
1/12

By Yarden Shafir & Alex Ionescu

“Move aside, signature scanning!” Better kernel data
discovery through lookaside lists

windows-internals.com/lookaside-list-forensics

Introduction

A while ago we did some research. That specific project might be published at some other

time in the future and we won’t go into too much detail about it here. But as part of this

project we wanted to gain access into an internal data structure used by some driver. Sadly,

the driver’s global pointer to this data structure is not exported, and we couldn’t find a way to

access it from outside the driver itself. It is stored in the pool, so we couldn’t even scan the

driver address space for signs of this structure.

Of course, there is always the option of doing binary parsing on the driver based on a

function signature that references the global, and/or using an array of known offsets for the

global variable and adding the driver base to find it. But these methods require finding and

using the correct RVA for every version of the driver, as well as all potential function

signatures. Because this driver does not have exported functions, such signatures would be

brittle and subject to change between releases. Therefore, although often used by malware

authors, we find these techniques ugly and inconvenient to implement — we knew we could

do better.

So, we reverse engineered the data structure itself and came up with an interesting idea that

can give us easy access to this data structure and to many others. The data structure we were

interested in is very large and contains, among other things, a few lookaside lists embedded

in it. Lookaside lists are single linked lists containing pool allocations of a fixed size. They are

used by drivers for caching memory allocations instead of always requesting them from the

memory manager. Let’s see what makes these interesting.

System Lookaside Lists

Here is the wdm.h definition of a GENERAL_LOOKASIDE_LAYOUT (GENERAL_LOOKASIDE is

just an aligned version of GENERAL_LOOKASIDE_LAYOUT):

//
 // The goal here is to end up with two structure types that are identical

except
 // for the fact that one (GENERAL_LOOKASIDE) is cache aligned, and the

other
 // (GENERAL_LOOKASIDE_POOL) is merely naturally aligned.

https://windows-internals.com/lookaside-list-forensics/

2/12

//
// An anonymous structure element would do the trick except that C++ can't
handle

 // such complex syntax, so we're stuck with this macro technique.
 //

 #define GENERAL_LOOKASIDE_LAYOUT \
 union { \
 SLIST_HEADER ListHead; \
 SINGLE_LIST_ENTRY SingleListHead; \
 } DUMMYUNIONNAME; \
 USHORT Depth; \
 USHORT MaximumDepth; \
 ULONG TotalAllocates; \
 union { \
 ULONG AllocateMisses; \
 ULONG AllocateHits; \
 } DUMMYUNIONNAME2; \
 \
 ULONG TotalFrees; \
 union { \
 ULONG FreeMisses; \
 ULONG FreeHits; \
 } DUMMYUNIONNAME3; \
 \
 POOL_TYPE Type; \
 ULONG Tag; \
 ULONG Size; \
 union { \
 PALLOCATE_FUNCTION_EX AllocateEx; \
 PALLOCATE_FUNCTION Allocate; \
 } DUMMYUNIONNAME4; \
 \
 union { \
 PFREE_FUNCTION_EX FreeEx; \
 PFREE_FUNCTION Free; \
 } DUMMYUNIONNAME5; \
 \
 LIST_ENTRY ListEntry; \
 ULONG LastTotalAllocates; \
 union { \
 ULONG LastAllocateMisses; \
 ULONG LastAllocateHits; \
 } DUMMYUNIONNAME6; \
 ULONG Future[2];

3/12

A useful fact to notice is that this structure contains a linked list

(GENERAL_LOOKASIDE.ListEntry), meaaning all lookaside lists do. Depending on whether

the lookaside list was created with ExInitializeNPagedLookasideList or

ExInitializePagedLookasideList (or, if ExInitializeLookasideListEx was used,

the PoolType which was passed in), the data structure will be entered into one of two list

heads. As such, if we follow the ListEntry of any lookaside list, we’ll eventually end up at

either ExPagedLookasideListHead or ExNPagedLookasideListHead . Since we create

our own lookaside list through these APIs, if we pick the same pool type as our target

structure, we can therefore through all other lookasides, and eventually reach the one

contained in our target structure. In this particular use case, using our own definition of the

structure, the useful CONTAINING_RECORD macro, and the knowledge that the first member

of the structure is a “magic” ULONG that always contains the same value, we searched all

lookaside lists using this mechanism until we reached our structure.

But the possibilities don’t stop there – this method gives us access to any kernel structure,

exported or not, that contains a lookaside list. So what else is there?

Pool-Based Lookaside Lists

With some WinDbg magic, we can also find out valuable information about the data –

whether it’s inside a driver (and which one!) or in the kernel pool, who it belongs to, the

allocation size, etc. To explore the possibilities, we wrote a simple WinDbg script that iterates

through all lookaside lists and uses the extremely helpful !pool extension to dump

information about them. Although we could build similar functionality in a custom C driver,

there is no Windows Kernel API that can supply us with similar information about pool

allocations and parsing pool pages to retrieve it is a lot of work, so we decided to avoid

implementing the same functionality in C due to laziness. In fact, while we tried to

implement our own C-based pool parser, we ended up realizing that nobody had described

the myriad of changes in Windows 10 RS5 and above’s pool manager, so we’re busy writing

a book on the topic.

Using our script, we found structures containing lookaside lists that belong to FltMgr.sys ,

Win32k.sys , Windows Defender drivers, various display drivers, and much more.

dx -r0 @$GeneralLookaside = Debugger.Utility.Collections.FromListEntry(*
(nt!_LIST_ENTRY*)&nt!ExPagedLookasideListHead, "nt!_GENERAL_LOOKASIDE",
"ListEntry")

 dx -r0 @$lookasideAddr = @$GeneralLookaside.Select(l =>
((__int64)&l).ToDisplayString("x"))

 dx -r0 @$extractBetween = ((x,y,z) => x.Substring(x.IndexOf(y)
+ y.Length, x.IndexOf(z) - x.IndexOf(y) - y.Length))

 dx -r0 @$extractWithSize = ((x,y,z) => x.Substring(x.IndexOf(y) + y.Length,
z))

 dx -r2 @$poolData = @$lookasideAddr.Select(l

4/12

=> Debugger.Utility.Control.ExecuteCommand("!pool "+l+" 2")).Where(l =>
l[1].Length != 0x55 && l[1].Length != 0).Select(l => new {address = "0x" +
@$extractBetween(l[1], "*", "size:"), tag = @$extractWithSize(l[1], "
(Allocated) *", 4), tagDesc = l[2].Contains(",") ? @$extractBetween(l[2], ":

", ",") : l[2].Substring(l[2].IndexOf(":")+2), binary =
l[2].Contains("Binary") ? l[2].Substring(l[2].IndexOf("Binary :")+9) :
"unknown", size = "0x" + @$extractBetween(l[1], "size:", "previous
size:").Replace(" ", "")})

[0x4a]
 address : 0xffff988679939400

 tag : Vi10
 tagDesc : Video memory manager process heap

 binary : dxgmms2.sys
 size : 0x70

 [0x4b]
 address : 0xffff98867b647650

 tag : DxgK
 tagDesc : Vista display driver support

 binary : dxgkrnl.sys
 size : 0x640

 [0x4c]
 address : 0xffff98867b647650

 tag : DxgK
 tagDesc : Vista display driver support

 binary : dxgkrnl.sys
 size : 0x640

 [0x4d]
 address : 0xffff9886790f5430

 tag : Vi17
 tagDesc : Video memory manager pool

 binary : dxgmms2.sys
 size : 0x150

 [0x4e]
 address : 0xffff98867966e230

 tag : Usla
 tagDesc : USERTAG_LOOKASIDE

 binary : win32k!InitLockRecordLookaside
 size : 0xa0

 [0x4f]
 address : 0xffff98867966ea50

 tag : Usla
 tagDesc : USERTAG_LOOKASIDE

 binary : win32k!InitLockRecordLookaside
 size : 0xa0

 [0x50]
 address : 0xffff98867966e690

5/12

 tag : Gla1
 tagDesc : GDITAG_HMGR_LOOKASIDE_DC_TYPE

 binary : win32k.sys
 size : 0xa0

 [0x51]
 address : 0xffff98867966e550

 tag : Gla4
 tagDesc : GDITAG_HMGR_LOOKASIDE_RGN_TYPE

 binary : win32k.sys
 size : 0xa0

 [0x52]
 address : 0xffff98867966ecd0

 tag : Gla5
 tagDesc : GDITAG_HMGR_LOOKASIDE_SURF_TYPE

 binary : win32k.sys
 size : 0xa0

There are some results in which the pool tag is unknown, making the tracking of the driver

they belong to difficult. A fun way to solve that is using driver verifier’s pool tracking feature.

We can modify our script and replace the !pool <address> 2 command with !verifier

<address> 2 and receive information about the allocating driver and the completes stack

trace of the allocation. But running this command on so many addresses is extremely slow

and it dumps a lot of information that is hard to sort through. So another option is going for a

more manual approach – enabling driver verifier but executing the previous script as it is,

and only querying specific addresses that seem interesting with verifier.

