
1/3

Beyond good ol’ Run key, Part 119
hexacorn.com/blog/2019/10/11/beyond-good-ol-run-key-part-119

October 11, 2019 in Anti-Forensics, Autostart (Persistence)

Pretty much everyone knows about the AEDebug key.

Turns out this key has a twin brother, called AeDebugProtected.

When the WerpGetDebugger function is called, it calls NtQueryInformationProcess to

retrieve a basic information about the process. If the process’s basic info data at position 28

(32-bit!) returns a dword value that if masked with 1 is non-zero then AeDebugProtected key

is used…

Okay, this is confusing… Let’s step back.

The traditional way of calling NtQueryInformationProcess with ProcessBasicInformation

class is typically delivered using a ‘classic’ definition of _PROCESS_BASIC_INFORMATION

structure being:

typedef struct _PROCESS_BASIC_INFORMATION {
 PVOID Reserved1;
 PPEB PebBaseAddress;
 PVOID Reserved2[2];
 ULONG_PTR UniqueProcessId;
 PVOID Reserved3;
} PROCESS_BASIC_INFORMATION;

Of course, available source codes online can give us a more precise definition of this structure

e.g. Process Hacker source code defines it as:

typedef struct _PROCESS_BASIC_INFORMATION
{
 NTSTATUS ExitStatus;
 PPEB PebBaseAddress;
 ULONG_PTR AffinityMask;
 KPRIORITY BasePriority;
 HANDLE UniqueProcessId;
 HANDLE InheritedFromUniqueProcessId;
} PROCESS_BASIC_INFORMATION, *PPROCESS_BASIC_INFORMATION;

In both cases the size of a structure is 24 bytes (32-bit system!). When I looked at the code of

WerpGetDebugger I was surprised to see that some calls to NtQueryInformationProcess /

ProcessBasicInformation rely on a structure that is 32 bytes long!

https://www.hexacorn.com/blog/2019/10/11/beyond-good-ol-run-key-part-119/
https://www.hexacorn.com/blog/category/anti-forensics/
https://www.hexacorn.com/blog/category/autostart-persistence/
https://docs.microsoft.com/en-us/windows/win32/debug/configuring-automatic-debugging
https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntqueryinformationprocess

2/3

Okay, so now we know there is some extra information provided by

NtQueryInformationProcess to WerpGetDebugger function and that data determines which

debug key is being used. Since this ntdll function is simply passed to kernel, I went to look at

the code of NtQueryInformationProcess inside ntoskrnl.exe. I quickly discovered that the

function does indeed expect a structure that is either 24 or 32 bytes long. Cool.

Continuing my analysis I noticed that

the the field at the position 28 is

filled in with a result of a call to a

function called PsIsProtectedProcess.

Protected processes [DOC warning]

is a technology described in the past,

so not a biggie. And the fact this is

what is being checked by the function

is of course something we should

have expected, given the name used

by the Registry Key I mentioned

earlier, however… at least we can

confirm this with our code analysis…

And here we are with a few

conclusive bits:

NtQueryInformationProcess /

ProcessBasicInformation may use 2 different structure versions!

The field at offset 28 (32-bit!) tells us if the process is protected or not. Depending on

this, different AeDebug Registry key will be used to launch debugger when the app

crashes.

The longer structure can be prototyped as this:

typedef struct _PROCESS_BASIC_INFORMATION_EXT
{
NTSTATUS ExitStatus;
PPEB PebBaseAddress;
ULONG_PTR AffinityMask;
KPRIORITY BasePriority;
HANDLE UniqueProcessId;
HANDLE InheritedFromUniqueProcessId;
ULONG unknown;
ULONG IsProtectedProcess;
}

At this is how we arrived at Beyond good ol’ Run key, Part 119.

Okay, not quite yet.

http://download.microsoft.com/download/a/f/7/af7777e5-7dcd-4800-8a0a-b18336565f5b/process_vista.doc

3/3

The value under this Protected Registry key that the WerpGetDebugger function will use is

not Debugger, but ProtectedDebugger. Yup, we are talking:

HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\AeDebugProtected\ProtectedDebugger=<exe>

Comments are closed.

