
1/16

By Yarden Shafir

Secure Pool Internals : Dynamic KDP Behind The Hood
windows-internals.com/secure-pool

Starting with Windows 10  Redstone 5  (Version 1809 , Build 17763 ), a lot has changed in the

kernel pool. We won’t talk about most of these changes, that will happen in a 70-something page

paper that will be published at some point in the future when we can find enough time and ADHD

meds to finish it.

One of the more exciting changes, which is being added in Version 2104  and above, is a new type

of pool – the secure pool. In short, the secure pool is a pool managed by Securekernel.exe ,

which operates in Virtual Trust Level 1  (VTL 1 ), and that cannot be directly modified by

anything running in VTL 0 . The idea is to allow drivers to keep sensitive information in a location

where it is safe from tampering, even by other drivers. Dave Weston first announced this feature,

marketed as Kernel Data Protection (KDP), at his BlueHat Shanghai talk in 2019 and Microsoft

recently published a blog post presenting it and some of its internal details.

Note that there are two parts to the full KDP implementation: Static KDP, which refers to

protecting read-only data sections in driver images, and Dynamic KDP, which refers to the secure

pool, the topic of our blog post, which will talk about how to use this new pool and some

implementation details, but will not discuss the general implementation of heaps or any of their

components that are not specific to the secure pool.

We’ll also mention three separate design flaw vulnerabilities that were found in the original

implementation in Build 20124 , which were all fixed in 20161 . These were identified and fixed

through Microsoft’s great Windows Insider Preview Bug Bounty Program for $20000 USD each.

Initialization 

The changes added for this new pool start at boot. In MiInitSystem  we can now see a new check

for bit 15  in MiFlags , which checks if secure pool is enabled on this machine. Since MI_FLAGS

is now in the symbol files, we can see that it corresponds to:

+0x000 StrongPageIdentity : Pos 15, 1 Bit

which is how the kernel knows that Virtualization Based Security (VBS) is enabled on a system

with Secondary Level Address Table (SLAT) support. This allows the usage of Extended Page Table

Entries (EPTEs) to add an additional, hypervisor-managed, layer of protection around physical

memory. This is exactly what the secure pool will be relying on.

If the bit is set, MmInitSystem  calls VslInitializeSecurePool , passing

in MiState.Vs.SystemVaRegions[MiVaSecureNonPagedPool].BaseAddress :

https://windows-internals.com/secure-pool/
https://github.com/dwizzzle/Presentations/blob/master/Bluehat%20Shanghai%20-%20Advancing%20Windows%20Security.pdf
https://www.microsoft.com/security/blog/2020/07/08/introducing-kernel-data-protection-a-new-platform-security-technology-for-preventing-data-corruption/
https://www.microsoft.com/en-us/msrc/bounty-windows-insider-preview


2/16

If we compare the symbol files and look at the MI_SYSTEM_VA_TYPE  enum, we’ll in fact see that a

new member was added with a value of 15 : MiVaSecureNonPagedPool :

VslInitializeSecurePool  initializes

an internal structure sized 0x68

bytes with parameters for the secure call. This

structure contains information used to make

the secure call, such as the service code to be

invoked and up to 12  parameters to be sent

to Securekernel . In this case only 2

parameters are used – the requested size for the

secure pool ( 512  GB) and a pointer to receive

its base address:

It also initializes global variables SecurePoolBase  and SecurePoolEnd , which will be used to

validate secure pool handle (more on that later). Then it calls VslpEnterIumSecureMode  to call

into SecureKernel , which will initialize the secure pool itself, passing in

the secureCallParams  structure that contains that requested parameters. Before Alex’s blog

https://windows-internals.com/wp-content/uploads/2020/07/MiFlags.png
https://windows-internals.com/wp-content/uploads/2020/07/mi_system_va_type.png
https://windows-internals.com/wp-content/uploads/2020/07/securePoolInitialization.png


3/16

went down, he was working on an interesting series of posts on how the VTL 0  <-> VTL 1

communication infrastructure works, and hopefully it will return at some point, so we’ll skip the

details here.

Securekernel  unpacks the input parameters, finds the right path for the call, and eventually gets

us to SkmmInitializeSecurePool . This function calls SecurePoolMgrInitialize , which

does a few checks before initializing the pool.

First it validates that the input parameter SecurePoolBase  is not zero and that it is aligned

to 16 MB. Then it checks that the secure pool was not already initialized by checking if the global

variable SecurePoolBaseAddress  is empty:

The next check is for the size. If the supplied size is larger than 256 GB , the function ignores the

supplied size and sets it to 256  GB. This is explained in the blog post from Microsoft linked

earlier, where the secure kernel is shown to use a 256  GB region for the kernel’s 512  GB range.

It’s quote curious that this is done by having the caller supply 512  GB as a size, and the secure

kernel ignoring the parameter and overriding it with 256 .

Once these checks are done SkmmInitializeSecurePool  starts initializing the secure pool. It

reserves a Normal Address Range (NAR) descriptor for the address range with

SkmiReserveNar  and then creates an initial pool descriptor and sets global

variables SkmiSecurePoolStart  and SkmiSecurePoolNar . Notice that the secure pool has a

fixed, hard-coded address in 0xFFFF9B0000000000 :

https://windows-internals.com/wp-content/uploads/2020/07/checkSecurePoolBase.png
https://windows-internals.com/wp-content/uploads/2020/07/securePoolSize.png


4/16

Side note: NAR stands for Normal Address Range. It’s a data structure tracking kernel address

space, like VADs are used for user-space memory. Windows Internals, 7th Edition, Part 2, has an

amazing section on the secure kernel written by Andrea Allevi.

An interesting variable to look at here is SkmiSecurePoolStart , that gets

a value of <SecurePoolBaseInKernel> - <SecurePoolBaseInSecureKernel> . Since the

normal kernel and secure kernel have separate address spaces, the secure pool will be mapped in

different addresses in each (as we’ve seen, it has a fixed address in the secure kernel and

an ASLRed address in the normal kernel). This variable will allow SecureKernel  to receive

secure pool addresses from the normal kernel and translate them to secure kernel addresses, an

ability that is necessary since this pool is meant to be used by the normal kernel and 3rd-party

drivers.

After SkmmInitializeSecurePool  returns there is another call to SkInitializeSecurePool ,

which calls SecurePoolMgrInitialize . This function initializes a pool state structure that we

chose to call SK_POOL_STATE  in the global variable SecurePoolGlobalState .

struct _SK_POOL_STATE

    LIST_ENTRY PoolLinks;
     PVOID Lock;

     RTLP_HP_HEAP_MANAGER HeapManager;
     PSEGMENT_HEAP SegmentHeap;

 } SK_POOL_STATE, *PSK_POOL_STATE;

Then it starts the heap manager and initializes a bitmap that will be used to mark allocated

addresses in the secure pool. Finally, SecurePoolMgrInitialize  calls RtlpHpHeapCreate  to

allocate a heap and create a SEGMENT_HEAP  for the secure pool.

https://windows-internals.com/wp-content/uploads/2020/07/securePoolInit.png


5/16

The first design flaw in the original implementation is actually related to the SEGMENT_HEAP

allocation. This is a subtle point unless someone has pre-read our 70 page book : due to how

“metadata” allocations work, the SEGMENT_HEAP  ended up being allocated as part of the secure

pool, which, as per what we explained here and the Microsoft blog, means that it also ended up

mapped in the VTL 0  region that encompasses the secure pool.

Since SEGMENT_HEAP  contains pointers to certain functions owned by the heap manager (which,

in the secure pool case, is hosted in Securekernel.exe ), this resulted in an information leak

vulnerability that could lead to the discovery of the VTL 1  base address of SecureKernel.exe

(which is ASLRed).

This has now been fixed by no longer mapping the SEGMENT_HEAP  structure in the VTL 0  region.

Creation & Destruction

Unlike the normal kernel pool, memory cannot be allocated from the secure pool directly as this

would defeat the whole purpose. To get access to the secure pool, a driver first needs to call a new

function – ExCreatePool . This function receives Flags , Tag , Params  and an output

parameter Handle . The function first validates the arguments:

Flags must be equal to 3

Tag cannot be 0

Params must be 0

Handle cannot be NULL

After the arguments have been validates, the function makes a secure call to

service SECURESERVICE_SECURE_POOL_CREATE , sending in the tag as the only parameter. This

will reach the SkSpCreateSecurePool  function in Securekernel . This function

calls SkobCreateObject  to allocate a secure object of type SkSpStateType , and then forwards

the allocated structure together with the received Tag  to SecurePoolInit , which will populate

it. We chose to call this structure SK_POOL , and it contains the following fields:

struct _SK_POOL

    LIST_ENTRY PoolLinks;
     PSEGMENT_HEAP SegmentHeap;

     LONG64 PoolAllocs;
     ULONG64 Tag;

     PRTL_CSPARSE_BITMAP AllocBitmapTracker;
 } SK_POOL, *PSK_POOL;

It then initializes Tag  to the tag supplied by the caller, and SegmentHeap  and

AllocBitmapTracker  to the heap and bitmap that were initialized at boot and is pointed to

by SecurePoolGlobalState.SegmentHeap  and a global variable SecurePoolBitmapData . This

structure is added to a linked list stored in SecurePoolGlobalState , which we

called PoolLinks , and will contain the number of allocations done from it ( PoolAllocs  is

initially set to zero).



6/16

Finally, the function calls SkobCreateHandle  to create a handle which will be returned to the

caller. Now the caller can access the secure pool using this handle.

When the driver no longer needs access to the pool (usually right before unloading), it needs to

call ExDestroyPool  with the handle it received. This will reach SecurePoolDestroy  which

checks that this entry contains no allocations ( PoolAllocs = 0 ) and wasn’t modified

( PoolEntry.SegmentHeap == SecurePoolGlobalState.SegmentHeap ). If the validation was

successful, the entry is removed from the list and the structure is freed. From that point the handle

is no longer valid and cannot be used.

The second design bug identified in the original build was around what the Handle  value

contained. In the original design, Handle  was an obfuscated value created through the XORing of

certain virtual addresses, which was then validated (as you’ll see in the Allocation section below) to

point to a SK_POOL  structure with the right fields filled out. However, due to the fact that the

Secure Kernel does not use ASLR, the values part of the XOR computation were known to VTL 0

attackers.

Therefore, due to the fact that the contents of an SK_POOL  can be inferred and built correctly (for

the same reason), a VTL 0  attacker could first create a secure pool allocation that corresponds to

a fake SK_POOL , compute the address of this allocation in the VTL 1  address range (since, as

explained here and in Microsoft’s blog post, there is a known delta), and then use the known XOR

computation to supply this as a fake Handle  to future Allocation, Update, Deallocation, and

Destroy calls.

Among other things, this would allow an attacker to control operations such as the PoolAllocs

counter shown earlier, which is incremented/decremented at various times, which would then

corrupt an adjacent VTL 1  allocation or address (since only the first 16  bytes of SK_POOL  are

validated).

The fix, which is the new design shown here, leverages the Secure Kernel’s Object Manager to

allocate and define a real object, then to create a real secure handle associated with it. Secure

objects/handles cannot be faked, other than stealing someone else’s handle, but this results in VTL

0  data corruption, not VTL 1  arbitrary writes.

Allocation

After getting access to the secure pool, the driver can allocate memory through another

new exported kernel function – ExAllocatePool3 . Officially, this function is documented. But it

is documented in such a useless way that it would almost be better if it wasn’t documented at all:

The ExAllocatePool3  routine allocates pool memory of the specified type and returns a pointer

to the allocated block. This routine is similar to ExAllocatePool2 but it adds extended

parameters.

This tells us basically nothing. But the POOL_EXTENDED_PARAMETER  is found in Wdm.h  together

with the rest of the information we need, so we can get a bit of information from that:

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-exallocatepool3


7/16

typedef enum POOL_EXTENDED_PARAMETER_TYPE {
    PoolExtendedParameterInvalidType = 0,

     PoolExtendedParameterPriority,
     PoolExtendedParameterSecurePool,

     PoolExtendedParameterMax
 } POOL_EXTENDED_PARAMETER_TYPE, *PPOOL_EXTENDED_PARAMETER_TYPE;

#define POOL_EXTENDED_PARAMETER_TYPE_BITS    8
 #define POOL_EXTENDED_PARAMETER_REQUIRED_FIELD_BITS    1

 #define POOL_EXTENDED_PARAMETER_RESERVED_BITS    (64
- POOL_EXTENDED_PARAMETER_TYPE_BITS - POOL_EXTENDED_PARAMETER_REQUIRED_FIELD_BITS)

#define SECURE_POOL_FLAGS_NONE       0x0
 

#define SECURE_POOL_FLAGS_FREEABLE   0x1
 #define SECURE_POOL_FLAGS_MODIFIABLE 0x2

typedef struct _POOL_EXTENDED_PARAMS_SECURE_POOL {
     HANDLE SecurePoolHandle;

     PVOID Buffer;
     ULONG_PTR Cookie;

     ULONG SecurePoolFlags;
 

} POOL_EXTENDED_PARAMS_SECURE_POOL;

typedef struct _POOL_EXTENDED_PARAMETER {
     struct {

         ULONG64 Type : POOL_EXTENDED_PARAMETER_TYPE_BITS;
         ULONG64 Optional : POOL_EXTENDED_PARAMETER_REQUIRED_FIELD_BITS;

         ULONG64 Reserved : POOL_EXTENDED_PARAMETER_RESERVED_BITS;
     } DUMMYSTRUCTNAME;

     union {
         ULONG64 Reserved2;

         PVOID Reserved3;
         EX_POOL_PRIORITY Priority;

         POOL_EXTENDED_PARAMS_SECURE_POOL* SecurePoolParams;
     } DUMMYUNIONNAME;

} POOL_EXTENDED_PARAMETER, *PPOOL_EXTENDED_PARAMETER;

typedef CONST POOL_EXTENDED_PARAMETER *PCPOOL_EXTENDED_PARAMETER;

First, when we look at the POOL_EXTENDED_PARAMETER_TYPE  enum, we can see 2  options –

 PoolExtendedParametersPriority  and PoolExtendedParametersSecurePool . The

official documentation has no mention of secure pool anywhere or which parameters it receives

and how. By reading it, you’d think ExAllocatePool3  is just ExAllocatePool2  with an

additional “priority” parameter.

So back to ExAllocatePool3  – it takes in the same POOL_FLAGS  parameter, but also two

new ones  – ExtendedParameters  and ExtendedParametersCount :



8/16

DECLSPEC_RESTRICT
PVOID

 ExAllocatePool3 (
     _In_ POOL_FLAGS Flags,

     _In_ SIZE_T NumberOfBytes,
     _In_ ULONG Tag,

     _In_ PCPOOL_EXTENDED_PARAMETER ExtendedParameters,
     _In_ ULONG ExtendedParametersCount

 );

ExtendedParameters  has a Type  member, which is one of the values in the

POOL_EXTENDED_PARAMETERS_TYPE  enum. This is the first thing that ExAllocatePool3  looks

at:

If the parameter type is 1  ( PoolExtendedParameterPriority ), the function reads the Priority

field and later calls ExAllocatePoolWithTagPriority . If the type

is 2  ( PoolExtendedParameterSecurePool ) the function

reads the POOL_EXTENDED_PARAMS_SECURE_POOL  structure

from ExtendedParameters . Later the information from this structure is passed

into ExpSecurePoolAllocate :

https://windows-internals.com/wp-content/uploads/2020/07/extendedParameters.png


9/16

Another interesting thing to notice is that for secure pool

allocations, ExtendedParameterCount  must be one (meaning no other extended parameters are

allowed other than the ones related to secure pool) and flags must be POOL_FLAG_NON_PAGED . We

already know that secure pool only initializes one heap, which is NonPaged , so this requirement

makes sense.

ExAllocatePool3  reads from ExtendedParameters  a handle, buffer, cookie and flags and

passes them to ExpSecurePoolAllocate  together with the tag and number of bytes for this

allocation. Let’s go over each of these new arguments:

SecurePoolHandle  is the handle received from ExCreatePool

Buffer  is a memory buffer containing the data to be written into this allocation. Since this

is a secure pool that is not writable to drivers running in the normal

kernel, SecureKernel  must write the data into the allocation. The flags will determine

whether this data can be modified later.

Flags  – The options for flags, as we saw

in wdm.h , are SECURE_POOL_FLAGS_MODIFIABLE  and SECURE_POOL_FLAGS_FREEABLE .

As the names suggest, these determine whether the content of the allocation can be updated

after it’s been created and whether this allocation can be freed.

Cookie  is chosen by the caller and will be used to encode the signature in the header of the

new entry, together with the tag.

SkSecurePoolAllocate  forwards the parameters to SecurePoolAllocate , which

calls SecurePoolAllocateInternal . This function calls RtlpHpAllocateHeap  to allocate heap

memory in the secure pool, but adds 0x10  bytes to the size requested by the user:

https://windows-internals.com/wp-content/uploads/2020/07/expSecurePoolAllocate.png


10/16

This is done because the first 0x10  bytes of this allocation will be used for a secure pool header:

struct _SK_SECURE_POOL_HEADER

    ULONG_PTR Signature;
     ULONG Flags;

     ULONG Reserved;
 } SK_SECURE_POOL_HEADER, *PSK_SECURE_POOL_HEADER;

This header contains the Flags sent by the caller (specifying whether this allocation can be

modified or freed) and a signature made up of the cookie, XORed with the tag and the handle for

the pool. This header will be used by SecureKernel  and is not known to the caller, which will

receive a pointer to the data, that is being written immediately after this header (so the user

receives a pointer to <allocation start>+0x10 ).

Before initializing the secure pool header, there is a call to SecurePoolAllocTrackerIsAlloc  to

validate that the header is inside the secure pool range and not inside an already allocated block.

This check doesn’t make much sense here, since the header is not a user-supplied address but one

that was just allocated by the function itself, but is probably the result of some extra paranoid

checks (or an inline macro) that were added as a result of the second design flaw we’ll explain

shortly.

Then there is a call to SecurePoolAllocTrackerSetBit , to set the bit in the bitmap to mark this

address as allocated, and only then the header is populated. If the allocation was

successful, SkPool->PoolAllocs  is incremented by 1 .

When this address is eventually returned to SkSecurePoolAllocate , it is adjusted to a normal

kernel address with SkmiSecurePoolStart  and returned to the normal kernel:

https://windows-internals.com/wp-content/uploads/2020/07/securePoolAllocate.png


11/16

Then the driver which requested the allocation can use the returned address to read it. But since

this pool is protected from being written to by the normal kernel, if the driver wants to make any

changes to the content, assuming that it created a modifiable allocation to begin with, it has to use

another new API added for this purpose – ExSecurePoolUpdate .

Going back to the bitmap — why is it necessary to track the allocation? This takes us to the third

and final design flaw, which is that a secure pool header could easily be faked, since the

information stored in Signature  is known — the Cookie  is caller-supplied, the Tag  is as well,

and the SecurePoolHandle  too. In fact, in combination with the first flaw this is even worse, as

the allocation can then be made to point to a fake SK_POOL .

The idea behind this attack would be to first perform a legitimate allocation of, say, 0x40 bytes.

Next, manufacture a fake SK_SECURE_POOL_HEADER  at the beginning of the allocation. Finally,

pass the address, plus 0x10  (the size of a header) to the Update or Free functions we’ll show next.

Now, these functions will use the fake header we’ve just constructed, which among things can be

made to point to a fake SK_POOL , on top of causing issues such as pool shape manipulation,

double-frees, and more.

By using a bitmap to track legitimate vs. non-legitimate allocations, fake pool headers immediately

lead to a crash.

Updating Secure Pool Allocation

When a driver wants to update the contents of an allocation done in the secure pool, it has

to call ExSecurePoolUpdate  with the following arguments:

SecurePoolHandle  – the driver’s handle to the secure pool

The Tag  that was used for the allocation that should be modified

Address  of the allocation to be modified

Cookie  that was used when allocating this memory

Offset  inside the allocation

https://windows-internals.com/wp-content/uploads/2020/07/sksecurepoolallocate.png


12/16

Size  of data to be written

Pointer  to a buffer containing the new data to write into this allocation

Of course, as you’re about to see, the allocation must have been marked as updateable in the first

place.

These arguments are sent to secure kernel through a secure call, where they

reach SkSecurePoolUpdate . This function passes the arguments to SecurePoolUpdate , with

the allocation address adjusted to point to the correct secure kernel address.

SecurePoolUpdate  first validates the pool handle by XORing it with the Signature field of the

SEGMENT_HEAP  and making sure the result is the address of the SEGMENT_HEAP  itself and then

forwards the arguments to SecurePoolUpdateInternal . First this function

calls SecurePoolAllocTrackerIsAlloc  to check the secure pool bitmap and make sure the

supplied address is allocated. Then it does some more internal validations of the allocation by

calling SecurePoolValidate  – an internal function which validates the input arguments by

making sure that the signature field for the allocation matches Cookie ^ SecurePoolHandle ^

Tag :

This check is meant to make sure that the driver that is trying to modify the allocation is the one

that made it, since no other driver should have the right cookie and tag that were used when

allocating it.

Then SecurePoolUpdateInternal  makes a few more checks:

Flags  field of the header has to have the SECURE_POOL_FLAGS_MODIFIABLE  bit set. If this

flag was not set when allocating this block, the memory cannot be modified.

Size  cannot be zero

Offset  cannot be bigger than the size of the allocation

Offset  + Size  cannot be larger than the size of the allocation (since that would create an

overflow that would write over the next allocation)

If any of these checks fail, the function would bugcheck with code

0x13A  ( KERNEL_MODE_HEAP_CORRUPTION ).

Only if all the validations pass, the function will write the data in the supplied buffer into the

allocation, with the requested offset and size.

Freeing Secure Pool Allocation

https://windows-internals.com/wp-content/uploads/2020/07/securePoolUpdate.png


13/16

The last thing a driver can do with a pool allocation is free it, through ExFreePool2 . This

function, like ExAllocatePool2/3

receives ExtendedParameters  and ExtendedParametersCount . If ExtendedParametersCount  is

zero, The function will call ExFreeHeapPool  to free an allocation done in the normal kernel pool.

Otherwise the only valid value for the ExtendedParameters  Type field

is PoolExtendedParametersSecurePool  ( 2 ). If the type is correct, the function will read the

secure pool parameters and validate that the Flags field is zero and that other fields are not empty.

Then the requested address and tag are sent through a secure call, together with the Cookie  and

SecurePoolHandle  that were read from ExtendedParameters :

The secure kernel functions SecurePoolFree  and SecurePoolFreeInternal  validate the

supplied address, pool handle and the header of the pool allocation that the caller wants to free,

and also make sure it was allocated with the SECURE_POOL_FLAGS_FREEABLE  flag. If all

validations pass, the memory inside the allocation is zeroed and the allocation is freed

through RtlpHpFreeHeap . Then the PoolAllocs  field in the SK_POOL  structure belonging to

this handle is decreased and there is another check to see that the value is not below zero.

Code Sample

We wrote a simple example for allocating, modifying and freeing secure pool memory:

https://windows-internals.com/wp-content/uploads/2020/07/exfreepool2.png


14/16

#include <wdm.h>

DRIVER_INITIALIZE DriverEntry;
 DRIVER_UNLOAD DriverUnload;

HANDLE g_SecurePoolHandle;
 PVOID g_Allocation;

VOID
 DriverUnload (

     _In_ PDRIVER_OBJECT DriverObject
     )

 {
     POOL_EXTENDED_PARAMETER extendedParams[1] = { 0 };

     POOL_EXTENDED_PARAMS_SECURE_POOL securePoolParams = { 0 };
     UNREFERENCED_PARAMETER(DriverObject);

    if (g_SecurePoolHandle != nullptr)
     {

         if (g_Allocation != nullptr)
         {

             extendedParams[0].Type = PoolExtendedParameterSecurePool;
             extendedParams[0].SecurePoolParams = &securePoolParams;

             securePoolParams.Cookie = 0x1234;
             securePoolParams.Buffer = nullptr;

             securePoolParams.SecurePoolFlags = 0;
             securePoolParams.SecurePoolHandle = g_SecurePoolHandle;

             ExFreePool2(g_Allocation, 'mySP', extendedParams,
RTL_NUMBER_OF(extendedParams));

         }
         ExDestroyPool(g_SecurePoolHandle);

     }
     return;

 }

NTSTATUS
 DriverEntry (

     __In__PDRIVER_OBJECT DriverObject,
     __In_ PUNICODE_STRING RegistryPath
     )

 {
     NTSTATUS status;

     POOL_EXTENDED_PARAMETER extendedParams[1] = { 0 };
     POOL_EXTENDED_PARAMS_SECURE_POOL securePoolParams = { 0 };

     ULONG64 buffer = 0x41414141;
     ULONG64 updateBuffer = 0x42424242;

      UNREFERENCED_PARAMETER(RegistryPath);

    DriverObject->DriverUnload = DriverUnload;



15/16

    //
    // Create a secure pool handle

     //
     status = ExCreatePool( POOL_CREATE_FLG_SECURE_POOL |

 
                           POOL_CREATE_FLG_USE_GLOBAL_POOL,

                          'mySP',
                           NULL,

                           &g_SecurePoolHandle);
     if (!NT_SUCCESS(status))

     {
         DbgPrintEx(DPFLTR_IHVDRIVER_ID,

 
                    DPFLTR_ERROR_LEVEL,

                    "Failed creating secure pool with status %lx\n",
                    status);

         goto Exit;
     }

     DbgPrintEx(DPFLTR_IHVDRIVER_ID,
                DPFLTR_ERROR_LEVEL,

                "Pool: 0x%p\n",
                g_SecurePoolHandle);

    //
     // Make an allocation in the secure pool

     //
     extendedParams[0].Type = PoolExtendedParameterSecurePool;

     extendedParams[0].SecurePoolParams = &securePoolParams;
     securePoolParams.Cookie = 0x1234;

     securePoolParams.SecurePoolFlags = SECURE_POOL_FLAGS_FREEABLE |
SECURE_POOL_FLAGS_MODIFIABLE;

     securePoolParams.SecurePoolHandle = g_SecurePoolHandle;
     securePoolParams.Buffer = &buffer;

     g_Allocation = ExAllocatePool3(POOL_FLAG_NON_PAGED,
                                     sizeof(buffer),

                                    'mySP',
                                    extendedParams,

                                    RTL_NUMBER_OF(extendedParams));
     if (g_Allocation == nullptr)

     {
         DbgPrintEx(DPFLTR_IHVDRIVER_ID,

 DPFLTR_ERROR_LEVEL.
                    "Failed allocating memory in secure pool\n");

         status = STATUS_UNSUCCESSFUL;
         goto Exit;

     }

    DbgPrintEx(DPFLTR_IHVDRIVER_ID,
                 DPFLTR_ERROR_LEVEL,
                "Allocated: 0x%p\n",
                g_Allocation);



16/16

    //
    // Update the allocation

     //
     status = ExSecurePoolUpdate(g_SecurePoolHandle,

                                 'mySP',
                                 g_Allocation,

                                 securePoolParams.Cookie,
                                 0,

                                 sizeof(updateBuffer),
                                 &updateBuffer);

     if (!NT_SUCCESS(status))
     {

         DbgPrintEx(DPFLTR_IHVDRIVER_ID,
                   DPFLTR_ERROR_LEVEL,

                    "Failed updating allocation with status %lx\n",
                    status);

         goto Exit;
     }

    DbgPrintEx(DPFLTR_IHVDRIVER_ID,
                DPFLTR_ERROR_LEVEL,

                "Successfully updated allocation\n");

    status = STATUS_SUCCESS;

Exit:
     return status;

 }

Conclusion

The secure pool can be a powerful feature to help drivers protect sensitive information from other

code running in kernel mode. It allows us to store memory in a way that can’t be modified, and

possibly not even freed, by anyone, including the driver that allocated the memory! It has the new

benefit of allowing any kernel code to make use of some of the benefits of VTL 1  protection, not

limiting them to Windows code only.

Like any new feature, this implementation is not perfect and might still have issues, but this is

definitely a new and exciting addition that is worth keeping an eye on in upcoming Windows

releases.

Read our other blog posts:

 

 