Image-Based Lookaside Lists

Initially we only searched for data in the pool because that is where the structure we were

interested in was allocated. But with this trick we also get access to lookaside lists that are

inside drivers, and we can use the cool new RtlPcToFileName function to find out what

driver these structures are in. In this case we did choose to implement this in C code since it’s

more straightforward and faster to execute:

_Use_decl_annotations_
 NTSTATUS

 DriverEntry (
 In PDRIVER_OBJECT DriverObject,

 In PUNICODE_STRING RegistryPath
)

 {
 NTSTATUS status;

 LOOKASIDE_LIST_EX lookaside;
 PLIST_ENTRY lookasideList;

 PLIST_ENTRY lookasideListHead;
 PGENERAL_LOOKASIDE generalLookaside;

6/12

 UNICODE_STRING pcName = RTL_CONSTANT_STRING(L"RtlPcToFileName");
 DECLARE_UNICODE_STRING_SIZE(driverName, 32);

 UNREFERENCED_PARAMETER(RegistryPath);

 DriverObject->DriverUnload = DriverUnload;

 auto RtlPcToFileNamePtr = (decltype(RtlPcToFileName)*)
(MmGetSystemRoutineAddress(&pcName));

 NT_ASSERT(RtlPcToFileNamePtr != nullptr);

 //
 // Create our own lookaside list to use for finding other lookaside

lists in the kernel.
 //

 status = ExInitializeLookasideListEx(&lookaside,
 nullptr,

 nullptr,
 PagedPool,

 0,
 8,
 'Fake',

 0);
 if (!NT_SUCCESS(status))

 {
 goto Exit;

 //
 // Iterate over our lookaside list to find all the other lookaside

lists
 // and print information about them

 //
 generalLookaside = nullptr;

 lookasideListHead = &lookaside.L.ListEntry;
 lookasideList = lookasideListHead->Flink;

 do
 {

 generalLookaside = CONTAINING_RECORD(lookasideList,
 GENERAL_LOOKASIDE,

 ListEntry);

 //

 // Use RtlPcToFileName to find whether the lookaside list is
 // inside a driver and if so, which one

 //
 status = RtlPcToFileNamePtr(generalLookaside, &driverName);

 if (NT_SUCCESS(status))

7/12

 {
 DbgPrintEx(DPFLTR_IHVDRIVER_ID,

 DPFLTR_ERROR_LEVEL,
 "Lookaside list is in driver %wZ\n",

 driverName);
 }

 else
 {

 DbgPrintEx(DPFLTR_IHVDRIVER_ID,

 DPFLTR_ERROR_LEVEL,

 “Lookaside list is not inside a driver\n”);

 lookasideList = lookasideList->Flink;
 } while (lookasideList != lookasideListHead);

 status = STATUS_SUCCESS;

Exit:
 ExDeleteLookasideListEx(&lookaside);

 return status;
 }

With this code we found lookaside lists inside of Ntoskrnl.exe , Ci.dll , Ntfs.sys and

more. Of course, since these are embedded inside of the driver memory, our only way to

know whether these are independent lookaside lists or they are part of a larger structure is to

dump the addresses and reverse engineer the drivers. But we’re all nerds who like reverse

engineering, or we wouldn’t be writing/reading this blog.

We can also implement the same query in WinDbg if we choose to, using the ln command

which searches for the nearest symbol to an address:

dx -r0 @$GeneralLookaside = Debugger.Utility.Collections.FromListEntry(*
(nt!_LIST_ENTRY*)&nt!ExPagedLookasideListHead, "nt!_GENERAL_LOOKASIDE",
"ListEntry")

https://windows-internals.com/wp-content/uploads/2020/02/lookaside-clean.png

8/12

dx -r0 @$lookasideAddr = @$GeneralLookaside.Select(l =>
((__int64)&l).ToDisplayString("x"))

 dx -r2 @$symData = @$lookasideAddr.Select(l => new {addr =
l, sym = Debugger.Utility.Control.ExecuteCommand("ln "+l)}).Where(l

=> l.sym.Count() > 3).Select(l => new {addr = l.addr, sym =
@$extractBetween(l.sym[3], " ", "|")})

[0x9]
 addr : 0xfffff8000e4eb300

 sym : nt!AlpcpLookasides+0x100
 [0xa]

 addr : 0xfffff8000e4db180
 sym : nt!IopSymlinkInfoLookasideList

 [0xb]
 addr : 0xfffff8000e4ef040

 sym : nt!WmipDSChunkInfoLookaside
 [0xc]

 addr : 0xfffff8000e4eefc0
 sym : nt!WmipGEChunkInfoLookaside

 [0xd]
 addr : 0xfffff8000e4ef140

 sym : nt!WmipISChunkInfoLookaside
 [0xe]

 addr : 0xfffff8000e4ef0c0
 sym : nt!WmipMRChunkInfoLookaside

 [0xf]
 addr : 0xfffff8001172a880

 sym : FLTMGR!FltGlobals+0x340
 [0x10]

 addr : 0xfffff8001172ad00
 sym : FLTMGR!FltGlobals+0x7c0

 [0x11]
 addr : 0xfffff8001172af00

 sym : FLTMGR!FltGlobals+0x9c0
 [0x12]

 addr : 0xfffff8001172b080
 sym : FLTMGR!FltGlobals+0xb40

This is a pretty cool trick, which led to all sorts of cool discoveries. And we only searched for

paged lookaside lists. There is a whole world of non-paged lookaside lists that we didn’t even

look at yet. We ran the same WinDbg scripts as before, and just changed our starting point

from nt!ExPagedLookasideListHead to nt!ExNPagedLookasideListHead to get the

non-paged lookaside lists, and got some interesting results. We looked for non-paged

lookaside lists in the pool:

9/12

[0x55]
 address : 0xffff97884ba5c990

 tag : Vkin
 tagDesc : Hyper-V VMBus KMCL driver (incoming packets)

 binary : vmbkmcl.sys
 size : 0x2d0

 [0x56]
 address : 0xffff97884bad1590

 tag : NDnd
 tagDesc : NDIS_TAG_POOL_NDIS

 binary : ndis.sys
 size : 0x800

 [0x57]
 address : 0xffff97884bad3000

 tag : NDrt
 tagDesc : NDIS_TAG_RST_NBL

 binary : ndis.sys
 size : 0x800

 [0x58]
 address : 0xffff97884ba19130

 tag : Nnbf
 tagDesc : NetIO NetBufferLists

 binary : netio.sys
 size : 0x800

And inside of drivers:

[0x14]
 addr : 0xfffff8000e4db100

 sym : nt!IopOplockFoExtLookasideList
 [0x15]

 addr : 0xfffff8000e4ee880
 sym : nt!WmipRegLookaside

 [0x16]
 addr : 0xfffff80010e40bc0

 sym : ACPI!BuildRequestLookAsideList
 [0x17]

 addr : 0xfffff80010e40dc0
 sym : ACPI!RequestLookAsideList

 [0x18]
 addr : 0xfffff80010e40c40

 sym : ACPI!DeviceExtensionLookAsideList
 [0x19]

 addr : 0xfffff80010e40d40
 sym : ACPI!RequestDependencyLookAsideList

 [0x1a]
 addr : 0xfffff80010e40cc0

10/12

 sym : ACPI!ObjectDataLookAsideList
[0x17]

 addr : 0xfffff80010e40f40
 sym : ACPI!XswContextLookAsideList

Per-Processor Lookaside Lists

There’s actually one more linked list of lookaside lists that we haven’t talked about yet:

ExPoolLookasideListHead . Since the first versions of Windows NT, and up until Windows

10 RS5 when the pool manager was rewritten to use the Backend Heap (again, the topic of

a future book!), it leveraged a per-processor array of 32 lookaside lists, one for each

indexed multiple of the pool block size. On x86 , this basically meant any 8 -byte aligned

allocation from 8 to 256 bytes, and on x64 , any 16 -byte aligned allocation from 16 to

512 bytes.

Since there was both a paged and nonpaged pool, each KPRCB had two such arrays — the

PPNPagedLookasideList and the PPPagedLookasideList . With Windows 8 and the

introduction of the non-executable nonpaged pool, a third array was created:

PPNxPagedLookasideList . All of these lookaside lists are therefore inserted into the same

linked list head, and on our system, you can easily see how many processors (16) are

present:

lkd> dx -r0 @$poolasides = Debugger.Utility.Collections.FromListEntry(*
(nt!_LIST_ENTRY*)&nt!ExPoolLookasideListHead, "nt!_GENERAL_LOOKASIDE",
"ListEntry")

 @$poolasides = Debugger.Utility.Collections.FromListEntry(*
(nt!_LIST_ENTRY*)&nt!ExPoolLookasideListHead, "nt!_GENERAL_LOOKASIDE",

