
1/8

By Yarden Shafir

Exploiting a “Simple” Vulnerability – Part 1.5 – The Info
Leak

windows-internals.com/exploiting-a-simple-vulnerability-part-1-5-the-info-leak

Introduction

This post is not actually directly related to the first one and does not use CVE-2020-1034 . It

just talks about a second vulnerability that I found while researching ETW internals, which

discloses the approximate location of the NonPaged pool to (almost) any user. It was

spurred by a tweet that challenged me to find an information leak. It turns out I found one

that wasn’t actually patched after all!

The vulnerability itself is not especially interesting, but the process of finding and

understanding it was fun so I wanted to write about that. Also, when I reported it Microsoft

marked it as “Important” but would not pay anything for it and eventually marked it as

“won’t fix” even though fixing this issue takes less time than writing an email, so the

annoyance factor alone makes writing this post worth it. And this is a chance to rant about

some more ETW internals stuff which didn’t really fit into any of the other posts, so you can

read them or skip right to the PoC, your choice.

Update

This vulnerability was eventually acknowledged by Microsoft and received CVE-24107. It was

fixed on 9/3/2021.

More ETW Internals!

Remember that the first thing you learn about ETW notifications are that they are

asynchronous? Well, that was a lie. Sort of. Most ETW notifications really are asynchronous.

However, in the previous blog post we used a vulnerability that relied on improper handling

of the ReplyRequested field in the ETWP_NOTIFICATION_HEADER structure. The existence

of this field implies that you can reply to an ETW event. But no one ever told you that you can

reply to an ETW notification, how would that even work?

Normally, ETW works just the way you were told. That is the case for all Windows providers,

and any other ETW provider I could find. But there is a “secret setting” that happens when

someone notifies an ETW provider with ReplyRequested = 1 . Then, as we saw in the

previous blog post, the notification gets added to a reply queue and is waiting for a reply.

Remember, there can only be 4 queues notifications waiting for a reply at any moment.

When that happens, any process which registered for that provider has its registered callback

https://windows-internals.com/exploiting-a-simple-vulnerability-part-1-5-the-info-leak/
https://windows-internals.com/exploiting-a-simple-vulnerability-in-35-easy-steps-or-less/
https://twitter.com/gabe_k/status/1330982877752741888
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-24107

2/8

notified and has a chance to reply to the notification using EtwReplyNotification . When

someone replies to the notification, the original notification gets removed from the queue

and the reply notification gets added to the reply queue.

The only case I could see so far where a reply is sent to a notification is immediately after a

GUID is enabled – sechost!EnableTraceEx2 (which is the standard way of registering a

provider and enabling a trace) has a call to ntdll!EtwSendNotification with

EnableNotificationPacket->DataBlockHeader.ReplyRequested set to 1 . That creates

an EtwRegistration object, so before returning to Sechost , Ntdll immediately replies

to the notification with NotificationHeader->NotificationType set to

EtwNotificationTypeNoReply , simply to get it removed from the notification queue.

Specifically, in this case, something a little more complicated happens. Even though Ntdll

is enabling the GUID, it’s not the “owner” of the registration instance and therefore doesn’t

have a registered callback (since this belongs to whoever registered the provider).

Yet Ntdll still needs to know when the kernel enables the provider, to queue the reply

notification – it can’t expect the caller to know that this needs to be done. So to do this, it

uses a trick.

When EtwRegisterProvider is called, it calls EtwpRegisterProvider . The first time

this function is called, it calls EtwpRegisterTpNotificationOnce :

https://windows-internals.com/wp-content/uploads/2021/01/EtwpRegisterTpNotificationOnce-1.png

3/8

Without getting into too many internal details about waits and the thread pool, this function

essentially creates an event with the callback function EtwpNotificationThread and then

calls NtTraceControl with an Operation value of 27 – an undocumented and unknown

value. Looking at the kernel side of things, it’s not too hard to give this value a name:

I’ll call this operation EtwAddNotificationEvent .

EtwpAddNotificationEvent is a pretty simple function: it receives an event handle, grabs

the event object, and sets EventDataSource->NotificationEvent in the EPROCESS of

the current process to the event (or NotificationEventWow64 , if this is a WoW64 process).

Since this field is a pointer and not a list, it can only contain one event at a time. If this field is

not set to 0 , the value won’t be set and the caller will receive

STATUS_ALREADY_REGISTERED as a response status.

https://windows-internals.com/wp-content/uploads/2021/01/AddNotificationEvent.png

4/8

Then, in EtwpQueueNotification , immediately after a notification is added to the

notification queue for the process, this event is signaled:

https://windows-internals.com/wp-content/uploads/2021/01/etw_diagram_register_provider.png
https://windows-internals.com/wp-content/uploads/2021/01/etwpQueueNotification.png

5/8

The event being signaled makes the EtwpNotificationCallback get called, since it was

registered to wait on this event, so it is, in a way, an ETW notification callback that is being

notified whenever the process receives an ETW notification. However, this function is not a

real ETW notification callback, so it doesn’t receive the notification as any of its parameters

and has to somehow get it by itself in order to reply to it. Luckily, it has a way to do that.

The first thing that EtwpNotificationThread does is make another call to

NtTraceEvent , this time with operation number 16 – EtwReceiveNotification . This

operation leads to a call to EtwpReceiveNotification , which chooses the first queued

notification for the process (and matching the process’ WoW64 status) and returns it. This

operation requires no input arguments – it simply returns the first queued notification. This

gives EtwpNotificationThread all the information that it needs to reply to that last

queued notification quietly, without disturbing the unaware caller that simply asked it to

register a provider. After replying, the event is set to a waiting state again, to wait for the next

notification to arrive.

https://windows-internals.com/wp-content/uploads/2021/01/etw_diagram_send_notification.png

6/8

Most of this pretty long explanation has nothing to do with this vulnerability, which really is

pretty small and simple and can be explained in a much less complicated way. But I did say

this post was mostly an excuse to dump some more obscure ETW knowledge in hope that one

day someone other than me will read it and find it helpful, so you all knew what you were

getting into.

And now that we have all this unnecessary background, we can look at the vulnerability itself.

The InfoLeak

The issue is actually in the last part we talked about – returning the last queued notification.

If you remember from the last post, when a GUID is notified and the notification header has

ReplyRequested == 1 , this leads to the creation of a kernel object which will be placed in

the ReplyObject field of the notification that is later put in the notification queue. And this

is the same structure that can be retrieved using NtTraceControl with

EtwReceiveNotification operation… Does that mean that we get a free kernel pointer by

calling NtTraceControl with the right arguments?

Not exactly. To be precise, you get half of a kernel pointer. Microsoft didn’t completely ignore

the fact that retuning kernel pointers to user-mode callers is a bad idea, like they did in so

many other cases. The ReplyObject field in ETWP_NOTIFICATION_HEADER is in a union

with ReplyHandle and RegIndex . And after copying the data to the user-mode buffer,

they set the value of RegIndex , which should overwrite the kernel pointer that is in the

same union:

The only thing that this code doesn’t account for is the fact that ReplyObject and

RegIndex don’t have the same type: ReplyObejct is a pointer (8 bytes on x64) while

RegIndex is a ULONG (4 bytes on x64). So setting RegIndex only removes the bottom

half of the pointer, leaving the top half to be returned to the caller:

Triggering this is extremely simple and includes exactly three steps:

1. Register a provider

https://windows-internals.com/wp-content/uploads/2021/01/etw_infoleak_code.png
https://windows-internals.com/wp-content/uploads/2021/01/etw_infoleak_demo.png

7/8

2. Queue a notification where ReplyObject is a kernel object – do this by calling

NtTraceControl with operation == EtwSendDataBlock and ReplyRequested

== TRUE in the notification header.

3. Call NtTraceControl with operation == EtwReceiveNotification and get your

half of a kernel pointer.

It’s true that the top half of a kernel address is not all that much, but it can still give a caller a

better guess of where the NonPagedPool (where those objects are allocated) is found. In

fact, since the NonPagedPool is sized 16TB (or 0x100000000000 bytes), this

vulnerability tells us exactly where the NonPaged pool is, and we can validate that in the

debugger:

!vm 21

...

System Region Base Address NumberOfBytes

SecureNonPagedPool : ffff838000000000 8000000000

KernelShadowStacks : ffff888000000000 8000000000

PagedPool : ffff8a0000000000 100000000000

NonPagedPool : ffff9d0000000000 100000000000

SystemCache : ffffb00000000000 100000000000

SystemPtes : ffffc40000000000 100000000000

UltraZero : ffffd40000000000 100000000000

Session : ffffe40000000000 8000000000

PfnDatabase : ffffe78000000000 c8000000000

PageTables : fffff40000000000 8000000000

SystemImages : fffff80000000000 8000000000

Cfg : fffffaf0ea2331d0 28000000000

HyperSpace : fffffd0000000000 10000000000

KernelStacks : fffffe0000000000 10000000000

This can be triggered from almost any user, including Low IL and AppContainer , where

most of the classic infoleaks don’t work anymore, this might be of some use, even if a limited

one.

I believe that when this code was introduced, it was completely safe – those areas of the code

are pretty ancient and get very few changes. This code was probably introduced in the days

before x64 , when the size of a pointer and the size of a ULONG was the same, so setting

RegIndex did overwrite the whole object address. When x64 changed the size of a

pointer, this code was left behind and was never updated to match this, so this bug appeared.

This makes you wonder what similar bugs might exist in other pieces of ancient code that

even Microsoft forgot about?

Just Show Me the Code Already!

8/8

In case you want to see the three lines of code that trigger this bug, you can find them here.

https://github.com/yardenshafir/CVE-2020-1034/tree/main/pool_address_leak

