size of code

211000 size of initialized data
0 size of uninitialized data
89FEo address of entry point
1000 base of code

00007ffe3d730000 image base

1000 section alignment

1000 file alignment

3 subsystem (Windows CUI)

10.00 operating system version

10.00 image version

10.00 subsystem version

39A000 size of image

1000 size of headers

3A8E61 checksum

0000000000040000 size of stack reserve
0000000000001000 size of stack commit
0000000000100000 size of heap reserve
0000000000001000 size of heap commit
4160 DLL characteristics

High entropy VA supported

Dynamic base

NX compatible

Guard

334150 [ F884] address [size] of Export Directory
3439D4 [ 50] address [size] of Import Directory
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369000 [ 548] address [size] of Resource Directory

34Fo000 [ 18828] address [size] of Exception Directory

397000 [ 92D0] address [size] of Security Directory

36A000 [ 2F568] address [size] of Base Relocation Directory

29B8C4 [ 70] address [size] of Debug Directory

0 [ o] address [size] of Description Directory

0 [ o] address [size] of Special Directory

255C20 [ 28] address [size] of Thread Storage Directory

1FB6Do [ 140] address [size] of Load Configuration Directory

0 [ o] address [size] of Bound Import Directory

2569D8 [ 16E0] address [size] of Import Address Table Directory

331280 [ 620] address [size] of Delay Import Directory

0 [ o] address [size] of COR20 Header Directory

o [ o] address [size] of Reserved Directory

Our faulting address is 0x7ffe3da6416c , which is at offset ©x33416c inside
KernelBase.dll. Looking for the closest match in the output of !dh we can find the export
directory at offset ©x334150 :

334150 [ F884] address [size] of Export Directory

So the faulting code is trying to access an entry in the KernelBase export table. That shouldn’t
happen under normal circumstances — if you debug another process (one that doesn’t have
EAF enabled) you will not see any exceptions being thrown when accessing the export table.
So we can guess that PayloadRestrictions.dll is causing this, and we’ll soon see how and why
it does it.

One thing to note about guard page violations is this, quoted from this MSDN page:

If a program attempts to access an address within a guard page, the system raises

a STATUS_GUARD_PAGE_VIOLATION ( 0x80000001 ) exception. The system also
clears the PAGE_GUARD modifier, removing the memory page’s guard page status. The
system will not stop the next attempt to access the memory page with

a STATUS_GUARD_PAGE_VIOLATION exception.

So this guard page violation should only happen once and then get removed and never
happen again. However, if we continue the execution of calc.exe, we’ll soon see another page
guard violation on the same address:

0:000> g
(6540.3dc8): Guard page violation - code 80000001 (first chance)
First chance exceptions are reported before any exception handling.

This exception may be expected and handled.
ntdll!LdrpSnapModule+@x23b:
00eR7ffe  400ac23b 448b431c mov r8d,dword ptr [rbx+1Ch] ds:00007ffe 3da6416c=00334178
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This means the guard page somehow came back and is set on the KernelBase export table
again.

The best guess in this case would probably be that someone registered an exception handler
which gets called every time a guard page violation happens and immediately sets the

PAGE_GUARD flag again, so that the same exception happens next time anything accesses the
export table. Unfortunately, there is no good way to view registered exception handlers in
WinDbg (unless setting the “enable exception logging” in gflags, which enables the !exrlog
extension but I won’t be doing that now). However, we know that the DLL registering the
suspected exception handler is most likely PayloadRestrictions.dll, so we’ll open it in IDA
and take a look.

When looking for calls to Rt1AddVectoredExceptionHandler ,the function used to register
exception handlers, we only see two results:

Directior Ty| Address

ESup r MitlibActivateProtections+9D cs:__imp_RtlAddVectoredExceptionHandler
E= Up p MitLibActivateProtections+9D cs:__imp_RtlAddVectoredExceptionHandler
E r MitLibHandleDllLoadEvent+2A6 cs:__imp_RtlIAddVectoredExceptionHandler
E p MitLibHandleDlILoadEvent+2A6 cs:__imp_RtlAddVectoredExceptionHandler

Line 1 of 4

k4

al, cs:ExceptionHandlerRegistered
al, al
short loc_180047FB3

rdx, MitLibExceptionHandler ; VectoredHandler

ecx, ; FirstHandler

cs:__imp_ RtlAddVectoredExceptionHandler

dword ptr [rax+rax+ ]

rax, rax ; rax = handler to the exception handler
short loc_180047FB3

cs:ExceptionHandlerRegistered,
ebx, ebx

eax, cs:dword 1800E400C

eax, eax

short loc_180047FB3
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(on a side note — I don’t often choose to use the IDA disassembler instead of the Hex Rays
decompiler but PayloadRestrictions.dll uses some things that the decompiler doesn’t handler
too well so I'll be switching between the disassembler and decompiler code in this post)

We can set a breakpoint on this exception handler and see that it gets called from the same
address that threw the page guard violation exception earlier
( ntdll!LdrpSnapModule+0x23b ):

©:000> bp payloadrestrictions!MitLibExceptionHandler
0:000> g

Breakpoint 3 hit
PayloadRestrictions!MitLibExceptionHandler:

000e7ffe 1a408d60 4c8bdc mov rll,rsp
0:000> k

# Child-SP RetAddr Call Site

P0PPReT5 d2b5d708 @LLO7ffe 40101792 PayloadRestrictions!MitLibExceptionHandler
0005 d2b5d710 00V7ffe 400a3bc2 ntdll!RtlpCallVectoredHandlers+0x112
0000 f5 d2b5d7bo 00B7ffe 4013799%¢ ntdll!RtlDispatchException+0x62

00000eT5 d2b5dakd 0eee7ffe 400ac23b ntdll!KiUserExceptionDispatch+@x2e
0000ROT5 d2b5e760 ©0BR7ffe 4009aac3 ntdll!LdrpSnapModule+@x23b

000PROT5 d2b5e930 ©BLB7ffe 40092958 ntdll!LdrpProcessWork+ex43

0005 d2b5e980 0©VLO7ffe 400af@6C ntdll!LdrpDrainWorkQueue+0x184

Looking at the exception handler itself we can see it’s quite simple:

__inte4 _ fastcall MitLibExceptionHandler(struct _EXCEPTION_POINTERS *ExceptionInfo)

I
L

if ( ExceptionHandlerRegistered )

{
if ( ExceptionInfo->ExceptionRecord->ExceptionCode == (unsigned int)STATUS_GUARD_PAGE_VIOLATION )
return MitLibValidateAccessToProtectedPage(ExceptionInfo->ExceptionRecord, ExceptionInfo->ContextRecord);

if ( ExceptionInfo->ExceptionRecord->ExceptionCode == (unsigned int)STATUS_SINGLE_STEP )
return MitLibHandleSingleStepException();

}

return STATUS_
1
Ir

It only handles two exception codes:

1. STATUS_GUARD_PAGE_VIOLATION
2. STATUS_SINGLE_STEP

When a guard page violation happens, we can see

MitLibvalidateAccessToProtectedPage get called. Looking at this function, we can tell
that a lot of it is dedicated to checks related to Import Address Filtering. We can guess that
based on the address comparisons to the global IatShadowPtr variable and calls to various
IAF functions:
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; __inte4 _ stdcall MitLibValidateAccessToProtectedPage(PEXCEPTION_RECORD ExceptionRecord, PCONTEXT ContextRecord)
MitLibValidateAccessToProtectedPage proc near

gqword ptr

BaseOfImage= gqword ptr
arg_10= qword ptr

[rsp+arg_10], rbx

rbp

rsi

rdi

ri2

ri3

ri4

ri5

rsp,

rsi, [rcx+(_EXCEPTION_RECORD.ExceptionInformation+8)] ; ExceptionInformation[1l] is set to the address that caused the fault
ebx,

rax, cs:IatShadowPtr

rled, ried

rl5, [rdx+CONTEXT._Rip]

rldd, ri4d

rbp, rdx

r8d, ebx

rsi, rax

short FaultingAddressIsNotInShadowIat

edx, cs:endOfShadowIat

rax, cs:IatShadowPtr

rax, rdx

rsi, rax

short FaultingAddressIsNotInShadowIat

Some of the code here is relevant for EAF, but for simplicity we’ll skip most of it (for now).
Just by quickly scanning through this function and all the ones called by it, it doesn’t look like
anything here is resetting the PAGE_GUARD modifier on the export table page.

What might give us a hint is to go back to WinDbg and continue program execution:

0:007> g

(6540.4938): Guard page violation - code 80000001 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

ntdll!LdrpSnapModule+@x23b:

00007 ffe 480ac23b 448b431c mov r8d,dword ptr [rbx+1Ch] ds:eeee7ffe 3da6416c=00334178

0:007> g

(6540.4938): Single step exception - code 800800004 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
ntdll!LdrpSnapModule+@x23f:

00007ffe 400ac23f 4de3cd add rgé,rl2

We’re immediately hitting another exception at the next instruction, this time its one of type
single step exception. A single step exception is one normally triggered by debuggers when
requesting a single step, such as when walking a function instruction by instruction. But in
this case I asked the debugger to continue the execution, not do a single step, so it wasn’t
WinDbg that triggered this exception.
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The way a single step instruction is triggered is by setting the Trap Flag (bit 8 ) in the
EFLAGS register inside the context record. And if we look towards the end of
MitLibvalidateAccessToProtectedPage we can see it doing exactly that:

YYYVYY

loc_180048735:

mov ecx, cs:dword_1800E4018

C
mov rdx, g
mov ried, [rsp+78h+arg 0]
mov [rdX+rcx*8+ ], ri2
bts [rbp+CONTEXT.EFlags],

So far we’ve seen PayloadRestrictions.dll do the following:

1. Set the PAGE_GUARD modifier on the export table page.
2. When the export table page is accessed, catch the exception with
MitLibExceptionHandler andcall MitLibVvalidateAccessToProtectedPage if
this is a guard page violation.
3. Set the Trap Flagin EFLAGS to generate a single step exception on the next instruction
once execution resumes.

This matches the fact that MitLibExceptionHandler handles exactly two exception codes
— guard page violations and single steps. So on the next instruction we receive the now
expected single step exception and go right into MitLibHandleSingleStepException :
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tlsSlot = (unsigned __int64)NtCurrentTeb()->TlsSlots[TlsSlotIndex];
if ( tlssSlot )
{

if ( (tlsslot & 1) !'= 0 )

address = tlsSlot & @xFFFFFFFFFFFFFFFEui64;
if ( (tlsSlot & OxFFFFFFFFFFFFFFFEui64) < IatShadowPtr || address >= IatShadowPtr + @x

-

1

NtCurrentTeb()->T1lsSlots[TlsSlotIndex] = @i64;
return (unsigned int)-1;

ie4;
FFFFFFFFFFFFFO@

(__inte4 *)&ad

PAGE_GUARD | PAGE_R

(_QWORD *)(tlsSlot +
(unsigned __inté nsigned int *)(tlsSlot + 4);
(__int64 *)&addre

protectFunc = (void (__ fastcall *)(__inte4, _ inte4 *, _ inté4 *, MACRO_PAGE, int *))pNtProtectVirtualMemory;
if ( !pNtProtectVirtualMemory )
protectFunc = (void (_ fastcall *)(__inte4, _ inte64 *, _ int64 *, MACRO_PAGE, int *))pProtectFuncOpticn2;
tFunc(-1i64, baseAddress, numberOfB s, newProtection, &oldProtection);
-‘Z.itj

This is obviously a cleaned-up version of the original output. I saved you some of the work of

checking what the global variables are and renaming them since this isn’t an especially

interesting step — for example to check what function is pointed to by the variable I named
pNtProtectVirtualMemory I simply dumped the pointer in WinDbg and saw it pointing to
NtProtectVirtualMemory .

Back to the point — there are some things in this function that we’ll ignore for now and come
back to later. What we can focus on is the call to NtProtectVirtualMemory , which (at least
through one code path) sets the protection to PAGE_GUARD and PAGE_READONLY . Even
without fully understanding everything we can make an educated guess and say that this is
most likely the place where the KernelBase.dll export table guard page flag gets reset.

Now that we know the mechanism behind the two exceptions we’re seeing, we can go back to

MitLibvalidateAccessToProtectedPage to go over all the parts we skipped earlier and
see what happens when a guard page violation occurs. First thing we see is a check to see if
the faulting address in inside the IatShadow page. We can keep ignoring this one since it’s
related to another feature (IAF) that we haven’t enabled for this process. We move on to the
next section, which I titled FaultingAddressIsNotInShadowIat :
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FaultingAddressIsNotInShadowIat:
eax, cs:NumberOfModules
ril, g _MitLibState
edx, edx
eax, eax

short loc_180048529

IsRipInValidRange:
ro, [rdx+rdx*4]
mov eax, [rll+r9*8+ ] ; CheckRipInModuleRange

eax,

short RipIsNotInModule

rax, [rl1l+r9*8+ ] ; ImageBase
ecx, risd ; Faulting RIP
ecx, eax
eax, [r11+r9*8+ ] ; ImageSize
ecx, eax

short RipIsInModule

RipIsNotInModule: RipIsInModule:
eax, cs:NumberOfModulesjmov r8d, edx
edx
edx, eax

short loc_ 1808048529
(KK

loc_180048529:
eax, cs:NumberOfProtectedRegions
(, ecx

eax, eax

loc_180048759

I already renamed some of the variables used here for convenience, but we’ll go over how I
reached those names and titles and what this whole section does. First, we see the DLL using
three global variables — g MitLibState , alarge global structure that contains all sorts of
data used by PayloadRestrictions.dll, and two unnamed variables that I chose to call

NumberOfModules and NumberOfProtectedRegions — we’ll soon see why I chose those
names.

At a first glance, we can tell that this code is running in a loop. In each iteration it accesses
some structure in g MitLibState+0x50+index . This means there is some array at

g_MitLibState+0x50 , where each entry is some unknown structure. From this code, we
can tell that each structure in the array in sized 0x28 bytes. Now we can either try to
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statically search for the function in the DLL that initializes this array and try to figure out
what the structure contains, or we can go back to WinDbg and dump the already-initialized

array in memory:

0:007> dps g MitlLibState+50

00ee7ffe’
007 ffe”
0eoe7ffe”
07 ffe”
000e7ffe” 1a4b4970
eeee7ffe 1a4b46078
00007 ffe 1a4b4080
00007 ffe 1a4b4088
007 ffe” 1a4b4090
B0RO7ffe 1a4b4098
00007+te 1a4b40a®
00007 ffe 1la4b40a8
000e7ffe” 1a4b40bo
00007 ffe 1a4b40b8
P00e7ffe 1a4b40coO
Be0e7ffe 1a4b40c8

1a4b4050
1a4b4058
1a4b4060
1a4b4068

00007ffe”
0000eO "
000e7ffe”
00000218"
00000000 " VBLVVLA1
000e7ffe 3d730000
00000001 00392000
00000218 f42a7d68
00000218 f42a7d40
00000 VLRV 1
00007ffe 3deboooo@
00000002 0B0C2000
00000218  f42a80c8
00000218 4228020
00000000 01
0000PROA 0RO

40090000
00211000
1a4926b@
f42a797@

ntdll!PssNtFreeSnapshot <PERF> (ntdll+0x®)

PayloadRestrictions! string’

kernelbase! tlgWriteTemplate<long _ cdecl(]tl

kernel32!Module32NextW <PERF> (kernel32+0x0)

When dumping unknown memory it’s useful to use the dps command to check if there are
any known symbols in the data. Looking at the array in memory we can see there are 3

entries. Using the we see that the first field in each of the structures is the base address of one
module: Ntdll, KernelBase and Kernel32. Immediately following it there isa ULONG . Based

on the context and the alignment we can guess that this might be the size of the DLL. A quick
WinDbg query shows that this is correct:

0:007> dx @$curprocess.Modules.Where(m => m.Name.Contains("ntdll.dll")).Select(m =>

m.Size)

@$curprocess.Modules.Where(m => m.Name.Contains("ntdll.dll")).Select(m => m.Size)

[0x19] : 0X211000

0:007> dx @$curprocess.Modules.Where(m =>
m.Name.Contains("kernelbase.dll")).Select(m => m.Size)
@$curprocess.Modules.Where(m => m.Name.Contains("kernelbase.dll")).Select(m =>

m.Size)
[0x7] : 0x392000

0:007> dx @$curprocess.Modules.Where(m => m.Name.Contains("kernel32.d11")).Select(m

=> m.Size)

@$curprocess.Modules.Where(m => m.Name.Contains("kernel32.dll")).Select(m => m.Size)

[oxc] : oxc2000

Next we have a pointer to the base name of the module:

0:007> dx -ro (wchar_t*)oxoooo7ffe1a4926bo
(wchar_t*)oxo0007ffe1a4926bo : ox7ffe1a4926bo : "ntdll.dll" [Type: wchar_t *]
0:007> dx -ro (wchar_t*)ox00000218f42a7d68
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(wchar_t*)0x00000218f42a7d68 : 0x218f42a7d68 : "kernelbase.dll" [Type: wchar_t *]
0:007> dx -ro (wchar_t*)ox00000218f42a80c8

(wchar_t*)0x00000218f42a80c8 : 0x218f42a80c¢8 : "kernel32.dll" [Type: wchar_t *]
And another pointer to the full path of the module:

0:007> dx -ro (wchar_t*)ox00000218f42a7970

(wchar_t*)ox00000218f42a7970 : 0x218f42a7970 : "C:\WINDOWS\SYSTEM32\ntdll.dll"
[Type: wchar_t *]

0:007> dx -ro (wchar_t*)ox00000218f42a7d40

(wchar_t*)ox00000218f42a7d40 : 0x218f42a7d40 :
"C:\WINDOWS\System32\kernelbase.dll" [Type: wchar_t *]

0:007> dx -ro (wchar_t*)ox00000218f42a80a0

(wchar_t*)ox00000218f42a80a0 : 0x218f42a80a0 :
"C:\WINDOWS\System32\kernel32.dll" [Type: wchar_t *]

Finally we have a ULONG that is used in this function to indicate whether or not to check this
range, so I named it CheckRipInModuleRange . When put together, we can build the
following structure:

typedef struct _MODULE_INFORMATION {
PVOID ImageBase;
ULONG ImageSize;
PUCHAR ImageName;
PUCHAR FulleImagePath;
ULONG CheckRipInModuleRange;
} MODULE_INFORMATION, *PMODULE_INFORMATION;

We could define this structure in IDA and get a much nicer view of the code but I'm trying to
keep this post focused on analyzing this feature so I just annotated the idb with the field
names.

Now that we know what this array contains we can have a better idea of what this code does —
It iterates over the structures in this array and checks if the instruction pointer that accessed
the guarded page is inside one of those modules. When the loop is done — or the code found
that the faulting RIP isin one of those modules — it sets r8 to the index of the module (or
leavesitas -1 if a module is not found) and moves on to the next checks:
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address that was accessed in guarded page

rdx, rax ; rdx = faulting address
short loc_1860048568

loc_180048568:
cmp ecx, e
jz loc_18

[ -

Here we have another loop, this time iterating over an array in g MitLibState+0x5D0 ,
where each structure is sized 0x18 , and comparing it to the address that triggered the
exception (in our case, the address inside the KernelBase export table). Now we already know
what to do so we’ll go and dump that array in memory:

9:007> dps g_MitLibState+5de

00007ffe 1adb45de@ ©0087ffe 40090000 ntdll!PssNtFreeSnapshot <PERF> (ntdl1+ex@)

PeeO7ffe 1adb45d8 ©00e7ffe 40090160 ntdll!PssNtFreeSnapshot <PERF> (ntdl1l+ex168@)

PeRR7ffe” 1ladbdsed ©0PPO102 POLOLOOL
00007ffe” 1adb45e8 00007ffe  3dac4000 kernelbase!?ext-ms-win-kernelbase-processthread-11-1-1_NULL_THUNK_DATA_DLB+@x2@

00007ffe” 1adb45f@ 00007ffe 3dabdlec kernelbase! ?api-ms-win-security-isolationpolicy-11-2-©_NULL_THUNK_DATA_DLB+@x2c
00007 ffe 1a4b45f8 0OLRO102° ©PPOOL2

90007ffe 1a4b4600 0ORB7ffe 3df4deed kernel32! xmmc@9e3889374bc6aB405F39999999999a+8x5FF0

oeee7ffe 1a4b4608 @@RB7ffe 3df4dSbc kernel32!?RPCRT4_NULL_THUNK_DATA_DLB+8x74

00pR7ffe 1a4b4610 ©OBELORO OLPLLLLRO

We have here three entries, each containing what looks like a start address, end address and
some flag. Let’s see what each of these ranges are:

1. First range starts at the base address of NTDLL and spans 0x160 bytes, so pretty
much covers the NTDLL headers.

2. Second range is one we’ve been looking at since the beginning of the post — this is the
KernelBase.dll export table.

3. Third range is the Kernel32.dll export table (I won’t show how we can find this out
because we’ve done this for KernelBase earlier in the post).

It’s safe to assume these are the memory regions that PayloadRestrictions.dll protects and
that this check is meant to check that this guard page violation was triggered for one of its
protected ranges and not some other guarded page in the process.
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https://windows-internals.com/wp-content/uploads/2022/03/is_address_in_guarded_range.png
https://windows-internals.com/wp-content/uploads/2022/03/g_mitlibstate_5d0_windbg.png

I won’t go into as many details for the other checks in this function because that would
mostly involve repeating the same steps over and over and this post is pretty long as it is.
Instead we’ll look a bit further ahead at this part of the function:

h J

il s 5=

rcx, ris ; FaultingInstructionPointer
MitLibMemReaderGadgetCheck

al,
short InvalidKnownModuleForRip

(all s 5=
[rsp+78h+BaseOfImage],
rdx, [rsp+/8h+BaseOfImage] ; BaseOfImage
rcx, ril5 ; PcValue
cs:__imp_ RtlPcToFileHeader
dword ptr [rax+rax+ ]
ebx, cs:dword_ 1800E4008
ro, rilb
[rsp+78h+var_40],
rg8, rsi
rax, [rsp+78h+BaseOfImage]
edx,
[rsp+78h+var_48], rdi
ebx,
ebx,
[rsp+78h+var_50], ri3
cl, bl
[rsp+78h+var_58], rax
MitLibReportAddressFilterViolation
bl, bl
short InvalidKnownModuleForRip

This code path is called if the instruction pointer is found in one of the registered modules.
Even without looking inside any of the functions that are called here we can guess that

MitLibMemReaderGadgetCheck looks at the instruction that accessed the guarded page and
compares them to the expected instructions, and MitLibReportAddressFilterViolation
is called to report unexpected behavior if the instructions is considered “bad”.

A different path is taken if the saved RIP is not in one of the known modules, which
involved two final checks. The first checks if the saved grgp is inside the stack, and if it isn’t
MitLibReportAddressFilterViolation is called to report potential exploitation:
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https://windows-internals.com/wp-content/uploads/2022/03/eaf_gadget_check_report.png

all et =

loc_180048695:

mov
mov
mov
mov

rax,
rdx,
rax,
rcx,
rdx,
rcx,
rdx,

short loc 1800486FD

[rax+8] ; Teb->StackBase

[rbp+CONTEXT. Rsp]
[rax+ ] ; Teb->StackLimit

ebx, cs:dword 1800E4008

r9, rilb
[rsp+
r8, rsi
rax, [rsp+
edx,
[rsp+
ebx,
ebx,
[rsp+
cl, bl
[rsp+

+var_

+var_

+var_

+var_

40],
+BaseOfImage]

48], ri4

50], ri3

58], rax

MitLibReportAddressFilterViolation

bl, bl

short loc_ 180048775

The second calls Rt1PcToFileHeader to getthe base address of the module that the saved
RIP isin and reports a violation if one is not found since that means the guarded page was
accessed from within dynamic code and not an image:
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https://windows-internals.com/wp-content/uploads/2022/03/eaf_rsp_check.png

[rsp+78h+Base0fImage],

rdx, [rsp+/8h+BaseOfImage] ; BaseOfImage
rcx, ris ; PcValue

cs: imp RtlPcToFileHeader

dword ptr [rax+rax+ ]

eax, cs:dword_1800E4008

rdi, [rsp+78h+BaseOfImage]
al,
short loc_180048695

raE s
Check if saved RSP is inside the stack

]

loc_1800486FD:
test rdi, rdi
jnz short EnableSingleStepException

[rsp+78h+var_4@], rdi
edx, [rdi+1]

ebx, cs:dword 1800E4008
r9, ris
[rsp+78h+var_48], rl4
r8, rsi

ebx,

bl,

[rsp+78h+var_50], ri3
[rsp+78h+var_58], rdi
cl, bl
MitLibReportAddressFilterViolation
bl, bl

short loc 180048775

All cases where MitLibReportAddressFilterViolation is called will eventually lead to a
callto MitLibTriggerFailFast :

void _ noreturn MitLibTriggerFailFast()

{
if ( ExceptionHandlerRegistered )

MitLibProtectModule(©, ©i64);
__fastfail(FAST_FAIL_PAYLOAD RESTRICTION VIOLATION);

¥

This ends up terminating the process, therefore blocking the potential exploit. If no violation
is found, the function enables a single step exception for the next instruction that’ll run and
the whole cycle begins again.
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https://windows-internals.com/wp-content/uploads/2022/03/eaf_rip_no_image.png
https://windows-internals.com/wp-content/uploads/2022/03/mitlibtriggerfailfast.png

Of course we can keep digging into the DLL to learn about the initialization of this feature,
the gadgets being searched for or what happens when a violation is reported, but I'll leave
those as assignments for someone else. For now we managed to get a good understanding of
what EAF is and how it works that will allow us to further analyze it or search for potential
bypasses, as well as getting some tools for analyzing similar mechanisms in
PayloadRestrictions.dll or other security products.
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