
1/4

By Yarden Shafir & Alex Ionescu

Symbolic Hooks Part 3: The Remainder Theorem
windows-internals.com/symhooks-part-three

We ended the second part with, unsurprisingly, a bugcheck. We tried to redirect all access to

the C: volume to our device in order to get information about all the paths that are being

accessed, but the first time anyone tried opening the C: volume itself, the I/O manager

threw a DRIVER_RETURNED_STATUS_REPARSE_FOR_VOLUME_OPEN blue screen at us.

Unfortunately, we can’t return any other status code than STATUS_REPARSE or the path will

not be parsed properly and a lot of things will break in the system as our fake device now

becomes the “file system” of this poor path. But what if we could find a way to never have to

return STATUS_REPARSE for volume opens, because we never see a volume open to begin

with?

First, we should probably understand what it means to have a volume open. While based on

the ancient Windows Server 2003 code base, ReactOS can offer a clue here — as it contains

the exact same behavior in IopParseDevice:

//
 // In case we override checks, but got this on volume open, fail hard

 //
 if (OpenPacket->Override != FALSE)

 {
 KeBugCheckEx(DRIVER_RETURNED_STATUS_REPARSE_FOR_VOLUME_OPEN,

 (ULONG_PTR)OriginalDeviceObject,
 (ULONG_PTR)DeviceObject,

 (ULONG_PTR)CompleteName,
 OpenPacket->Information);

 }

We can see that Override is set at this line underneath the following if statement:

//

// Now check if we need access checks
 //

 if (((AccessMode != KernelMode) || (OpenPacket->Options &
IO_FORCE_ACCESS_CHECK)) &&

 ((OpenPacket->RelatedFileObject == NULL) || (VolumeOpen != FALSE)) &&
 (OpenPacket->Override == FALSE))

 {

https://windows-internals.com/symhooks-part-three/
https://windows-internals.com/symhooks-part-two/
http://www.reactos.org/
https://github.com/reactos/reactos/blob/master/ntoskrnl/io/iomgr/file.c#L1188
https://github.com/reactos/reactos/blob/master/ntoskrnl/io/iomgr/file.c#L490

2/4

This leaves us with the final question — how does VolumeOpen become TRUE ? This line

provides the answer:

//
 // Check if this is a volume open

 //
 if ((OpenPacket->RelatedFileObject != NULL) &&

 (OpenPacket->RelatedFileObject->Flags & FO_VOLUME_OPEN) &&
 (RemainingName->Length == 0))

 {
 //

 // It is
 //

 VolumeOpen = TRUE;
 }

In other words, if a file object is being opened on top of an existing file object that represents

a volume, and this new file object doesn’t have a RemainingName , then we are directly

opening the volume represented by RelatedFileObject itself. This is exactly what

happens when we open C: .

James Forshaw provided us with an interesting idea – what if we could make it so that our

device never receives a path that’s seen as a volume open by the I/O manager? In other

words, what if RemainingName would never be 0 ?

James’ suggestion was pretty simple. Instead of redirecting the symlink through the callback

to \Device\HarddiskVolume0 (the name of our device), we’ll redirect it to

\Device\HarddiskVolume0\Foo . That way, all paths reaching our device will start with

\Foo , and none of them will be treated by the I/O Manager as a volume open, so returning

a STATUS_REPARSE should not present any issues. We’ll just need to remove this suffix from

the path and set the file name to the correct string before returning.

First, we define our suffix:

DECLARE_GLOBAL_CONST_UNICODE_STRING(g_TailName, L"\\Foo");

And when defining the Device Object name that we want the symbolic link callback to return,

we now append this string in the DriverEntry :

RtlAppendUnicodeStringToString(&g_DeviceName, &g_TailName);

Finally, we make some changes to our IRP_MJ_CREATE handler. First, the final name buffer

must remove the space of the \Foo suffix in the original file name:

https://github.com/reactos/reactos/blob/master/ntoskrnl/io/iomgr/file.c#L438
http://www.twitter.com/tiraniddo

3/4

//
// Allocate space for the original device name, plus the size of the

 // file name, minus "\Foo", and adding space for the terminating NUL.
 //

 bufferLength = fileObject->FileName.Length -
 g_TailName.Length +

 g_LinkPath.Length +
 sizeof(UNICODE_NULL);

And then, we must skip past the suffix when concatenating the file name:

//
 // Then add the name of the file name, minus "\Foo"

 //
 NT_VERIFY(NT_SUCCESS(RtlStringCbCatNW(buffer,

 bufferLength,
 fileObject->FileName.Buffer +

 (g_TailName.Length /

sizeof(g_TailName.Buffer[0])),
 fileObject->FileName.Length -

 g_TailName.Length)));

That’s pretty much it! With these simple changes, the driver should no longer crash.

However, there’s still a subtle bug here: while our symbolic link callback will guarantee that

there’s always a \Foo present, there’s other ways that our IRP_MJ_CREATE handler could

be reached: if someone directly attempts to open \Device\HarddiskVolume0 from the

kernel or with a native API. One such example is the WinObjEx64 tool from hfiref0x —

when double-clicking on our device object, we immediately crashed. So let’s be safe, and

simply prohibit direct opens of our device, which would not have the required \Foo suffix,

by adding one last block:

//
 // If this is someone directly trying to access our device object,

 // fail them, so that we do not crash the system (since we should
 // not reparse direct opens).

 //
 if (fileObject->FileName.Length < g_TailName.Length)

 {
 status = STATUS_ACCESS_DENIED;

 goto Exit;
 }

We loaded our new driver, which you can now find on our GitHub repository here, and this

time, we got all the paths that were accessed in the C: volume, and no machine crashes! We

celebrated our victory with a drink, then another, and another. And then we noticed things

https://github.com/hfiref0x/WinObjEx64
https://github.com/yardenshafir/SymlinkCallback/tree/part-three

4/4

on the machine didn’t work too well. Processes such as Calculator wouldn’t run, the Start

Menu refused to show up, and pretty soon the machine was basically unusable. So we had

another drink to handle this additional failure, and passed out.

We eventually did figure out this issue during a long flight, but that story will be told in part

4 . We promise that’s the last part. It all worked afterward, which is why none of your

machines are showing any symptoms.

Read our other blog posts:

