
1/26

By Yarden Shafir & Alex Ionescu

Faxing Your Way to SYSTEM — Part Two
windows-internals.com/faxing-your-way-to-system

“Part two?”, you ask. “Where’s part one?”, you wonder. In this blog post, we are doing things

backwards — first publishing a Part Two, with a theoretical “What if?” scenario, and then

we’ll follow with a Part One to fill in our gap.

Posit a DLL Hijack

Let’s say you have a way to dump a custom DLL in a privileged directory. You can name the

DLL whatever you want and make a privileged process load it instead of one of its own, as

part of a privilege escalation attack. This is most useful when there is a process looking for a

DLL that is not usually found in the system, so you don’t have to implement all the

functionality of the DLL you’re replacing and/or potentially have to deal with the DLL

already being in use . This technique goes under a variety of names such as DLL hijacking

and binary planting, and it’s a method that has been known and used for many years. It can

also be used a persistence mechanism, when the goal is to load every system start.

Unfortunately, there’s not a whole lot of real world public information on actually

implementing the technique end-to-end, especially for privilege escalation, without relying

on gimmicks. To successfully execute your code, you need:

A built-in, Windows native, privileged process that tries loading a non-existent DLL

from a privileged directory (if it’s from an unprivileged directory, you have an even

bigger problem)

So, not something like an Intel Service or NVIDIA Display Driver — not all users

have these!

A way to reliably start the privileged process, from an unprivileged context

Online sources resort to gimmicks such as “run these commands in a loop and

after 20 tries you’ll get Xxx.exe ” or “and now reboot the machine!”

This really doesn’t sound hard, but we could not find anything online that accurately fulfilled

these two requirements. So, while in this post, we’re not claiming anything novel,

we will combine some obscure Windows Internals together to weaponize a bind shell (see?

we told you it wasn’t novel — it’s not even a reverse shell) with some neat EDR bypasses and

forensic gotchas, in order to get some offensive capabilities out in the open and into

defenders’ mindsets. You’ll see (and might learn) how to:

Identify services that can be started by non-privileged users, so that you can repeat this

research and potentially find your own service

https://windows-internals.com/faxing-your-way-to-system/
https://attack.mitre.org/techniques/T1038/
https://cwe.mitre.org/data/definitions/427.html
https://safebreach.com/Post/Intel-Rapid-Storage-Technology-Service-DLL-Preloading-and-Potential-Abuses-CVE-2019-14568
https://nvidia.custhelp.com/app/answers/detail/a_id/4797/~/security-bulletin%3A-nvidia-gpu-display-driver---may-2019
https://attack.mitre.org/techniques/T1059/

2/26

Talk about trigger started services, and provide another way to launch services from a

non-privileged user account

Use a previously unused service which is vulnerable to a DLL hijack, which reduces

chance of detection, and introduces a reliable escalation vector

Leverage the Windows Thread Pool API for additional stealth, leveraging arbitrary

threads and harder-to-infer malicious behavior, often whitelisted by EDR

Use some more esoteric, high-performance Windows Socket APIs, which results in less

standard imports (no socket , accept , recv , or send) and simpler code

Abuse the Windows Socket API to hide and misdirect the owner process from Netstat,

Process Hacker, Process Monitor, and even WFP (Windows Filtering Platform) and

BFE (Base Filtering Engine)-based firewall solutions.

Escalate privileges from NETWORK SERVICE to SYSTEM , without any “bean” or

“potato”-based DCOM/HTTP attacks

Launch a process as SYSTEM in a non-traditional way using process reparenting

Awesome DLL hijacking in Windows Defender ATP and Windows 21H1

(“Manganese”), for the lulz

We will be heavily relying on existing research from other people here, so we want to make

sure there is no implied claim that these are hyped-up “never before seen” techniques. We

just packaged them up nicely with a bow.

Surveying the Landscape

If you search online, you’ll find four commonly used built-in services (even more 3rd party)

on Windows that are vulnerable to a DLL hijack:

1. Wmiprvse.exe , which likes to load loads of things from

c:\windows\system32\wbem\ , especially Wbemcomn.dll

1. But it often impersonates the caller when you run WMI commands yourself, so

now you need to get a privileged process to issue a WMI command to spawn a

WMI Provider

2. We could not find reliable sources online on how to operationally achieve this

100% of the time

3. This is a well-known service and target DLL, often abused by malware, and in

almost everyone’s PoCs

2. Ikeext.dll (running in a Svchost.exe) which loads Wlcsctrl.dll from

c:\windows\system32\

1. This is already running in corporate environments with a VPN — online sources

assume you can just sc stop it , but that privilege is only granted to

Administrators .

2. If it’s not already running, you cannot just sc start it. The common technique

is to use Rasdial.exe to trigger it to start.

3. Extremely well-known, abused in the wild, a dozen blog posts on the topic

https://www.welivesecurity.com/wp-content/uploads/2019/10/ESET_Winnti.pdf
https://itm4n.github.io/windows-dll-hijacking-clarified/
https://github.com/itm4n/Ikeext-Privesc
https://www.secureworks.com/research/threat-group-3279-targets-the-video-game-industry
https://posts.specterops.io/lateral-movement-scm-and-dll-hijacking-primer-d2f61e8ab992
https://medium.com/@sghosh2402/ikeext-dll-hijacking-3aefe4dde7f5
https://pentestlab.blog/tag/dll-hijacking/

3/26

3. Sessenv.dll (running in a Svchost.exe) which loads Tsmsisrv.dll from

c:\windows\system32\

1. This one has the advantage of not typically running unless you’ve hit an RDP

machine

2. But it does not grant Start/Stop privileges to unprivileged users and does not have

an obvious trigger to start it

3. Well known and has been abused in the wild for persistence

4. Searchprotocolhost.exe and Searchindexer.exe will load Msfte.dll from

c:\windows\system32\

1. Cannot be directly started by a non-privileged user, but can often be “triggered”

by noisy file-system activity

2. Well known and catalogued, and also used in the wild by APT groups

In all of these scenarios, Administrator access was already assumed (i.e.: these were

mechanisms for persistence, not privilege escalation), or there were unreliable ways to

“maybe” trigger the service to start. Additionally, these techniques were known and probably

detected by major AV and EDR vendors. We wanted something a little bit more interesting.