"ListEntry")
 lkd> dx @$poolasides.Count(), d

 @$poolasides.Count(), d : 1536
 lkd> dx 1536 / 32 / 3

1536 / 32 / 3 : 16
 lkd> dx *(int*)&nt!KeNumberProcessors

 (int)&nt!KeNumberProcessors : 16 [Type: int]

Originally, this seemed exciting, as it would imply the ability to easily locate not only

structures that contain a lookaside list, but in fact, any pool structure that’s a multiple of the

pool block size. Unfortunately, if we take a look at these lists on modern Windows 10

systems, we find that they’re completely unused:

lkd> dx @$poolasides.Sum(p => p.TotalAllocates + p.TotalFrees)
 @$poolasides.Sum(p => p.TotalAllocates + p.TotalFrees) : 0x0

11/12

Indeed, looking at the code in ExAllocatePoolWithTag and friends, this logic was

completely removed as part of the heap-related changes we’ll cover in a future research

paper.

Executive Resources

The even cooler thing is that lookaside lists are not the only kernel structures that are linked

to all other structures of the same type! Another example is the ERESOURCE , a structure used

to implement read/write locking for drivers. Executive resources are also contained inside of

many kernel structures, and can give us access to even more internal kernel information, if

we know how to find them. We changed our WinDbg scripts to iterate over the linked list

found in ERESOURCE.SystemResourcesList , starting

from nt!ExpSystemResourcesList .

We first searched for ERESOURCE objects in the pool:

[0xb8]
 address : 0xffff97884bf9fb90

 tag : Ntfx
 tagDesc : Unrecognized NTFS tag (update base\published\pooltag.w)

 binary : ntfs.sys
 size : 0x170

 [0xb9]
 address : 0xffff97884bf50e80

 tag : SeTl
 tagDesc : Security Token Lock

 binary : nt!se
 size : 0x80

 [0x4c]
 address : 0xffff97884bf9ed30

 tag : Ntfx
 tagDesc : Unrecognized NTFS tag (update base\published\pooltag.w)

 binary : ntfs.sys
 size : 0x170

And then for ERESOURCE objects inside of drivers:

[0x3c]
 addr : 0xfffff8001268e8e0

 sym : Ntfs!NtfsDynamicRegistrySettingsResource
 [0x3d]

 addr : 0xfffff80011211ef0
 sym : NDIS!SharedMemoryResource

 [0x3e]
 addr : 0xfffff80012967630

 sym : ksecpkg!g_rgCachedPagedSslProvs+0x410

12/12

[0x3f]
 addr : 0xfffff80011a032f8

 sym : tcpip!FlIsolationState+0x18
 [0x40]

 addr : 0xfffff80011d482e0
 sym : mup!MupProviderTable+0x20

 [0x41]
 addr : 0xfffff80011d48100

 sym : mup!MupiSurrogateList+0x20
 [0x42]

 addr : 0xfffff8000f4ac370
 sym : CI!g_IgnoreLifetimeSigningEKU+0x70

 [0x43]
 addr : 0xfffff8000f4acb80

 sym : CI!g_GRLContextLock
 [0x44]

 addr : 0xfffff80012f081c0
 sym : netbios!g_erGlobalLock

We found some very interesting results that are probably worth further investigation, such as

pool structures related to NTFS volume objects, structures inside Ci.dll , and much, much

more. On our machine we found over 400 000 executive resources:

lkd> dx -r0 @$eresource = Debugger.Utility.Collections.FromListEntry(*
(nt!_LIST_ENTRY*)&nt!ExpSystemResourcesList, "nt!_ERESOURCE",
"SystemResourcesList")

 @$eresource = Debugger.Utility.Collections.FromListEntry(*
(nt!_LIST_ENTRY*)&nt!ExpSystemResourcesList, "nt!_ERESOURCE",
"SystemResourcesList")

lkd> dx @$eresource.Count(),d

 @$eresource.Count(),d : 400960

Because of the sheer number, making analysis with LINQ unwieldly, we wanted to get pool

information for some of these ERESOURCE structures using C code and start analyzing them.

Unfortunately, unlike lookaside lists, ERESOURCE structures don’t have their pool tag as part

of the structure, so we have to write a pool parser to get the pool information for each

ERESOURCE . As we’ve mentioned before, as it turns out, in RS5 and later, that is not an

easy task at all, as you’ll see in our upcoming research on the new backend heap-backed

kernel pool.

Read our other blog posts:

