
1/15

Using VBS enclaves for anti-cheat purposes
tulach.cc/using-vbs-enclaves-for-anti-cheat-purposes

Nov 09, 2024 Samuel Tulach

A few months ago, when Microsoft announced VBS (virtualization-based security) enclave
functionality, I started wondering whether it could be used for game anti-cheating purposes.
While I was skeptical (later I will explain why), I decided to look into it and write a simple
Pong-inspired game which handles its entire game logic in such enclave.

What are VBS enclaves?

Hyper-V is a type-1 hypervisor, which means that when enabled, the Windows installation it’s
running on becomes a guest.

Virtualization-based security (VBS) is built on top of the Hyper-V platform. Since it operates
at a higher privilege level than the kernel itself, it can help enforce strict code signing
requirements (HVCI) or completely isolate data even from code running at the kernel level.

VBS enclaves allow developers to leverage VBS in their applications to isolate code and
data from anything else running on the computer. Think of it as running Windows inside
VirtualBox or VMware Player as one VM, with this isolated environment as another. Neither
can access the other unless the hosting application explicitly permits it.

https://tulach.cc/using-vbs-enclaves-for-anti-cheat-purposes/
https://techcommunity.microsoft.com/blog/windowsosplatform/securely-design-your-applications-and-protect-your-sensitive-data-with-vbs-encla/4179543
https://en.wikipedia.org/wiki/Category:Anti-cheat_software
https://github.com/SamuelTulach/SecureGame
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://learn.microsoft.com/en-us/windows-server/administration/performance-tuning/role/hyper-v-server/architecture
https://www.techtarget.com/searchitoperations/definition/guest-OS-guest-operating-system
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/device-guard-and-credential-guard
https://learn.microsoft.com/en-us/windows/security/identity-protection/credential-guard/
https://learn.microsoft.com/en-us/windows/win32/trusted-execution/vbs-enclaves
https://www.virtualbox.org/
https://www.vmware.com/products/desktop-hypervisor/workstation-and-fusion

2/15

Trusted execution enclaves using VBS (source)

Anti-cheat?

Traditionally on Windows, anti-cheat software utilizes kernel-mode drivers to (among other
things) prevent any user-mode programs from accessing the game’s memory. I have written
about it in more detail here.

The idea of using VBS enclaves is that we could run parts of the game in this isolated
environment. That would mean that even if cheat developers somehow got kernel-mode
code execution, they would still not be able to manipulate the code and data in this enclave.

A bit of skepticism

https://learn.microsoft.com/en-us/windows/win32/trusted-execution/vbs-enclaves
https://tulach.cc/the-issue-of-anti-cheat-on-linux/

3/15

While it sounds like a good idea on paper, there are currently a few problems with the use of
VBS enclaves:

Limited APIs - You can’t just take an existing program and tell Windows to run it in an
enclave. It has to be a library (.DLL) specifically designed to run in such enclave which
then needs a host process. There is a very limited set of APIs available (libvcruntime,
vertdll, UCRT, bcrypt).
Performance - Since virtualization is involved, there will always be some overhead,
which in other use-cases is not that significant, but for a game trying to run logic or get
data in/out of the enclave on each frame, this overhead is something that developers
have to account for.
Security - While in theory, the enclave should be absolutely impenetrable, in practice,
cheat developers will always have the edge unless the system becomes completely
locked down including the firmware. While it’s true that the enclave is inaccessible to
anything running inside the OS (since anything running inside the OS will run inside the
virtualized environment), nothing is stopping cheat developers from writing a bootkit
that will load before the OS even starts, therefore before any virtualization takes place.
With a clever hook chain, they can gain complete control over the Hyper-V/VBS
architecture itself (something I will be exploring in future blog posts).

Regardless of these issues, I decided to write a simple proof-of-concept project to test this
idea out and to have something to experiment with in the future.

Getting started

Since VBS enclave functionality is quite new, the available sample projects and
documentation are very sparse. In fact, I was not able to find any open-source project
utilizing VBS enclaves, so the only starting point I could use was the official documentation
and sample project.

Development tools required:

Visual Studio 2022 version 17.9 or later
Windows Software Development Kit (SDK) version 10.0.22621.3233 or later

Device/OS requirements:

Windows 11 or later or Windows Server 2019 or later
VBS/HVCI must be enabled
For debugging and running enclaves without production signing, test-signing must be
enabled

I used VMware Workstation to run the latest version of Windows 11. Don’t forget to enable
nested virtualization in setting if you also do so (Virtualize Intel VT-x/EPT or AMD-V/RVI).

https://learn.microsoft.com/en-us/windows/win32/trusted-execution/available-in-enclaves
https://learn.microsoft.com/en-us/windows/win32/trusted-execution/vbs-enclaves-dev-guide
https://github.com/microsoft/Windows-classic-samples/tree/main/Samples/VbsEnclave
https://visualstudio.microsoft.com/
https://developer.microsoft.com/en-us/windows/downloads/windows-sdk/
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/device-guard-and-credential-guard
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/the-testsigning-boot-configuration-option
https://www.vmware.com/products/desktop-hypervisor/workstation-and-fusion

4/15

Since I wanted something extremely simple, I decided to write a game inspired by the classic
Pong. The idea was to have a host process that would handle initialization, window creation,
keyboard input and rendering, while the enclave would run the actual game logic.

I created a new solution with two projects: SecureGame, which would be the host process,
and SecureCore, which would be the enclave itself.

I used vcpkg to install SDL2 and then
started implementing the game logic.
There’s nothing special about it; I ended
up with a game loop like this:

https://en.wikipedia.org/wiki/Pong
https://vcpkg.io/en/
https://www.libsdl.org/

5/15

void Game::Loop()

{

 constexpr int FPS = 240;

 constexpr int frameDelay = 1000 / FPS;

 bool running = true;

 while (running)

 {

 const Uint32 frameStart = SDL_GetTicks();

 SDL_Event event;

 while (SDL_PollEvent(&event))

 {

 if (event.type == SDL_QUIT)

 running = false;

 }

 SDL_SetRenderDrawColor(m_Renderer, 0, 0, 0, 255);

 SDL_RenderClear(m_Renderer);

 Tick();

 SDL_RenderPresent(m_Renderer);

 const int frameTime = SDL_GetTicks() - frameStart;

 if (frameDelay > frameTime)

 SDL_Delay(frameDelay - frameTime);

 }

 SDL_DestroyRenderer(m_Renderer);

 SDL_DestroyWindow(m_Window);

 SDL_Quit();

}

The interesting stuff

When the enclave is loaded, the host process can call any exported function from the
enclave library using CallEnclave().

6/15

Enclave lifecycle (source)

There are several ways we could approach using it:

1. Use it only for save/load - Store and load data from the enclave, keeping the loaded
data in host process memory for the least amount of time possible and only for the time
they are needed.

2. Supply all required input and run the entire game logic inside the enclave. The enclave
then returns data needed for rendering, which is performed by the host process.

3. Put everything in the enclave - The CallEnclave() function can also perform a
“reverse call” back to the host process according to the documentation. We could write
a function that allows arbitrary function calls in the host process and then call this
single function from within the enclave. This would allow us to put the entire game
inside the enclave and work around its limitations.

While option 3 seems the most interesting, I went with option 2 to keep things simple.

Initially, I wondered whether you could pass a pointer to host process data into the enclave
and access it directly. The documentation doesn’t mention whether the host process memory
is accessible to the enclave at all, and to make matters worse, the sample code only passes
data values, never pointers.

https://learn.microsoft.com/en-us/windows/win32/trusted-execution/vbs-enclaves-dev-guide
https://learn.microsoft.com/en-us/windows/win32/api/enclaveapi/nf-enclaveapi-callenclave

7/15

CallEnclave() (very helpful) documentation (source)

By trying it out, I discovered that the enclave has access to the host process memory, so
you can pass pointers to data structures inside the host process. With this knowledge, I
created a structure to be shared between the enclave and the host process.

typedef struct _TICK_DATA

{

 float DeltaTime;

 bool KeyW;

 bool KeyS;

 bool KeyUp;

 bool KeyDown;

 struct

 {

 float X;

 float Y;

 float Width;

 float Height;

 } LeftPaddle, RightPaddle, Ball;

 int LeftScore;

 int RightScore;

} TICK_DATA;

This structure would hold information about which keys are pressed on the current tick, the
time elapsed since the last frame rendered, and the output from the enclave containing game
object positions and score.

The enclave would then implement the game logic like this (peak coding performance, don’t
judge):

https://learn.microsoft.com/en-us/windows/win32/api/enclaveapi/nf-enclaveapi-callenclave

8/15

void Reset()

{

 Data::BallPositionX = static_cast<float>(WINDOW_WIDTH) / 2 - BALL_SIZE / 2;

 Data::BallPositionY = static_cast<float>(WINDOW_HEIGHT) / 2 - BALL_SIZE / 2;

 Data::BallVelocityX = (rand() % 2 == 0) ? BALL_SPEED : -BALL_SPEED;

 Data::BallVelocityY = (rand() % 2 == 0) ? BALL_SPEED : -BALL_SPEED;

 Data::State = Data::StateId::Running;

}

void Run(TICK_DATA* currentTick)

{

 const float deltaTime = currentTick->DeltaTime;

 if (currentTick->KeyW && Data::LeftPaddleY > 0)

 Data::LeftPaddleY -= PADDLE_SPEED * deltaTime;

 if (currentTick->KeyS && Data::LeftPaddleY < WINDOW_HEIGHT - PADDLE_HEIGHT)

 Data::LeftPaddleY += PADDLE_SPEED * deltaTime;

 if (currentTick->KeyUp && Data::RightPaddleY > 0)

 Data::RightPaddleY -= PADDLE_SPEED * deltaTime;

 if (currentTick->KeyDown && Data::RightPaddleY < WINDOW_HEIGHT - PADDLE_HEIGHT)

 Data::RightPaddleY += PADDLE_SPEED * deltaTime;

 Data::BallPositionX += Data::BallVelocityX * deltaTime;

 Data::BallPositionY += Data::BallVelocityY * deltaTime;

 if (Data::BallPositionY <= 0 || Data::BallPositionY + BALL_SIZE >= WINDOW_HEIGHT)

 Data::BallVelocityY = -Data::BallVelocityY;

 const bool ballInLeftPaddleYRange = Data::BallPositionY + BALL_SIZE >=
Data::LeftPaddleY &&

 Data::BallPositionY <= Data::LeftPaddleY + PADDLE_HEIGHT;

 const bool ballInRightPaddleYRange = Data::BallPositionY + BALL_SIZE >=
Data::RightPaddleY &&

 Data::BallPositionY <= Data::RightPaddleY + PADDLE_HEIGHT;

 if (Data::BallPositionX <= 20 + PADDLE_WIDTH &&

 Data::BallPositionX >= 20 &&
 ballInLeftPaddleYRange)

 {

 Data::BallPositionX = 20 + PADDLE_WIDTH;

 Data::BallVelocityX = -Data::BallVelocityX;

 }

 if (Data::BallPositionX + BALL_SIZE >= WINDOW_WIDTH - 20 - PADDLE_WIDTH &&

 Data::BallPositionX <= WINDOW_WIDTH - 20 &&

 ballInRightPaddleYRange)

 {

 Data::BallPositionX = WINDOW_WIDTH - 20 - PADDLE_WIDTH - BALL_SIZE;

 Data::BallVelocityX = -Data::BallVelocityX;

 }

9/15

 if (Data::BallPositionX <= 0)

 {

 Data::RightScore++;

 Data::State = Data::StateId::Reset;

 }

 if (Data::BallPositionX + BALL_SIZE >= WINDOW_WIDTH)

 {

 Data::LeftScore++;

 Data::State = Data::StateId::Reset;

 }

}

extern "C" __declspec(dllexport) void* CALLBACK GameTick(PVOID context)

{

 TICK_DATA* currentTick = static_cast<TICK_DATA*>(context);

 switch (Data::State)

 {

 case Data::StateId::Reset:

 Reset();

 break;

 case Data::StateId::Running:

 Run(currentTick);

 break;

 }

 currentTick->LeftPaddle.X = 20;

 currentTick->LeftPaddle.Y = Data::LeftPaddleY;

 currentTick->LeftPaddle.Width = PADDLE_WIDTH;

 currentTick->LeftPaddle.Height = PADDLE_HEIGHT;

 currentTick->RightPaddle.X = WINDOW_WIDTH - 20 - PADDLE_WIDTH;

 currentTick->RightPaddle.Y = Data::RightPaddleY;

 currentTick->RightPaddle.Width = PADDLE_WIDTH;

 currentTick->RightPaddle.Height = PADDLE_HEIGHT;

 currentTick->Ball.X = Data::BallPositionX;

 currentTick->Ball.Y = Data::BallPositionY;

 currentTick->Ball.Width = BALL_SIZE;

 currentTick->Ball.Height = BALL_SIZE;

 currentTick->LeftScore = Data::LeftScore;

 currentTick->RightScore = Data::RightScore;

 return nullptr;

}

And then the enclave function is called from within the game tick in the host process, and
then the resulting game objects are rendered:

10/15

void Game::Tick()

{

 const Uint8* keystates = SDL_GetKeyboardState(nullptr);

 static Uint32 lastTime = SDL_GetTicks();

 const Uint32 currentTime = SDL_GetTicks();

 const float deltaTime = (currentTime - lastTime) / 1000.0f;

 lastTime = currentTime;

 TICK_DATA data;

 data.DeltaTime = deltaTime;

 data.KeyW = keystates[SDL_SCANCODE_W];

 data.KeyS = keystates[SDL_SCANCODE_S];

 data.KeyUp = keystates[SDL_SCANCODE_UP];

 data.KeyDown = keystates[SDL_SCANCODE_DOWN];

 PVOID returnValue = nullptr;

 if (!CallEnclave(Global::TickRoutine, &data, true, &returnValue))

 {

 char buffer[256];

 sprintf_s(buffer, "Failed to call enclave routine: %d", GetLastError());

 MessageBoxA(nullptr, buffer, "Error", MB_OK | MB_ICONERROR);

 return;

 }

 SDL_SetRenderDrawColor(m_Renderer, 255, 255, 255, 255);

 const SDL_Rect leftPaddle =

 {

 static_cast<int>(data.LeftPaddle.X),

 static_cast<int>(data.LeftPaddle.Y),

 static_cast<int>(data.LeftPaddle.Width),

 static_cast<int>(data.LeftPaddle.Height)

 };

 SDL_RenderFillRect(m_Renderer, &leftPaddle);

 const SDL_Rect rightPaddle =

 {

 static_cast<int>(data.RightPaddle.X),

 static_cast<int>(data.RightPaddle.Y),

 static_cast<int>(data.RightPaddle.Width),

 static_cast<int>(data.RightPaddle.Height)

 };

 SDL_RenderFillRect(m_Renderer, &rightPaddle);

 const SDL_Rect ball =

 {

 static_cast<int>(data.Ball.X),

 static_cast<int>(data.Ball.Y),

 static_cast<int>(data.Ball.Width),

 static_cast<int>(data.Ball.Height)

 };

11/15

 SDL_RenderFillRect(m_Renderer, &ball);

 char scoreText[32];

 sprintf_s(scoreText, "%d - %d", data.LeftScore, data.RightScore);

 RenderText(scoreText, WINDOW_WIDTH / 2 - 40, 20);

}

And that’s it, now let’s go test it out! Full source code available here.

Testing

When you start the game, nothing will seem out of the ordinary (apart from the fact that it
won’t run without VBS enabled).

Let’s try to mess with it. Trying to change the score values using Cheat Engine won’t work.
The score isn’t in the host process memory at all (or it’s there only for a very brief moment
when it’s rendered on screen, but changing it won’t affect the actual score counter).

https://github.com/SamuelTulach/SecureGame
https://www.cheatengine.org/

12/15

Ok, so what about trying to edit the code directly? When we look at the loaded modules of
the process, we can actually see the loaded enclave DLL.

Does that mean we can just patch the module? Let’s open SecureCore.dll in IDA and copy
over the first bytes of the GameTick() function.

13/15

Then we can scan for the function using Cheat Engine.

Let’s try to patch it by putting a return (0xC3) at the start of the function.

https://www.cheatengine.org/

14/15

Aaaaand nothing. So what’s going on? Well, first of all, let’s check the memory protection.

It’s actually just read-only. No execution permissions. That’s because this is just a dummy
image (most likely to prevent memory address conflicts). There’s really no way we could
mess around with the code or data in the enclave with anything we launch from within the
OS.

Well, is there anything we can do then? Yes, obviously. Anything that’s outside of the
enclave is easily accessible. We can hook into the host process and edit the data returned
by or sent to the enclave. We can also just inject Cheat Engine’s speedhack DLL (which just
hooks performance counters) and that will work too, since all the time calculations are done
in the host process.

Conclusion

Due to the limitations mentioned above, it would take incredible effort to implement VBS
enclaves into an actual game engine in a way that would be meaningful and not completely
obliterate the game’s performance. As such, I don’t really see any game developers using
them, not even accounting for the system requirements (Windows 11+, VBS enabled) since
gamers might not be willing to reconfigure their systems just to play some game.

https://www.unrealengine.com/en-US

15/15

On top of that, while it would prevent any attempt to manipulate the game from programs or
drivers loaded in the OS, experienced developers would have no issues getting around these
restrictions by writing firmware apps that would manipulate the entire Windows bootchain.

There are two things that Microsoft could do that would instantly eliminate the vast majority
of game cheating:

1. Work with OEMs to enforce strict boot environment code signing policies. Secure Boot
is not sufficient (1, 2). The system would have to verify everything from the moment it’s
turned on until it’s turned off. If it allows loading any user-created firmware code, it’s
over. However, being this strict would essentially mean locking the system down to
Windows only, or at least making it very difficult to install alternative OSes (Linux),
which no sane person can support.

2. While this would require enormous effort, they could introduce whole “process
enclaves” where an entire process could run in a separate virtualized environment
while still having access to standard NT APIs. I’ve read several security-related blog
posts from them and I feel this sort of containerization is something they’re aiming for,
so we’ll see.

Thanks for reading and have a nice day.

https://tulach.cc/bootkits-and-kernel-patching/
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-secure-boot
https://github.com/SamuelTulach/SecureFakePkg
https://github.com/SamuelTulach/PatchBoot