Finding the Target — User Startable Services

First, our interest was to identify services that are vulnerable to DLL hijacking attempts other

than the afore-mentioned ones. Figuring this out is old & tired infosec practice — run Process

Monitor with the right filters, start a bunch of services (or reboot the box), profit! Countless

tutorials online can help you learn how to do this. We applied some different twists, however,

which are worth going into. First, remember that a reboot is unacceptable in our use case

— we want to elevate privileges now. So we had to rely on starting services that weren’t

already started — or finding a service that can be stopped by a standard user. Second, many

online tutorials will have you only looking at SYSTEM processes. While that is the jackpot,

many services run as LOCAL SERVICE and NETWORK SERVICE — two accounts that while

not “privileged” from an Administrator Group perspective, can easily elevate to SYSTEM

using a few different tactics.

Finally, starting a service typically requires administrative permissions, which defeats our

purpose (and so does stopping a service in case it’s already running). We needed to find

exceptions to this rule. There are two great tools for looking into service permissions. One is

Process Hacker, which allows you, from its Services tab, to double click on a service, and then

click the Permissions button on the General tab. For example, here are the permissions for

the SessionEnv service:

https://posts.specterops.io/lateral-movement-scm-and-dll-hijacking-primer-d2f61e8ab992
https://image.ahnlab.com/global/upload/download/documents/1401223631603288.pdf
http://www.hexacorn.com/blog/2013/12/08/beyond-good-ol-run-key-part-5/
https://blog.360totalsecurity.com/en/analysis-cve-2018-8174-vbscript-0day-apt-actor-related-office-targeted-attack/

4/26

Well, already, we see that there’s no “ Everyone “, “ Users ” or “ Authenticated Users “,

which are common groups that include unprivileged users. But there is “ INTERACTIVE “, a

less commonly seen group that also includes unprivileged users. Now we can double-click on

the ACE and see the following:

So that’s not great — all we can really do is query the service and talk to it through SCM

control codes.

While nice and graphical, this technique takes time — going down 200 services and clicking

a bunch of boxes. So while Process Hacker is great to check one-off services, we wanted a tool

to automate this. Enter the venerable Systems Internals Suite, with the AccessChk tool.

https://windows-internals.com/wp-content/uploads/2020/04/sessionsd.png
https://windows-internals.com/wp-content/uploads/2020/04/sessionacl.png

5/26

The following command-line is a great way to get a one-line view of all service permissions:

accesschk.exe -c * -L > servsddl.txt

And you’ll have output like this:

AJRouter
 O:SYD:(A;;CCLCSW RP WPDTLOCRRC;;;SY)

(A;;CCDCLCSW RP WPDTLOCRSDRCWDWO;;;BA)
 (A;;CCLCSWLOCRRC;;;IU)(A;;CCLCSWLOCRRC;;;SU)(A;;CR;;;AU)S:

 ALG
 O:SYD:(A;;CCLCSW RP WPDTLOCRRC;;;SY)

(A;;CCDCLCSW RP WPDTLOCRSDRCWDWO;;;BA)
 (A;;CCLCSWLOCRRC;;;IU)(A;;CCLCSWLOCRRC;;;SU)S:

 AppIDSvc
 O:SYD:(A;;CCLCSW RP WPDTLOCRRC;;;SY)

(A;;CCDCLCSW RP WPDTLOCRSDRCWDWO;;;BA)
 (A;;CCLCSWLOCRRC;;;IU)(A;;CCLCSWLOCRRC;;;SU)S:

 Appinfo
 O:SYD:(A;;CCLCSW RP WPDTLOCRRC;;;SY)

(A;;CCDCLCSW RP WPDTLOCRSDRCWDWO;;;BA
 (A;;CCLCSW RP LOCRRC;;;IU)(A;;CCLCSWLOCRRC;;;SU)(A;;CR;;;AU)S:

Reading SDDL strings can be a bit challenging, but what we’re looking for specifically is the

“ RP ” right, which maps to SERVICE_START . And we’d like to see that next to either “ IU “,

which is the “ INTERACTIVE ” group, or “ BU ” for the “ Users ” group, or “ AU “, which is the

“ Authenticated Users ” group, or even better, “ WD “, which is the “ Everyone ” group.

You might even get lucky and find “ AC “, which is the “ ALL_APPLICATION_PACKAGES ”

group.

Once you find an interesting-looking service, say, “ DsSvc “, you can replace the command-

line command with a lower case l instead:

\sysint\accesschk.exe -c DsSvc -l
 [4] ACCESS_ALLOWED_ACE_TYPE: Everyone

 SERVICE_QUERY_STATUS
 SERVICE_START

 [5] ACCESS_ALLOWED_ACE_TYPE: APPLICATION PACKAGE AUTHORITY\ALL APPLICATION
PACKAGES
 SERVICE_QUERY_STATUS

 SERVICE_START

So this certainly sounds and seems like an interesting service! The next step is to then run it

through the usual suspect — Process Monitor — and try to see any “ NAME NOT FOUND ”

errors while looking for DLLs. You need to be a little careful here, as this is something a lot of

blog posts don’t talk about: you might find “red herrings”. For example, Windows Defender

6/26

does lookup a lot of DLL paths, as part of its sandbox/heuristics, but these aren’t actual

LoadLibrary calls. We’ve also seen services loading Mfc42.dll , which looked promising,

but a deeper analysis of the call stack showed the LoadLibraryAsDataFile function, which

doesn’t actually execute code or call any entrypoints/exports.

Since DsSvc wasn’t fruitful, we moved on (our search query was to look for “ RP;;WD “, just

to go for the most egregious cases, but there are certainly other candidates too). Next up in

our results was:

\sysint\accesschk.exe -c fax -l
 [0] ACCESS_ALLOWED_ACE_TYPE: Everyone

 SERVICE_QUERY_STATUS
 SERVICE_START

We didn’t know it yet, but we were about to hit a jackpot.

For completeness’ sake, the only other 3 built-in Windows services which allow “ Everyone ”

to launch them are icssvc , PhoneSvc , and TabletInputService . There are more that

allow INTERACTIVE , Authenticated Users , and Users , however.

User Startable Services — Round Two

Before going deep into the Fax Service, it’s worth talking about another way that a service

can be started, regardless of the permissions associated with it. In Windows Vista, Microsoft

introduced the Unified Background Process Manager (UBPM), which mimics the

functionality of systemd on Linux systems or launchd on macOS — it supports a variety of

“triggers”, which can be associated with system events such as PnP Device Arrival

Notifications, RPC Endpoint Lookups, WNF State Notifications, Socket Connections, or even

ETW Events.

The Service Control Manager (SCM) was then updated to allow services to be started based

on a trigger, and you can use Process Hacker for a nice GUI view of the triggers that a service

has. Here are the ones for TabletInputService :

7/26

Device Interface Arrival notifications aren’t great, since there’s no way to “fake” them from

an unprivileged account (as far as we know). But let’s take a look at another example, the

DsSvc service — and let’s actually showcase another tool that can dump trigger

information: the Sc.exe built-in utility itself:

sc qtriggerinfo DsSvc
[SC] QueryServiceConfig2 SUCCESS
SERVICE_NAME: DsSvc

 START SERVICE
 NETWORK EVENT : bc90d167-9470-4139-a9ba-be0bbbf5b74d

[RPC INTERFACE EVENT]
 DATA : BF4DC912-E52F-4904-8EBE-
9317C1BDD497

What does this tell us? First, the first GUID, labelled as RPC INTERFACE EVENT has this to

say on MSDN:

“The event is triggered when an endpoint resolution request arrives for the RPC interface

GUID specified by pDataItems .”

Well, since any user account is permitted to resolve an RPC endpoint, then talking to the RPC

endpoint mapper to resolve this GUID will launch the service — even if we don’t ultimately

have permissions to connect to it. Here’s the service currently lying dormant:

sc query dssvc
 SERVICE_NAME: dssvc

 TYPE : 30 WIN32
 STATE : 1 STOPPED

And here’s us trying to ping the Interface ID that was specified:

https://windows-internals.com/wp-content/uploads/2020/04/tabletrgigger.png

8/26

rpcping -t ncalrpc -f BF4DC912-E52F-4904-8EBE-9317C1BDD497 -v 2

RPCPing v6.0. Copyright (C) Microsoft Corporation, 2002-2006
 Trying to resolve interface BF4DC912-E52F-4904-8EBE9317C1BDD497, Version:

1.0
 Completed 1 calls in 1 ms

 1000 T/S or 1.000 ms/T

We can see that the interface replied back to our ping! Let’s take a look at the service now:

sc query dssvc
 SERVICE_NAME: dssvc

 TYPE : 30 WIN32
 STATE : 4 RUNNING

 (STOPPABLE, NOT_PAUSABLE, ACCEPTS_PRESHUTDOWN)

Another type of accessible trigger is the ETW Trigger. Here’s an example service that uses it,

the Windows Error Reporting Service:

sc qtriggerinfo WerSvc
 [SC] QueryServiceConfig2 SUCCESS

SERVICE_NAME: WerSvc
 START SERVICE

 CUSTOM : e46eead8-0c54-4489-9898-8fa79d059e0e [ETW PROVIDER
UUID]

All it takes is a simple call to EventWrite with the correct ETW GUID, and the service will

start. You can do this in C, or even in PowerShell. We modified the linked PS script to use the

GUID below instead of the provided one:

new Guid(0xe46eead8, 0x0c54, 0x4489, 0x98, 0x98, 0x8f, 0xa7, 0x9d, 0x05,
0x9e, 0x0e);

And, sure enough, after launching the script:

sc query WerSvc
 SERVICE_NAME: WerSvc

 TYPE : 10 WIN32_OWN_PROCESS
 STATE : 4 RUNNING

 (STOPPABLE, PAUSABLE, IGNORES_SHUTDOWN)

There’s a few other interesting triggers too — and Microsoft documents the official ones here.

For example, you’ll see that the IKEEXT service is spawned by Rasdial.exe due to a

trigger on UDP port 500 (which you could fake in other ways than launching

Rasdial.exe).

Abusing Fax

Going back to Process Monitor, when we ran the fax service, we noticed this:

https://www.lieben.nu/liebensraum/2016/10/how-to-start-a-trigger-start-windows-service-with-powershell-without-elevation-admin-rights/
https://docs.microsoft.com/en-us/windows/win32/api/winsvc/ns-winsvc-service_trigger

9/26

Fxssvc.exe was looking for c:\windows\system32\ualapi.dll — unsuccessfully. So

we placed our DLL in that location, started the service and sure enough, it was loaded into

the process!

But then we had a few problems:

1. The service doesn’t run under the SYSTEM account, but under NETWORK SERVICE .

This isn’t a truly privileged account, so there’s more work to be done.

2. The service looks up some exports using GetProcAddress , which it expects to find in

Ualapi.dll

3. Unless you’re actually queueing a fax, the service exits almost as soon as it starts (there

are a lot of unfortunately named “ suicide ” variables in the symbols), meaning we

can’t have persistent threads lying around.

We wanted to solve for 2 & 3 together — normally, malicious privilege escalation attacks

leverage DllMain in order to perform their next steps, but in our case, the need to elevate to

SYSTEM makes things harder — plus the fact we want to have an embedded bind shell

developed in a smarter way. Secondly, encoding an entire payload in DllMain is highly

suspicious to anyone disassembling the binary. And finally, DllMain is called when the DLL

is loaded, which means that the loader lock is held, greatly diminishing our capabilities.

Therefore, we skirted the entire problem by not having an entrypoint in the DLL at all, and

leveraging the way the Fax service calls the Ualapi.dll , which you can see in the IDA

screenshot below:

https://windows-internals.com/wp-content/uploads/2020/04/procmonfax.png

10/26

Since the service expects all three functions present, we export all of them, and then

implement a UalStart function where we write our logic — safely away from the confines of

the loader lock. Normally we’d have done all of our operational setup here, but we wanted to

be sneaky, and leverage the Windows Thread Pool, which affords us some asynchronicity,

makes call stacks harder to understand, and brings pain to EDR tools.

The main body of our UalStart is actually quite simple:

https://windows-internals.com/wp-content/uploads/2020/04/ida.png
https://docs.microsoft.com/en-us/windows/win32/api/ual/nf-ual-ualstart
https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/august/windows-with-c-the-windows-thread-pool-and-work

11/26

//
 // Create the thread pool that we'll use for the work

 //

pool = CreateThreadpool(NULL);
 if (pool == NULL)

 {
 goto Failure;

 }

//
 // Create the cleanup group for it

 //
 cleanupGroup = CreateThreadpoolCleanupGroup();

 if (cleanupGroup == NULL)
 {

 goto Failure;
 }

//
 // Configure the pool

//
 InitializeThreadpoolEnvironment(&CallBackEnviron);

 SetThreadpoolCallbackPool(&CallBackEnviron, pool);
 SetThreadpoolCallbackCleanupGroup(&CallBackEnviron, cleanupGroup, NULL);

//
 // For now, always stay in this loop

 //
 while (1)

 {
 //

 // Execute the work callback that will take care of
 //

 work = CreateThreadpoolWork(WorkCallback, NULL, &CallBackEnviron);
 if (work == NULL)

 {
 goto Failure;

 }

 //
 // Send the work and wait for it to complete

 //
 SubmitThreadpoolWork(work);

 WaitForThreadpoolWorkCallbacks(work, FALSE);

12/26

 //
 // We're done with this work
 //

 CloseThreadpoolWork(work);
 }

It not only provides the benefits of the thread pool evasion/abstraction, but also means that

UalStart will never return — keeping the Fax service from shutting down, and

additionally putting it in a perpetual SERVICE_START_PENDING state, which is unstoppable

through regular Sc.exe commands. We now have a persistent implant on the system — but

we still want to get to a SYSTEM shell.

An Elevated Fax

Now that we have our NETWORK SERVICE implant, it’s time to head on over to SYSTEM .

When this account was first introduced in Windows XP, alongside its breatheren LOCAL

SERVICE , the idea was to have service accounts with reduced privileges and permissions,

most especially that would not belong to the Administrators group.

However, since these are services, they were given the SeImpersonatePrivilege , which

means they can impersonate a more powerful token as long as someone more privilege

connects and/or speaks to them, through Winsock, Named Pipes, or ALPC. Technically, this

privilege can be dropped from a given Svchost.exe by using the RequiredPrivileges

registry value, but few services do so., and as you can see below, Fax does not (in fact, it

even has the SeAssignPrimaryTokenPrivilege too):

Therefore, our initial idea was to open a handle to the RpcSs service, which holds handles

to lots of different tokens, including SYSTEM tokens:

The Fax service, which runs in Fxssrv.exe , has the impersonation privilege, and

therefore we should be able to duplicate one of these tokens and impersonate it, elevating

ourselves to SYSTEM . Unfortunately, unless you’re running Windows XP (i.e.: reading this

blog during a BlackHat Advanced Windows Exploitation Course), this simply won’t work.

This is due to the fact that since Windows Vista, services have been hardened, as described in

the Windows Internals books as well as in this excellent blog by James Forshaw. That being

said, over the years, as was shown countless times, the “isolation” between the services did

not truly mean much. Multiple attacks were shown, which we’ll enumerate and reference

here, alongside with mitigations:

https://docs.microsoft.com/en-us/windows/win32/services/service-status-transitions
https://www.tiraniddo.dev/2020/01/empirically-assessing-windows-service.html
https://blogs.iis.net/nazim/token-kidnapping-in-windows

13/26

Simply spoofing an endpoint

supposedly owned by another

service, and getting a SYSTEM

process to connect, then

impersonating it

Service SIDs, introduced in

Windows Vista, now allow

checking that the right

service owns/created/is

listening on a port.

But not every service

has mitigations for

this

Finding another service that

shares the same Svchost.exe

instance, and simply using its

own SYSTEM -level

impersonation tokens, since the

handle table is shared

Windows 10 Redstone 2

now isolates services in

their own separate

Svchost.exe instances,

on systems with over

3.5GB of RAM

Opening a handle to another

Svchost.exe instance which

has SYSTEM -level

impersonation tokens, and

duplicating them

In Windows Vista, each

NETWORK SERVICE

process has its own Logon

ID (LUID), and the process

object is ACL’ed such that

only SYSTEM and the

unique per-service Logon

ID have access to it

https://windows-internals.com/wp-content/uploads/2020/04/faxtoken2.png
https://windows-internals.com/wp-content/uploads/2020/05/rpcsstoken.png
https://gist.github.com/realoriginal/19c2c9c3b14ec65c203dd796ad44e5c5
https://itm4n.github.io/printspoofer-abusing-impersonate-privileges/
https://itm4n.github.io/cdpsvc-dll-hijacking/
https://docs.microsoft.com/en-us/windows/application-management/svchost-service-refactoring

14/26

Opening a handle to a thread in another Svchost.exe instance and sending an APC

to duplicate a SYSTEM -level impersonation token

In Windows Vista, the thread objects are all owned by NETWORK SERVICE , but

use an OWNER RIGHTS ACE, also introduced in Vista, in order to strip out any

privileged permissions.

Leveraging loopback network authentication attacks to coerce a more privileged service

from authenticating over NTLM with its SYSTEM token

In 1809, the popular “Juicy Potato” technique was patched — itself a follow-up of

“Rotten Potato” and “Lonely Potato“

However, abusing WinRM still allows the attack to work on certain systems

(“Bean” technique)

Abusing the fact that the DOS Device Map is shared among all NETWORK SERVICE

services, and performing a DLL path resolution attack

No mitigation

Leveraging loopback named pipe authentication attacks to trick LSASS into returning a

more privileged NETWORK SERVICE token

No mitigation, and the approach we chose. As always, James wrote another blog

post describing this technique.

The idea is simple — while we can’t directly open a handle to RpcSs , we can create a named

pipe, then open it back using the \\localhost SMB namespace (instead of \\.), and

then impersonate it. This will cause the SMB driver to call AcquireCredentialsHandle to

obtain a NETWORK SERVICE token (our current account), which it does by passing in the

LUID. In turn, LSASS returns the original token that was created to represent the logon

session as whole — which just so happens to be the RpcSs token, since this is normally the

first service running as NETWORK SERVICE . In other words, we just got the same LUID as

RpcSs , and we can now open a handle to it!

Here’s a screenshot of our worker thread’s token after impersonating the named pipe. Notice

how many more privileges it has, and the new LogonSession group it joined:

https://dl.packetstormsecurity.net/papers/presentations/TokenKidnapping.pdf
https://github.com/ohpe/juicy-potato
https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-from-service-accounts-to-system/
https://decoder.cloud/2017/12/23/the-lonely-potato/
https://decoder.cloud/2019/12/06/we-thought-they-were-potatoes-but-they-were-beans/
https://www.tiraniddo.dev/2020/04/sharing-logon-session-little-too-much.html
https://docs.microsoft.com/en-us/windows/win32/secauthn/acquirecredentialshandle--ntlm

15/26

A SYSTEM Fax

Because we now have the same token as RpcSs , we can freely open a handle to it, with all

the way up to PROCESS_ALL_ACCESS . We then implemented a handle scanning algorithm

similar to previous ones demonstrated, but with a few twists that take advantage of more

modern Windows functionality:

1. We use the ProcessHandleInformation class of NtQueryInformationProcess to

enumerate the process handles. Previous research and PoCs brute-forced each possible

handle, which is a much slower approach. A few other sources used the

SystemHandleInformation class of NtQuerySystemInformation , which is slower

because it enumerates all handles – requiring filtering to find the right process.

2. We open our own token, then use NtQueryObject’s ObjectTypeInformation class to

get the Object Type Index for Token Objects (which can vary from version to version,

depending on initialization order). This allows us to filter the result list in #1 quickly

without calling DuplicateHandle and then DuplicateToken on every handle, like

past sources, nor do we need to do a name comparison on the Type Name.

3. Now that we know we are dealing with a token handle, we also check the

DesiredAccess field to select only tokens where the granted access mask is

TOKEN_ALL_ACCESS . This increases the chance that we find highly privileged

interesting tokens that we can then impersonate.

4. On most systems, it then only takes us 2-3 calls to DuplicateHandle before we find

an appropriate SYSTEM token.

https://windows-internals.com/wp-content/uploads/2020/04/rpcsstoken.png
https://github.com/processhacker/processhacker/blob/master/phlib/native.c#L5152
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/ex/sysinfo/handle.htm
https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntqueryobject
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/ne-ntifs-_object_information_class
https://ntcoder.com/bab/2011/02/21/retrieve-handle-type-string-using-ntqueryobject/
https://chromium.googlesource.com/chromium/src/+/54.0.2837.2/sandbox/win/sandbox_poc/pocdll/handles.cc

16/26

What do we consider an “appropriate” token, by the way? First, we check the

AuthenticationId (LUID) to ensure it is 0x3E7 (SYSTEM_LUID). Next, we check the

PrivilegeCount to make sure it is equal to or above 22 , which is the normal amount of

privileges that a Windows 10 SYSTEM token has – some services run with filtered tokens,

so RpcSs may impersonate such reduced SYSTEM tokens from time to time. We wanted

the real deal. Thankfully, both of these checks can be quickly done with the

TokenStatistics class of GetTokenInformation.

Finally, after calling SetThreadToken , our thread now runs with a SYSTEM token that has

all privileges present and enabled:

Armed with this token, we open a

handle to yet another service:

DcomLaunch . Once the handle’s

been opened, we revert the token

back to the original NETWORK

SERVICE . The short duration of our

impersonation, and the fact we

merely open a handle and nothing

else, helps keep us low on EDR tool’s

visibility.

So – why DcomLaunch ? We had two

additional operational goals that we

wanted to play with. First, we wanted

to launch the perennial shell, but

without having a SYSTEM -token’ed

Cmd.exe underneath the… Fax

service, sticking out like a sore

thumb.

Additionally, we wanted to avoid

having to use

SeAssignPrimaryTokenPrivilege

and doing the obvious “impersonate

a SYSTEM token and set it as a primary process token”, so that we could use the sneakier

PROCESS_CREATE_PROCESS technique. In case this doesn’t ring a bell, it essentially relies on

the Windows behavior of automatically launching children process with the token of their

parent and combines it with the Windows Vista feature of allowing “re-parenting”. The link

above has James (again!) original presentation on this, which he also describes on a blog post

(and related functionality in his PowerShell tools).

https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-token_statistics
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-gettokeninformation
https://windows-internals.com/wp-content/uploads/2020/04/systemtoken.png
https://drive.google.com/file/d/0B5sMkPVXQnfPaVB6T2N3Mk5UX28/view
https://www.tiraniddo.dev/2017/08/the-art-of-becoming-trustedinstaller.html?m=1

17/26

This capability means that all Unix-like fork behavior (environment variable inheritance,

handle inheritance, standard input/out inheritance, and the token duplication) will be based

on the chosen parent process, and not the actual creator process. It also evades many EDR

solutions that automatically assume the parent is the creator, and ultimately will make it

such that Cmd.exe will appear in the process tree of the Svchost.exe that hosts

DcomLaunch .

Why did we pick this service? Well… just take a look at how its process tree normally looks

like:

Would you notice another Cmd.exe window in all this mess?

https://windows-internals.com/wp-content/uploads/2020/04/dcomtree.png

18/26

Binding to a Socket

For an interactive local attacker, a SYSTEM Cmd.exe is great for privilege escalation, but a

persistent backdoor that allows remote access is a lot more versatile (and a local attacker

could bind to it as well).

In the real world, these types of shells are usually setup as “reverse shells” in order to avoid

firewall rules around inbound connections. But we didn’t want to fully weaponize the entire

chain and create a beaconing & C2 infrastructure, so we wrote a simple bind shell instead.

While this isn’t novel, we did want to use some Windows Internals knowledge to spice it up a

little. First, we continued with our approach of leveraging the Windows Thread Pool API, and

used the AcceptEx function which has a very different approach to establishing a Winsock

connection vs. the usual BSD Socket API:

Instead of creating and returning a client-side socket after a connection is made,

AcceptEx expects the caller to have already created the (unbounded) socket and pass

in as an input

Instead of blocking, it pushes a completion packet to an I/O completion port

(“overlapped I/O” in Win32 parlance), which can then be associated with a callback

function using the Thread Pool API.

It does not consider the connection accepted (and thus does not wake up the I/O

completion port) until at least one packet has been sent by the client – and it returns

back what the first client packet’s data payload was.

It automatically fills out the local and remote SOCKADDR structures that represent the

server and client IP and Port tuple

It’s not directly exported by the Winsock library (Ws2_32.dll) because it is a

specialized Microsoft Extension. Instead, you must use WSAIoctl with

SIO_GET_EXTENSION_FUNCTION_POINTER to look it up by GUID (this isn’t even

documented on WSAIoctl’s documentation as a valid command!)

As you can see, AcceptEx is quite strange – but also quite useful for what we were going

for. Therefore, the last step our Thread Pool Work Callback will do is create two sockets – a

listening socket and an unbound socket, bind the listening socket, and pass both as input to

AcceptEx after looking up its pointer. Looking up the local IP address and building the

SOCKADDR for bind is done using GetAddrInfoW (vs. gethostbyname), a more modern

and easier to use API, and the sockets are created with WSASocket instead of socket –

you’ll see why soon.

Finally, we pump an I/O completion into the thread pool and then wait for our callback to

complete. Now UalStart is waiting on the work callback to return, and the work callback is

waiting on the I/O callback to return. Thread stacks in Process Hacker won’t immediately

https://docs.microsoft.com/en-us/windows/win32/procthread/thread-pool-api
https://docs.microsoft.com/en-us/windows/win32/api/mswsock/nf-mswsock-acceptex
https://docs.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://docs.microsoft.com/en-us/windows/win32/sync/synchronization-and-overlapped-input-and-output
https://docs.microsoft.com/en-us/windows/win32/api/winsock2/nf-winsock2-wsaioctl
https://docs.microsoft.com/en-us/windows/win32/api/ws2tcpip/nf-ws2tcpip-getaddrinfow
https://docs.microsoft.com/en-us/windows/win32/api/winsock2/nf-winsock2-wsasocketa

19/26

show anything nefarious going on (such as someone blocked on accept from within a

DLL), and our operations are spread out over 3 different threads (none of which we directly

created).

Creating the SYSTEM Bind Shell

Eventually, a client connects to our remote endpoint and sends a packet. At this point, our

I/O callback will execute. The reason we wanted this “send a packet” behavior is to avoid

spuriously waking up due to someone doing port scanning and randomly trying to connect to

our port. With AcceptEx , actual data must first be sent. This, in turn, also gives us the

opportunity to validate that the input packet contains the right (expected) connection

payload, which in our case is the string let me in\n – this made it easier to play with

Netcat to test our shell out.

Once we validated the input payload, we can print out the local and remote endpoints with

GetNameInfoW, another modern API that makes SOCKADDR translation to a string easy. But

our real goal is to spawn that Cmd.exe attached to the accepted socket, reparented under

DcomLaunch . The simple way of achieving this is as follows:

Use STARTF_USESHOWWINDOW to indicate that dwFlags will have window flags, and use

SW_HIDE to keep the window hidden. Also pass in CREATE_NO_WINDOW to make extra

sure.

Use STARTF_USESTDHANDLES to indicate that hStdInput , hStdOutput , and

hStdError will have valid handle values, and use the accepted socket handle to allow

the other side to drive the shell.

And, as before, use EXTENDED_STARTUPINFO_PRESENT to set the lpAttributeList

which contains the PROC_THREAD_ATTRIBUTE_PARENT_PROCESS that has a handle back

to DcomLaunch .

And when it works (it doesn’t yet), the result should look something like this (do you even

notice the Cmd.exe ?)

https://docs.microsoft.com/en-us/windows/win32/api/ws2tcpip/nf-ws2tcpip-getnameinfow
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/ns-processthreadsapi-startupinfoa
https://docs.microsoft.com/en-us/windows/win32/procthread/process-creation-flags
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute

20/26

However, such a shell will instantly exit. Recall that when reparenting, all fork like

behaviors, including handle inheritance, will come from the parent, not the creator. And the

handles we’ve passed in as STDIN and others must be inheritable, and must exist… in the

parent.

Therefore, we must first make sure that the socket handles are inheritable, which is

thankfully the default when using WSASocket (there is a flag,

WSA_FLAG_NO_HANDLE_INHERIT , to disable this functionality). But, more importantly, we

must make sure that the socket exists in DcomLaunch – not in Fax .

Unfortunately, if you search the Internet on how to duplicate a socket, you’ll find the

WSADuplicateSocket API. This API isn’t “hands-free” – the receiving side must actively call

socket again, and pass in a data structure that was returned (and somehow copied) by the

sending side. Now we’d have to inject code into DcomLaunch and perform other highly

suspicious action.

Hold on – if sockets are supposed to be inheritable by default, such that they can be used as

input/output handles for a new process, doesn’t this mean that the kernel (which handles

process creation) can somehow duplicate the socket (inheritance is just another form of

https://windows-internals.com/wp-content/uploads/2020/04/dcomLaunch_cmd-e1588521097589.png
https://docs.microsoft.com/en-us/windows/win32/api/winsock2/nf-winsock2-wsaduplicatesocketw
https://docs.microsoft.com/en-us/windows/win32/winsock/shared-sockets-2

21/26

duplication) through the object manager, without specialized Winsock APIs? In fact, if you

try using DuplicateHandle yourself on a socket, you’ll see that it works just fine, despite

repeated warnings from MSDN and other sources.

That’s not to say those warnings or documentation are wrong. Yes, in certain cases, if you

have various Layered Service Providers (LSPs) installed, or use esoteric non TCP/IP sockets

that are mostly implemented in user-space, the duplicated socket will be completely

unusable.

Ultimately, for sockets owned by Afd.sys , which is the kernel IFS (Installable File System)

implementation of Windows Sockets, the operation works just fine, and the resulting socket

is perfectly usable – and has certain perks. Therefore, we must set hStdInput to the

socket’s handle index in DcomLaunch , after we’ve duplicated it (thankfully,

DuplicateHandle tells us what the resulting handle index is).

Recall that one of the advantages of AcceptEx is that it expects the accepted socket handle

as input, unlike accept that returns it after the connection is made. This benefit means that

we can actually open a handle to DcomLaunch while we impersonate SYSTEM , create the

local accept socket, and then immediately duplicate it.

Merely duplicating an unbound socket doesn’t notify any firewall/WFP/EDR callback, and

isn’t shown as being attached to anything (as is the case), and it also means that when our

I/O callback function executes, we can actually immediately close our side of the accept

socket, since the underlying AFD Endpoint is now being referenced by DcomLaunch too.

In our implementation, however, we chose to leave the socket alive until after we launch

Cmd.exe , so that we could return error messages back to the client if needed.

Going back to our CreateProcess call, there’s just one last step before we can use the

duplicated socket. If you read various Internet sources on how to bind the shell to a socket,

you’ll see that the technique works fine when creating reverse shells, but not so much with

bind shells (at least, according to Stack Overflow).

PoCs online and various forums suggest that the only way of achieving the intended result is

to first create a series of named pipes, have threads pumping all the network I/O through the

pipe, and then set the pipes as STDIN/OUT for the child process. Wow, that’s a lot of work,

and we’re lazy.

Well, upon further reading, it turns out that the real problem is this: standard terminal

handles are meant to be fully synchronous (“non-overlapped”), and socket creates

overlapped (“non-blocking”) socket handles. The solution is to then use setsockopt to bring

them back to “blocking” mode – or, to leverage the simple fact that WSASocket does not

have this behavior, unless WSA_FLAG_OVERLAPPED is passed in, which is not the default, but

which our code was using.

https://docs.microsoft.com/en-us/windows/win32/api/handleapi/nf-handleapi-duplicatehandle
https://stackoverflow.com/questions/11847793/are-tcp-socket-handles-inheritable
https://bugs.python.org/issue14522
https://stackoverflow.com/questions/4993119/redirect-io-of-process-to-windows-socket
https://docs.microsoft.com/en-us/windows/win32/api/winsock/nf-winsock-setsockopt

22/26

You see, what’s tricky is that AcceptEx itself is an Overlapped I/O API – that’s why it works

with our entire thread pool based approach. So not passing in WSA_FLAG_OVERLAPPED

means that we can no longer use the API, or a thread pool, or the entire approach we’re going

for. That said, once again, the benefit of AcceptEx separately accepting the other socket

(the one that will be bound to the client, and duplicated into DcomLaunch to serve as the

STDIN/OUT handle) as input is a life saver. We can create the listening socket as overlapped,

and then create the accepting socket as non-overlapped, having our cake and eating it too.

As last, we now combine everything together and have a functional CreateProcess call

which creates a hidden Cmd.exe that’s bound to the client socket, and the client can start

manipulating our remote machine. Now sounds like about the right time to dump a demo

screenshot to get that conference applause.

But, this blog post isn’t quite 6000 words yet, so we’re not done with the Windows internals,

as there’s a few extra tidbits.

Duplicated Sockets and Evasion

First, if you use Netstat with the “ -b ” flag, or Process Hacker, or Process Monitor, you’ll

not see a single socket inside of DcomLaunch . Indeed, the entire connection still appears as

if driven by from Fxssvc.exe . Even better, if we’d allow the Fax service to exit (which we

didn’t want in our implementation), Netstat will show System and Process Monitor

seems to completely hide the network I/O. Additionally, any BFE or WFP-based tools will see

traffic as if coming from Fxssvc.exe , and Windows Firewall rules will apply to that

process, and not DcomLaunch . Look at this screenshot below, of our Netcat connection

above:

This behavior is due to a glaring oversight in allowing DuplicateHandle on sockets but not

fully making Afd.sys capable of correctly handling the security implications. Ultimately,

https://windows-internals.com/wp-content/uploads/2020/04/port_bind_connect.png
https://windows-internals.com/wp-content/uploads/2020/04/port_processhacker-e1588522655565.png

23/26

because the AFD Endpoint is the same, the duplicate handle is just an additional reference –

and all ownership of the socket still belongs to the original creator – even when the creator

exists (and actually, because Netio.sys is still referencing the original EPROCESS , the

creator and the PID become “zombies” and leak resources).

Here’s Windbg showing Fxssvc.exe and its reference count while it’s running:

And here it is after terminating the process — notice how there’s still 8 leaking references:

This behavior was actually discovered and told to us by a good friend – the creator of Process

Hacker. It was submitted to Microsoft years ago, but – stop us if you’ve heard this one before

– it’s not a security boundary, it’s by design. Certainly, a design which all

EDR/Firewall/DFIR vendors all know about, since it’s so clearly documented, right?

The last internals behavior we use is in how we send data back to the client in error situations

(a lot can go wrong with creating our Cmd.exe) – we don’t use the send API. Instead, we

use yet another “lookup-by-GUID” functionality of Winsock 2.2, which is TransmitPackets.

This is a more generic version of TransmitFile, an API that once got Microsoft in trouble,

for building end-to-end file transfer directly into the kernel, which was once considered

anticompetitive and dangerous (these days, Linux has exactly the same functionality).

TransmitPackets allows you to specify a set of virtual addresses — or file handles — and

has a dozen flags to fine tune how this data should be sent – including through worker

threads (the default) or through Kernel APCs (the faster way). We thought it’d be fun to use

it, which again makes the payload import less obvious socket APIs, makes analysis a bit

harder, and has a minute performance again in the off chance there’s an error packet to send.

It also avoids LSPs or other EDR hooks on traditional APIs like accept , recv , send ,

socket — and even the IOCTLs sent to Afd.sys are different.

Putting this all together, we now have our I/O callback calling WaitForSingleObject to

wait for the Cmd.exe to exit when the client disconnects. We’re good citizens and use the

CallbackMayRunLong thread pool API not to hold things up — note that we could have used

https://windows-internals.com/wp-content/uploads/2020/04/fxssvc_before_killing-e1588520941393.png
https://windows-internals.com/wp-content/uploads/2020/04/fxssvc_after_killing-e1588520892182.png
https://docs.microsoft.com/en-us/windows/win32/api/mswsock/nc-mswsock-lpfn_transmitpackets
https://docs.microsoft.com/en-us/windows/win32/api/mswsock/nf-mswsock-transmitfile
http://man7.org/linux/man-pages/man2/sendfile.2.html
https://docs.microsoft.com/en-us/windows/win32/api/threadpoolapiset/nf-threadpoolapiset-callbackmayrunlong

24/26

the WaitCallback functionality of the thread pool, to asynchronous be notified when the

shell exits, but that would’ve added more complexity that at this point just wasn’t worth it.

Once the Cmd.exe terminates, the I/O callback completes, which then wakes up the work

callback, which then wakes up the UalStart thread. In our code, it goes back into a loop,

and starts the whole operation again. Certainly, we could’ve cached a bunch of data to make

this easier, but we opted for the simpler approach. And you could also make it to that

Fxssvc.exe exits and this while logic is hosted somewhere else, or etc., etc., etc. We’re not

actually NSA operators, so we’ll leave that to the real implant writers.

A last note on this: if you like using this unknown DLL but, unlike us, don’t mind restarting

the machine, you can always restart and let Spoolsv.exe load Ualapi.dll when it starts

running. This process starts on boot and runs as SYSTEM , which saves us a lot of the work

— in that case we will just need to open our bind shell:

Of course, most people do notice when their computer restarts out of nowhere. And if you

plan on waiting for the machine to restart for an unrelated reason (update, crash, etc.) you

might be waiting a very long time, as many servers only go down a few times a year for a

scheduled update and neither of us can remember the last time we restarted our computers.

But hey, maybe you’re playing the long game. We don’t judge. Much.

ATP Bonus Round

This was a lot of reading and effort for a simple DLL hijacking attack. Maybe you just want

something a lot simpler. And not have to worry about custom exports and a funny named

DLL. Well, Windows 10 provides exactly what you need, and takes you straight to SYSTEM

without any of this work. How could something like this work? Well, you’ve probably heard

of Windows Defender ATP. What you might not know is that “ATP” stands for

“Accommodating To Planting”.

In fact, every single DLL that it loads suffers from a load ordering issue, where the current

directory takes precedence over System32 . But that’s OK — this is clearly a 3rd party tool,

not from a security-focused team, and understanding the internals of load ordering is hard,

so we can be understanding:

https://windows-internals.com/wp-content/uploads/2020/04/spoolsv_ualapi-e1588522543576.png

25/26

Of course, things aren’t as easy as they might seem at first, as ATP does have a number of

mitigations in place to avoid nonchalant abuse of this behavior:

The Service Control Manager (SCM) will start it as a Windows Protected Process Light

(PPL) which will require your DLL to be Microsoft-signed (or some PPL/signature

bypass, like the ones shown at Recon 2019 by James Forshaw and Alex).

Mssecflt.sys / Sgrmagent.sys have capabilities to detect this type of attack, in

combination with Windows Defender and System Guard Runtime Monitor Attestations

(Octagon).

That being said, using the PreferSystem32Images mitigation would certainly clean up this

behavior.

Windows Manganese (21H1) Post-Credits Scene

OK, OK, let’s stop making fun of the OS Vendor’s EDR tool. The team was acquired, not

native to Microsoft, and DLL hijacking isn’t even a security boundary. It’s not like the OS

itself would ever have issues like these… right? Right??? Continuing in the tradition of ever-

increasing quality and static analysis tools and totally-not-throwing-the-SDL-out-the-

Window, the next version of Windows 10 just adds a built-in DLL planting vector to every

privileged process — EdgeGdi.dll . The latest builds now hard-code loading this DLL

directly into Gdi32.dll — a fact which we noticed alongside @decoder_it on Twitter:

https://windows-internals.com/wp-content/uploads/2020/04/mssense_dll_load.png
https://docs.microsoft.com/en-us/windows/win32/services/protecting-anti-malware-services-
https://www.microsoft.com/security/blog/2018/04/19/introducing-windows-defender-system-guard-runtime-attestation/
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-process_mitigation_image_load_policy?redirectedfrom=MSDN
https://msrc-blog.microsoft.com/2018/04/04/triaging-a-dll-planting-vulnerability/
https://twitter.com/decoder_it/status/1252224211613102080?s=20
https://windows-internals.com/wp-content/uploads/2020/04/edgegdi.png

26/26

Yep — a new function CheckIsEdgeGdiProcessOnce was added — which makes every GUI

process now vulnerable to this DLL planting attack. Ah, security… why even bother?

Show Me The Code!

We’ve implemented the end-to-end functionality described here in our GitHub project

Faxhell, which is a pun on the pronunciation of the word “Fax” (Facs) and “Shell” — while

also making the words “Fax Hell”. Because Alex likes naming things in silly ways.

Read our other blog posts:

https://github.com/ionescu007/faxhell

