
1/17

By Yarden Shafir

I/O Rings – When One I/O Operation is Not Enough
windows-internals.com/i-o-rings-when-one-i-o-operation-is-not-enough

Introduction

I usually write about security features or techniques on Windows. But today’s blog is not

directly related to any security topics, other than the usual added risk that any new system

call introduces. However, it’s an interesting addition to the I/O world in Windows that could

be useful for developers and I thought it would be interesting to look into and write about. All

this is to say – if you’re looking for a new exploit or EDR bypass technique, you should save

yourselves the time and look at the other posts on this website instead.

For the three of you who are still reading, let’s talk about I/O rings!

I/O ring is a new feature on Windows preview builds. This is the Windows implementation of

a ring buffer – a circular buffer, in this case used to queue multiple I/O operations

simultaneously, to allow user-mode applications performing a lot of I/O operations to do so

in one action instead of transitioning from user to kernel and back for every individual

request.

This new feature adds a lot of new functions and internal data structures, so to avoid

constantly breaking the flow of the blog with new data structures I will not put them as part

of the post, but their definitions exist in the code sample at the end. I will only show a few

internal data structures that aren’t used in the code sample.

I/O Ring Usage

The current implementation of I/O rings only supports read operations and allows queuing

up to 0x10000 operations at a time. For every operation the caller will need to supply a

handle to the target file, an output buffer, an offset into the file and amount of memory to be

read. This is all done in multiple new data structures that will be discussed later. But first, the

caller needs to initialize its I/O ring.

Create and Initialize an I/O Ring

To do that, the system supplies a new system call – NtCreateIoRing . This function creates

an instance of a new IoRing object type, described here as IORING_OBJECT :

typedef struct _IORING_OBJECT

{

 USHORT Type;

 USHORT Size;

https://windows-internals.com/i-o-rings-when-one-i-o-operation-is-not-enough/
https://en.wikipedia.org/wiki/Circular_buffer

2/17

 NT_IORING_INFO Info;
 PSECTION SectionObject;

 PVOID KernelMappedBase;

 PMDL Mdl;

 PVOID MdlMappedBase;

 ULONG_PTR ViewSize;

 ULONG SubmitInProgress;

 PVOID IoRingEntryLock;

 PVOID EntriesCompleted;

 PVOID EntriesSubmitted;

 KEVENT RingEvent;

 PVOID EntriesPending;

 ULONG BuffersRegistered;

 PIORING_BUFFER_INFO BufferArray;

 ULONG FilesRegistered;

 PHANDLE FileHandleArray;

} IORING_OBJECT, *PIORING_OBJECT;

NtCreateIoRing receives one new structure as an input argument – IO_RING_STRUCTV1 .

This structure contains information about current version, which currently can only be 1 ,

required and advisory flags (both don’t currently support any values other than 0) and the

requested size for the submission queue and completion queue.

The function receives this information and does the following things:

1. Validates all the input and output arguments – their addresses, size alignment, etc.

2. Checks the requested submission queue size and calculate the amount of memory

needed for the submission queue based on the requested number of entries.

1. If SubmissionQueueSize is over 0x10000 a new error status

STATUS_IORING_SUBMISSION_QUEUE_TOO_BIG gets returned.

3. Checks the completions queue size and calculates the amount of memory needed for it.

1. The completion queue is limited to 0x20000 entries and error code

STATUS_IORING_COMPLETION_QUEUE_TOO_BIG is returned if a larger number is

requested.

4. Creates a new object of type IoRingObjectType and initializes all fields that can be

initialized at this point – flags, submission queue size and mask, event, etc.

5. Creates a section for the queues, maps it in system space and creates an MDL to back it.

Then maps the same section in user-space. This section will contain the submission

space and completion space and will be used by the application to communicate the

parameters for all requested I/O operations with the kernel and receive the status

codes.

6. Initializes the output structure with the submission queue address and other data to be

returned to the caller.

3/17

After NtCreateIoRing returns successfully, the caller can write its data into the supplied

submission queue. The queue will have a queue head, followed by an array of

NT_IORING_SQE structures, each representing one requested I/O operation. The header

describes which entries should be processed at this time:

The queue header describes which entries should be processed using the Head and Tail

fields. Head specifies the index of the last unprocessed entry, and Tail specifies the index

to stop processing at. Tail - Head has to be lower that total number of entries, as well as

equal to or highrt than the number of entries that will be requested in the call to

NtSubmitIoRing .

Each queue entry contains data about the requested operation: file handle, file offset, output

buffer base, offset and amount of data to be read. It also contains an OpCode field to specify

the requested operation.

I/O Ring Operation Codes

There are four possible operation types that can be requested by the caller:

https://windows-internals.com/wp-content/uploads/2021/05/ioring_submission_queue-1.png

4/17

1. IORING_OP_READ : requests that the system reads data from a file into an output

buffer. The file handle will be read from the FileRef field in the submission queue

entry. This will either be interpreted as a file handle or as an index into a pre-registered

array of file handles, depending on whether the IORING_SQE_PREREGISTERED_FILE

flag (1) is set in the queue entry Flags field. The output will be written into an

output buffer supplied in the Buffer field of the entry. Similar to FileRef , this field

can instead contain an index into a pre-registered array of output buffers if the

IORING_SQE_PREREGISTERED_BUFFER flag (2) is set.

2. IORING_OP_REGISTERED_FILES : requests pre-registration of file handles to be

processed later. In this case the Buffer field of the queue entry points to an array of

file handles. The requested file handles will get duplicated and placed in a new array, in

the FileHandleArray field of the queue entry. The FilesRegistered field will

contain the number of file handles.

3. IORING_OP_REGISTERED_BUFFERS : requests pre-registration of output buffers for file

data to be read into. In this case, the Buffer field in the entry should contain an array

of IORING_BUFFER_INFO structures, describing addresses and sizes of buffers into

which file data will be read:

typedef struct _IORING_BUFFER_INFO

{

 PVOID Address;

 ULONG Length;

} IORING_BUFFER_INFO, *PIORING_BUFFER_INFO;

The buffers’ addresses and sizes will be copied into a new array and placed in the

BufferArray field of the submission queue. The BuffersRegistered field will

contain the number of buffers.

4. IORING_OP_CANCEL : requests the cancellation of a pending operation for a file. Just

like the in IORING_OP_READ , the FileRef can be a handle or an index into the file

handle array depending on the flags. In this case the Buffer field points to the

IO_STATUS_BLOCK to be canceled for the file.

All these options can be a bit confusing so here are illustrations for the 4 different reading

scenarios, based on the requested flags:

Flags are 0 , using the FileRef field as a file handle and the Buffer field as a pointer to

the output buffer:

Flag IORING_SQE_PREREGISTERED_FILE (1) is requested, so FileRef is treated as an

index into an array of pre-registered file handles and Buffer is a pointer to the output

buffer:

5/17

Flag IORING_SQE_PREREGISTERED_BUFFER (2) is requested, so FileRef is a handle to a

file and Buffer is treated as an index into an array of pre-registered output buffers:

https://windows-internals.com/wp-content/uploads/2021/05/ioring_opcode_0.png
https://windows-internals.com/wp-content/uploads/2021/05/ioring_opcode_1.png

6/17

Both IORING_SQE_PREREGISTERED_FILE and IORING_SQE_PREREGISTERED_BUFFER flags

are set, so FileRef is treated as an index into a pre-registered file handle array and

Buffer is treated as index into a pre-registered buffers array:

Submitting and Processing I/O Ring

https://windows-internals.com/wp-content/uploads/2021/05/ioring_opcode_2.png
https://windows-internals.com/wp-content/uploads/2021/05/ioring_opcode_3.png

7/17

Once the caller set up all its submission queue entries, it can call NtSubmitIoRing to

submit its requests to the kernel to get processed according to the requested parameters.

Internally, NtSubmitIoRing iterates over all the entries and calls

IopProcessIoRingEntry , sending the IoRing object and the current queue entry. The

entry gets processed according to the specified OpCode and then calls

IopIoRingDispatchComplete to fill in the completion queue. The completion queue, much

like the submission queue, begins with a header, containing a Head and a Tail , followed

by an array of entries. Each entry is an IORING_CQE structure – it has the UserData value

from the submission queue entry and the Status and Information from the

IO_STATUS_BLOCK for the operation:

typedef struct _IORING_CQE

{

 UINT_PTR UserData;

 HRESULT ResultCode;

 ULONG_PTR Information;

} IORING_CQE, *PIORING_CQE;

Once all requested entries are completed the system sets the event in IoRingObject-

>RingEvent . As long as not all entries are complete the system will wait on the event using

the Timeout received from the caller and wake up when all requests are completed, causing

the event to be signaled, or when the timeout expires.

Since multiple entries can be processed, the status returned to the caller will either be an

error status indicating a failure to process the entries or the return value of

KeWaitForSingleObject . Status codes for individual operations can be found in the

completion queue – so don’t confuse receiving a STATUS_SUCCESS code from

NtSubmitIoRing with successful read operations!

Using I/O Ring – The Official Way

Like other system calls, those new IoRing functions are not documented and not meant to be

used directly. Instead, KernelBase.dll offers convenient wrapper functions that receive

easy-to-use arguments and internally handle all the undocumented functions and data

structures that need to be sent to the kernel. There are functions to create, query, submit and

close the IoRing , as well as helper functions to build queue entries for the four different

operations, which were discussed earlier.

CreateIoRing

CreateIoRing receives information about flags and queue sizes, and internally calls

NtCreateIoRing and returns a handle to an IoRing instance:

8/17

HRESULT
CreateIoRing (

 In IORING_VERSION IoRingVersion,

 In IORING_CREATE_FLAGS Flags,

 In UINT32 SubmissionQueueSize,

 In UINT32 CompletionQueueSize,

 Out HIORING* Handle

);

This new handle type is actually a pointer to an undocumented structure containing the

structure returned from NtCreateIoRing and other data needed to manage this IoRing

instance:

typedef struct _HIORING

{

 ULONG SqePending;

 ULONG SqeCount;

 HANDLE handle;

 IORING_INFO Info;

 ULONG IoRingKernelAcceptedVersion;

} HIORING, *PHIORING;

All the other IoRing functions will receive this handle as their first argument.

After creating an IoRing instance, the application needs to build queue entries for all the

requested I/O operations. Since the internal structure of the queues and the queue entry

structures are not documented, KernelBase.dll exports helper functions to build those

using input data supplied by the caller. There are four functions for this purpose:

1. BuildIoRingReadFile

2. BuildIoRingRegisterBuffers

3. BuildIoRingRegisterFileHandles

4. BuildIoRingCancelRequest

Each function create adds a new queue entry to the submission queue with the required

opcode and data. Their names make their purposes pretty obvious but lets go over them one

by one just for clarity:

BuildIoRingReadFile

HRESULT

BuildIoRingReadFile (

 In HIORING IoRing,

 In IORING_HANDLE_REF FileRef,

 In IORING_BUFFER_REF DataRef,

 In ULONG NumberOfBytesToRead,

9/17

 In ULONG64 FileOffset,
 In ULONG_PTR UserData,

 In IORING_SQE_FLAGS Flags

);

The function receives the handle returned by CreateIoRing followed by two pointers to

new data structures. Both of these structures have a Kind field, which can be either

IORING_REF_RAW , indicating that the supplied value is a raw reference, or

IORING_REF_REGISTERED , indicating that the value is an index into a pre-registered array.

The second field is a union of a value and an index, in which the file handle or buffer will be

supplied.

BuildIoRingRegisterFileHandles and BuildIoRingRegisterBuffers

HRESULT

BuildIoRingRegisterFileHandles (

 In HIORING IoRing,

 In ULONG Count,

 In HANDLE const Handles[],

 In PVOID UserData

);

HRESULT

BuildIoRingRegisterBuffers (

 In HIORING IoRing,

 In ULONG Count,

 In IORING_BUFFER_INFO count Buffers[],

 In PVOID UserData

);

These two functions create submission queue entries to pre-register file handles and output

buffers. Both receive the handle returned from CreateIoRing , the count of pre-registered

files/buffers in the array, an array of the handles or buffers to register and UserData .

In BuildIoRingRegisterFileHandles , Handles is a pointer to an array of file handles and

in BuildIoRingRegisterBuffers , Buffers is a pointer to an array of

IORING_BUFFER_INFO structures containing Buffer base and size.

BuildIoRingCancelRequest

HRESULT

BuildIoRingCancelRequest (

 In HIORING IoRing,

 In IORING_HANDLE_REF File,

10/17

 In PVOID OpToCancel,
 In PVOID UserData

);

Just like the other functions, BuildIoRingCancelRequest receives as its first argument the

handle that was returned from CreateIoRing . The second argument is again a pointer to

an IORING_REQUEST_DATA structure that contains the handle (or index in the file handles

array) to the file whose operation should be canceled. The third and fourth arguments are the

output buffer and UserData to be placed in the queue entry.

After all queue entries were built with those functions, the queue can be submitted:

SubmitIoRing

HRESULT
SubmitIoRing (

 In HIORING IoRingHandle,

 In ULONG WaitOperations,

 In ULONG Milliseconds,

 Out PULONG SubmittedEntries

);

The function receives the same handle as the first argument that was used to initialize the

IoRing and submission queue. Then it receives the amount of entries to submit, time in

milliseconds to wait on the completion of the operations, and a pointer to an output

parameter that will receive the number of entries that were submitted.

GetIoRingInfo

HRESULT

GetIoRingInfo (

 In HIORING IoRingHandle,

 Out PIORING_INFO IoRingBasicInfo

);

This API returns information about the current state of the IoRing with a new structure:

typedef struct _IORING_INFO

{

 IORING_VERSION IoRingVersion;

 IORING_CREATE_FLAGS Flags;

 ULONG SubmissionQueueSize;

 ULONG CompletionQueueSize;

} IORING_INFO, *PIORING_INFO;

This contains the version and flags of the IoRing as well as the current size of the

submission and completion queues.

11/17

Once all operations on the IoRing are done, it needs be closed using CloseIoRing which

receives the handle as its only argument and closes the handle to the IoRing object and

frees the memory used for the structure.

So far I couldn’t find anything on the system that makes use of this feature, but once 21H2

is released I’d expect to start seeing I/O-heavy Windows applications start using it, probably

mostly in server and azure environments.

Conclusion

So far, no public documentation exists for this new addition to the I/O world in Windows,

but hopefully when 21H2 is released later this year we will see all of this officially

documented and used by both Windows and 3 party applications. If used wisely, this could

lead to significant performance improvements for applications that have frequent read

operations. Like every new feature and system call this could also have unexpected security

effects. One bug was already found by hFiref0x, who was the first to publicly mention this

feature and managed to crash the system by sending an incorrect parameter to

NtCreateIoRing – a bug that was fixed since then. Looking more closely into these

functions will likely lead to more such discoveries and interesting side effects of this new

mechanism.

Code

Here’s a small PoC showing two ways to use I/O rings – either through the official

KernelBase API , or through the internal ntdll API . For the code to compile properly

make sure to link it against onecoreuap.lib (for the KernelBase functions) or

ntdll.lib (for the ntdll functions):

#include <ntstatus.h>

#define WIN32_NO_STATUS

#include <Windows.h>

#include <cstdio>

#include <ioringapi.h>

#include <winternal.h>

typedef struct _IO_RING_STRUCTV1

{

 ULONG IoRingVersion;

 ULONG SubmissionQueueSize;

 ULONG CompletionQueueSize;

 ULONG RequiredFlags;

 ULONG AdvisoryFlags;

} IO_RING_STRUCTV1, *PIO_RING_STRUCTV1;

rd

12/17

typedef struct _IORING_QUEUE_HEAD
{

 ULONG Head;

 ULONG Tail;

 ULONG64 Flags;

} IORING_QUEUE_HEAD, *PIORING_QUEUE_HEAD;

typedef struct _NT_IORING_INFO

{

 ULONG Version;

 IORING_CREATE_FLAGS Flags;

 ULONG SubmissionQueueSize;

 ULONG SubQueueSizeMask;

 ULONG CompletionQueueSize;

 ULONG CompQueueSizeMask;

 PIORING_QUEUE_HEAD SubQueueBase;

 PVOID CompQueueBase;

} NT_IORING_INFO, *PNT_IORING_INFO;

typedef struct _NT_IORING_SQE

{

 ULONG Opcode;

 ULONG Flags;

 HANDLE FileRef;

 LARGE_INTEGER FileOffset;

 PVOID Buffer;

 ULONG BufferSize;

 ULONG BufferOffset;

 ULONG Key;

 PVOID Unknown;

 PVOID UserData;

 PVOID stuff1;

 PVOID stuff2;

 PVOID stuff3;

 PVOID stuff4;

} NT_IORING_SQE, *PNT_IORING_SQE;

EXTERN_C_START

NTSTATUS

NtSubmitIoRing (

 In HANDLE Handle,

 In IORING_CREATE_REQUIRED_FLAGS Flags,

 In ULONG EntryCount,

 In PLARGE_INTEGER Timeout

);

13/17

NTSTATUS
NtCreateIoRing (

 Out PHANDLE pIoRingHandle,

 In ULONG CreateParametersSize,

 In PIO_RING_STRUCTV1 CreateParameters,

 In ULONG OutputParametersSize,

 Out PNT_IORING_INFO pRingInfo

);

NTSTATUS

NtClose (

 In HANDLE Handle

);

EXTERN_C_END

void IoRingNt ()
{

 NTSTATUS status;

 IO_RING_STRUCTV1 ioringStruct;

 NT_IORING_INFO ioringInfo;

 HANDLE handle;

 PNT_IORING_SQE sqe;

 LARGE_INTEGER timeout;

 HANDLE hFile = NULL;

 ULONG sizeToRead = 0x200;

 PVOID *buffer = NULL;

 ULONG64 endOfBuffer;

 ioringStruct.IoRingVersion = 1;

 ioringStruct.SubmissionQueueSize = 1;

 ioringStruct.CompletionQueueSize = 1;

 ioringStruct.AdvisoryFlags = IORING_CREATE_ADVISORY_FLAGS_NONE;

 ioringStruct.RequiredFlags = IORING_CREATE_REQUIRED_FLAGS_NONE;

 status = NtCreateIoRing(&handle,

 sizeof(ioringStruct),

 &ioringStruct,

 sizeof(ioringInfo),

 &ioringInfo);

 if (!NT_SUCCESS(status))

 {

 printf("Failed creating IO ring handle: 0x%x\n", status);

 goto Exit;

 }

14/17

 ioringInfo.SubQueueBase->Tail = 1;
 ioringInfo.SubQueueBase->Head = 0;

 ioringInfo.SubQueueBase->Flags = 0;

 hFile = CreateFile(L"C:\\Windows\\System32\\notepad.exe",

 GENERIC_READ,

 0,

 NULL,

 OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL,

 NULL);

 if (hFile == INVALID_HANDLE_VALUE)

 {

 printf("Failed opening file handle: 0x%x\n", GetLastError());

 goto Exit;

 }

 sqe = (PNT_IORING_SQE)((ULONG64)ioringInfo.SubQueueBase +
sizeof(IORING_QUEUE_HEAD));

 sqe->Opcode = 1;

 sqe->Flags = 0;

 sqe->FileRef = hFile;

 sqe->FileOffset.QuadPart = 0;

 buffer = (PVOID*)VirtualAlloc(NULL, sizeToRead, MEM_COMMIT,
PAGE_READWRITE);

 if (buffer == NULL)

 {

 printf("Failed allocating memory\n");

 goto Exit;

 }

 sqe->Buffer = buffer;

 sqe->BufferOffset = 0;

 sqe->BufferSize = sizeToRead;

 sqe->Key = 1234;

 sqe->UserData = nullptr;

 timeout.QuadPart = -10000;

 status = NtSubmitIoRing(handle, IORING_CREATE_REQUIRED_FLAGS_NONE, 1,
&timeout);
 if (!NT_SUCCESS(status))

 {

 printf("Failed submitting IO ring: 0x%x\n", status);

 goto Exit;

 }

15/17

 printf("Data from file:\n");
 endOfBuffer = (ULONG64)buffer + sizeToRead;

 for (; (ULONG64)buffer < endOfBuffer; buffer++)

 {

 printf("%p ", *buffer);

 }

 printf("\n");

Exit:

 if (handle)

 {

 NtClose(handle);

 }

 if (hFile)

 {

 NtClose(hFile);

 }

 if (buffer)

 {

 VirtualFree(buffer, NULL, MEM_RELEASE);

 }

}

void IoRingKernelBase ()

{

 HRESULT result;

 HIORING handle;

 IORING_CREATE_FLAGS flags;

 IORING_HANDLE_REF requestDataFile;

 IORING_BUFFER_REF requestDataBuffer;

 UINT32 submittedEntries;

 HANDLE hFile = NULL;

 ULONG sizeToRead = 0x200;
 PVOID *buffer = NULL;

 ULONG64 endOfBuffer;

 flags.Required = IORING_CREATE_REQUIRED_FLAGS_NONE;

 flags.Advisory = IORING_CREATE_ADVISORY_FLAGS_NONE;

 result = CreateIoRing(IORING_VERSION_1, flags, 1, 1, &handle);

 if (!SUCCEEDED(result))

 {

 printf("Failed creating IO ring handle: 0x%x\n", result);

 goto Exit;

 }

 hFile = CreateFile(L"C:\\Windows\\System32\\notepad.exe",

16/17

 GENERIC_READ,
 0,

 NULL,

 OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL,

 NULL);

 if (hFile == INVALID_HANDLE_VALUE)

 {

 printf("Failed opening file handle: 0x%x\n", GetLastError());

 goto Exit;

 }

 requestDataFile.Kind = IORING_REF_RAW;

 requestDataFile.Handle = hFile;

 requestDataBuffer.Kind = IORING_REF_RAW;

 buffer = (PVOID*)VirtualAlloc(NULL,

 sizeToRead,

 MEM_COMMIT,

 PAGE_READWRITE);

 if (buffer == NULL)

 {

 printf("Failed to allocate memory\n");

 goto Exit;

 }

 requestDataBuffer.Buffer = buffer;

 result = BuildIoRingReadFile(handle,

 requestDataFile,

 requestDataBuffer,

 sizeToRead,

 0,

 NULL,

 IOSQE_FLAGS_NONE);

 if (!SUCCEEDED(result))

 {

 printf("Failed building IO ring read file structure: 0x%x\n",

result);

 goto Exit;

 }

 result = SubmitIoRing(handle, 1, 10000, &submittedEntries);

 if (!SUCCEEDED(result))

 {

 printf("Failed submitting IO ring: 0x%x\n", result);

 goto Exit;

 }

 printf("Data from file:\n");

 endOfBuffer = (ULONG64)buffer + sizeToRead;

17/17

 for (; (ULONG64)buffer < endOfBuffer; buffer++)
 {

 printf("%p ", *buffer);

 }

 printf("\n");

Exit:

 if (handle != 0)

 {

 CloseIoRing(handle);

 }

 if (hFile)

 {

 NtClose(hFile);

 }

 if (buffer)

 {

 VirtualFree(buffer, NULL, MEM_RELEASE);

 }

}

int main ()

{

 IoRingKernelBase();

 IoRingNt();

 ExitProcess(0);

}

