
By Yarden Shafir

One I/O Ring to Rule Them All: A Full Read/Write Exploit
Primitive on Windows 11

windows-internals.com/one-i-o-ring-to-rule-them-all-a-full-read-write-exploit-primitive-on-windows-11

This blog post will cover the post-exploitation technique I presented at TyphoonCon 2022.
For anyone interested in the talk itself, I’ll link the recording here when it becomes available.

 This technique is a post exploitation primitive unique to Windows 11 22H2+ – there are no
0 -days here. Instead, there’s a method to turn an arbitrary write, or even arbitrary

increment bug in the Windows kernel into a full read/write of kernel memory.

Background

Kernel exploitation (and exploitation in general) on Windows is becoming harder with every
new version. Driver Signature Enforcement made it harder for an attacker to load unsigned
drivers, and later HVCI made it entirely impossible – with the added difficulty of a driver
block list, preventing attackers from loading signed vulnerable drivers. SMEP and KCFG
mitigate against code redirection through function pointer overwrites, and KCET makes
ROP impossible as well. Other VBS features such as KDP protect kernel data, so common

targets such as g_CiOptions can no longer be modified by an attacker. And on top of those,
there are Patch Guard and Secure Kernel Patch Guard which validate the integrity of the
kernel and many of its components.

With all the existing mitigations, just finding a user->kernel bug no longer guarantees
successful exploitation. In Windows 11 with all mitigations enabled, it’s nearly impossible
to achieve Ring 0 code execution. However, data-based attacks are still a viable solution

 A known technique for a data-only attack is to create a fake kernel-mode structure in user
mode, then tricking the kernel to use it through a write-what-where bug (or any other bug
type that can achieve that). The kernel will treat this structure like valid kernel data, allowing
the attacker to achieve privilege escalation by manipulating the data in the structure, thus
manipulating kernel actions that are done based on that data. There are numerous examples
for this technique, which was used in different ways. For example, this blog post by J00ru
demonstrates using a fake token table to turn an off-by-one bug into an arbitrary write, and
later using that to run shellcode in ring 0 . Many other examples take advantage of different
Win32k objects to achieve arbitrary read, write or both. Some of these techniques have
already been mitigated by Microsoft, other are already known and hunted for by security
products, and others are still usable and most likely used in the wild.

https://windows-internals.com/one-i-o-ring-to-rule-them-all-a-full-read-write-exploit-primitive-on-windows-11/
https://windows-internals.com/hyperguard-secure-kernel-patch-guard-part-1-skpg-initialization/
https://j00ru.vexillium.org/2018/07/exploiting-a-windows-10-pagedpool-off-by-one/
https://www.blackhat.com/docs/us-17/wednesday/us-17-Schenk-Taking-Windows-10-Kernel-Exploitation-To-The-Next-Level%E2%80%93Leveraging-Write-What-Where-Vulnerabilities-In-Creators-Update.pdf
https://www.avira.com/en/blog/anatomy-of-an-exploit-in-windows-win32k-cve-2022-21882
https://xiaodaozhi.com/exploit/156.html

In this post I’d like to add one more technique to the pile – using I/O ring preregistered
buffers to create a read/write primitive, using 1-2 arbitrary kernel writes (or increments).
This technique uses a new object type that currently has very limited visibility to security
products and is likely to be ignored for a while. The method is very simple to use – once you
understand the underlying mechanism of I/O ring.

I/O Ring

I already wrote several blog posts (and a talk) about I/O rings so I’ll just present the basic
idea and the parts relevant to this technique. Anyone interested in learning more about it can
read the previous posts on the topic or watch the talk from P99 Conf.

In short, I/O ring is a new asynchronous I/O mechanism that allows an application to queue
as many as 0x10000 I/O operations and submit them all at once, using a single API call.
The mechanism was modeled after the Linux io_uring , so the design of the two is very
similar. For now, I/O rings don’t support every possible I/O operation yet. The available
operations in Windows 11 22H2 are read, write, flush and cancel. The requested
operations are written into a Submission Queue, and then submitted all together. The kernel
processes the requests and writes the status codes into a Completion Queue – both queues
are in a shared memory region accessible to both user mode and kernel mode, allowing
sharing of data without the overhead of multiple system calls.

In addition to the available I/O operations, the application can queue two more types of
operations unique to I/O ring: preregister buffers and preregister files. These options allow
an application to open all the file handles or create all the input/output buffers ahead of
time, register them and later reference them by index in I/O operations queued through the
I/O ring. When the kernel processes an entry that uses a preregistered file handle or buffer, it
fetches the requested handle/buffer from the preregistered array and passes it on to the I/O
manager where it is handled normally.

For the visual learners, here’s an example of a queue entry using a preregistered file handle
and buffer:

https://windows-internals.com/i-o-rings-when-one-i-o-operation-is-not-enough/
https://windows-internals.com/ioring-vs-io_uring-a-comparison-of-windows-and-linux-implementations/
https://windows-internals.com/one-year-to-i-o-ring-what-changed/
https://www.p99conf.io/session/i-o-rings-and-you-optimizing-i-o-on-windows/

A submission queue that’s ready to be submitted to the kernel could look something like this:

The exploitation technique discussed here takes advantage of the preregistered buffers array,
so let’s go into a bit more detail there:

Registered Buffers

https://windows-internals.com/wp-content/uploads/2022/07/ioring_preregistered.png
https://windows-internals.com/wp-content/uploads/2022/07/ioring_diagram-1.png

As I mentioned, one of the operations an application can do is allocate all the buffers for its
future I/O operations, then register them with the I/O ring. The preregistered buffers are
referenced through the I/O ring object:

typedef struct _IORING_OBJECT
 {

 USHORT Type;
 USHORT Size;
 NT_IORING_INFO UserInfo;

 PVOID Section;
 PNT_IORING_SUBMISSION_QUEUE SubmissionQueue;

 PMDL CompletionQueueMdl;
 PNT_IORING_COMPLETION_QUEUE CompletionQueue;

 ULONG64 ViewSize;
 ULONG InSubmit;

 ULONG64 CompletionLock;
 ULONG64 SubmitCount;

 ULONG64 CompletionCount;
 ULONG64 CompletionWaitUntil;

 KEVENT CompletionEvent;
 UCHAR SignalCompletionEvent;

 PKEVENT CompletionUserEvent;
 ULONG RegBuffersCount;

 PVOID RegBuffers;
 ULONG RegFilesCount;

 PVOID* RegFiles;
 } IORING_OBJECT, *PIORING_OBJECT;

When the request gets processed, the following things happen:

1. IoRing->RegBuffers and IoRing->RegBuffersCount get set to zero.
2. The kernel validates that Sqe->RegisterBuffers.Buffers and Sqe-

>RegisterBuffers.Count are both not zero.
3. If the request came from user mode, the array is probed to validate that it’s fully in the

user mode address space. Array size can be up to sizeof(ULONG) .
4. If the ring previously had a preregistered buffers array and the size of the new buffer is

the same as the size of the old buffer, the old buffer array is placed back in the ring and
the new buffer is ignored.

5. If the previous checks pass and the new buffer array is to be used, a new paged pool
allocation is made – this will be used to copy the data from the user mode array and
will be pointed to by IoRing->RegBuffers .

6. If there’s previously been a registered buffers array pointed to by the I/O ring, it gets
copied into the new kernel array. Any new buffers will be added in the same allocation,
after the old buffers.

7. Every entry in the array sent from user mode is probed to validate that the requested
buffer is fully in user mode, then gets copied to the kernel array.

8. The old kernel array (if one existed) is freed, and the operation is completed.

This whole process is safe – the data is only read from user mode once, probed and validated
correctly to avoid overflows and accidental reads or writes of kernel addresses. Any future
use of these buffers will fetch them from the kernel buffer.

But what if we already have an arbitrary kernel write bug?

In that case, we can overwrite a single pointer – IoRing->RegBuffers , to point it to a fake
buffer that is fully under our control. We can populate it with kernel mode addresses and use
those as buffers in I/O operations. When the buffers are referenced by index they don’t get
probed – the kernel assumes that if the buffers were safe when they where registered, then
copied to a kernel allocation, they would still be safe when they’re referenced as part of an
operation.

This means that with a single arbitrary write and a fake buffer array we can get full control of
the kernel address space through read and write operations.

The Primitive

Once IoRing->RegBuffers points to the fake, user controlled array, we can use normal I/O
ring operations to generate kernel reads and writes into whichever addresses we want by
specifying an index into our fake array to use as a buffer:

1. Read operation + kernel address: The kernel will “read” from a file of our choice into
the specified kernel address, leading to arbitrary write.

2. Write operation + kernel address: The kernel will “write” the data in the specified
address into a file of our choice, leading to arbitrary read.

Initially my primitive relied on files to read and write to, but Alex suggested the use of named
pipes instead which is way cooler and a lot less visible, leaving no traces on disk. So, the rest
of the post + the exploit code will be using named pipes.

As you can see, technique itself is pretty simple. So simple, in fact, it doesn’t even require the
use of any (well, almost) undocumented API s or secret data structures. It uses Win32 API
and structures that are available in the public symbols of ntoskrnl.exe . The exploit
primitive involves the following steps:

1. Create two named pipes with CreateNamedPipe : one will be used for input for
arbitrary kernel writes and the other for output for arbitrary kernel reads. At least the
pipe that’ll be used as input should be created with flag PIPE_ACCESS_DUPLEX to allow
both reading and writing. I chose to create both with PIPE_ACCESS_DUPLEX for
convenience.

2. Open client handles for both pipes with CreateFile , both with read and write
permissions.

3. Create an I/O ring: this can be done through CreateIoRing API.
4. Allocate a fake buffers array in the heap: Starting from the official 22H2 release, the

registered buffers array is no longer a flat array, but an array of IOP_MC_BUFFER_ENTRY
structures, so this gets slightly more tricky.

5. Find the address of the newly created I/O ring object: since I/O rings use a new object
type, IORING_OBJECT , we can leak its address through a well-known KASLR bypass
technique. NtQuerySystemInformation with SystemHandleInformation leaks the
kernel addresses of objects, including our new I/O ring object. Fortunately, the internal
structure of IORING_OBJECT is in the public symbols so there’s no need to reverse
engineer the structure to find the offset of RegBuffers . We add the two together to get
the target for our arbitrary write.

 Unfortunately, this API as well as many other KASLR bypasses can only be used by
processes with Medium IL or higher, so Low IL processes, sandboxed processes and
browsers can’t use it and will have to find a different method.

6. Use your preferred arbitrary write bug to overwrite IoRing->RegBuffers with the
address of the fake user-mode array. Notice that if you haven’t previously registered a
valid buffers array you’ll also have to overwrite IoRing->RegBuffersCount to have a
non-zero value.

7. Populate the fake buffers array with kernel pointers to read or write to: to do this you
might need other KASLR bypasses in order to find your target addresses. You could use
NtQuerySystemInformation with SystemModuleInformation class to find the base

addresses of kernel modules, use the same technique as earlier to find kernel addresses
of objects, or use the pointers available inside the I/O ring itself, which point to data
structures in the paged pool.

8. Queue read and write operations in the I/O ring through BuildIoRingReadFile and
BuildIoRingWriteFile .

With this method, arbitrary reads and writes aren’t limited to a pointer size, like many other
methods, but can be as large as sizeof(ULONG) , reading or writing many pages of kernel
data simultaneously.

Cleanup

This technique requires minimal cleanup: all that’s required it to set IoRing->RegBuffers to
zero before closing the handle to the I/O ring object. As long as the pointer is zero, the kernel
won’t try to free anything even if IoRing->RegBuffersCount is non-zero.

Cleanup gets slightly more complicated if you choose to first register a valid buffer array and
then overwrite the existing pointer in the I/O ring object – in that case there is already an
allocated kernel buffer, which also adds a reference count in the EPROCESS object. In that
case, the EPROCESS RefCount will need to be decremented before the process exits to avoid
leaving a stale process around. Luckily that is easy to do with one more arbitrary read + write
using our existing technique.

Arbitrary Increment

A couple years ago I published a series of blogs discussing CVE-2020-1034 – an arbitrary
increment vulnerability in EtwpNotifyGuid . Back then, I focused on the challenges of
exploiting this bug and used it to increment the process’ token privileges – a very well known
privilege escalation technique. This method works, though it’s possible to detect in real time
or retroactively using different tools. Security vendors are well aware of this technique and
many already detect it.

That project made me interested in other ways to exploit that specific bug class – an arbitrary
increment of a kernel address, so I was very happy to find a post exploitation technique that
finally fit. With the method I presented here, you can use an arbitrary increment to
increment IoRing->RegBuffers from 0 to a user-mode address such as 0x1000000 (no
need for 0x1000000 increments, just increment the 3 byte by one) and increment
IoRing->RegBuffersCount from 0 to 1 or 0x100 (or more). This does require you to

trigger the bug twice in order to create the technique, but I recommend doing that anyway to
avoid the extra cleanup required when overwriting an existing pointer.

Forensics and Detection

This post exploitation technique has very little visibility and leaves few forensic traces: I/O
rings have nearly no visibility through ETW except on creation, and the technique leaves no
forensic traces in memory. The only part of this technique that is visible to security products
are the named pipes operations, visible to security products who use a filesystem filter driver
(and most do). However, these pipes are local and aren’t used for anything that looks too
suspicious — they read and write small amounts of data with no specific format, so they’re
not likely to be flagged as suspicious

Portable Features = Portable Exploits?

rd

https://windows-internals.com/exploiting-a-simple-vulnerability-in-35-easy-steps-or-less/
https://windows-internals.com/exploiting-a-simple-vulnerability-part-2-what-if-we-made-exploitation-harder/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2020-1034

I/O rings on Windows were modeled after the Linux io_uring and share many of the same
features, and this one is no different. The Linux io_uring also allows registering buffers or
file handles, and the registered buffers are handled very similarly and stored in the
user_bufs field of the ring. This means that the same exploitation technique should also

work on Linux (though I haven’t personally tested it).

The main difference between the two systems in this case is mitigation: while on Windows
it’s difficult to mitigate against this technique, Linux has a mitigation that makes blocking
this technique (at least in its current form) trivial: SMAP . This mitigation prevents access to
user-mode addresses with kernel-mode privileges, blocking any exploitation technique that
involves faking a kernel structure in user-mode. Unfortunately due to the basic design of the
Windows system it’s unlikely SMAP will ever be a usable mitigation there, but it’s been
available and used on Linux since 2012 .

Of course there are still ways to bypass SMAP , such as shaping a kernel pool allocation to be
used as the fake buffers array instead of a user-mode address or editing the PTE of the user-
mode page that contains the fake array, but the basic exploitation primitive won’t work on
systems that support SMAP .

22H2 Changes

The official 22H2 release introduced a change that affects this technique, but only slightly.
Since Windows 11 build 22610 (so a couple of builds before the official 22H2 release) the
buffer array in the kernel is no longer a flat array of addresses and lengths, but instead an
array of pointers to a new data structure: IOP_MC_BUFFER_ENTRY :

typedef struct _IOP_MC_BUFFER_ENTRY
 {

 USHORT Type;
 USHORT Reserved;

 ULONG Size;
 ULONG ReferenceCount;

 ULONG Flags;
 LIST_ENTRY GlobalDataLink;

 PVOID Address;
 ULONG Length;

 CHAR AccessMode;
 ULONG MdlRef;

 PMDL Mdl;
 KEVENT MdlRundownEvent;

 PULONG64 PfnArray;
 IOP_MC_BE_PAGE_NODE PageNodes[1];

 } IOP_MC_BUFFER_ENTRY, *PIOP_MC_BUFFER_ENTRY;

This data structure is used as part of the MDL cache capability that was added in the same
build. It looks complex and scary, but in our use-case most of these fields are never used and
can be ignored. We still have the same Address and Length fields that we need for our
technique to work, and to be compatible with the requirements of the new feature we also
need to hardcode a few values in the fields Type , Size , AccessMode and
ReferenceCount .

To adapt our technique to this new addition, here are the changes needed in our code:

1. Allocate a fake buffers array, sized sizeof(PVOID) * NumberOfEntries .
2. Allocate a IOP_MC_BUFFER_ENTRY structure for each fake buffer and place the pointer

into the fake buffers array. Zero out the structure, then set the following fields:
mcBufferEntry->Address = TargetAddress;

 mcBufferEntry->Length = Length;
 mcBufferEntry->Type = 0xc02;

mcBufferEntry->Size = 0x80; // 0x20 * (numberOfPagesInBuffer + 3)
 mcBufferEntry->AccessMode = 1;

 mcBufferEntry->ReferenceCount = 1;

The PoC

I uploaded my PoC here. It works starting 22H2 preview builds (minimal supported version
– before this build I/O rings didn’t yet support write operations) and up to the latest
Windows Preview build (25415 as of today). For my arbitrary write/increment bugs I used
the HEVD driver, recompiled to support arbitrary increments. The PoC supports both
options, but if you use the latest HEVD release only the arbitrary write option will work.

For the arbitrary read target, I used a page from the ntoskrnl.exe data section – the offset
of the section is hardcoded due to laziness, so it might break spontaneously when that offset
changes.

https://github.com/yardenshafir/IoRingReadWritePrimitive
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/

