
1/26

Mohamed Adel August 18, 2023

Understanding Syscalls: Direct, Indirect, and Cobalt
Strike Implementation

d01a.github.io/syscalls

Mohamed Adel included in Reverse Engineering Research
 2023-08-18 3243 words
 16 minutes

In case images fail to load, it might be due to jsDelivr CDN ban in Egypt. To resolve
this, consider using a VPN. :)

Syscalls? Why?

To Bypass user-mood hooks. why?
For Hiding a code inside a legitimate process (Process Injection)
Avoiding EDR alerts!

User-mood Hooks

Hooking user-mode functions by placing a jump to another code section. EDRs use hooks to
check the function parameters. For example, if you are trying to change the memory
protections of some data to add executable protections. This is a very suspicious activity so
EDRs will be alert to that. Most Hooks are on the lowest level of the user-mode interface in
ntdll.dll which are the system calls.

https://d01a.github.io/syscalls/
https://d01a.github.io/
https://d01a.github.io/categories/reverse-engineering/
https://d01a.github.io/categories/research/

2/26

Direct syscalls

Windows has a defined schema of how syscalls are used. Most of the documented
windows APIs are just a wrapper of a lower-level Functions in ntdll.dll which are compiled
to a syscall with the right SSN (System Service Number). To look at how Nt* version of the
higher-level API is implemented.

0:018> uf NtOpenProcess

ntdll!NtOpenProcess:

00007ffa`4874d4c0 4c8bd1 mov r10,rcx

00007ffa`4874d4c3 b826000000 mov eax,26h

00007ffa`4874d4c8 f604250803fe7f01 test byte ptr [SharedUserData+0x308
(00000000`7ffe0308)],1

00007ffa`4874d4d0 7503 jne ntdll!NtOpenProcess+0x15
(00007ffa`4874d4d5) Branch

ntdll!NtOpenProcess+0x12:

00007ffa`4874d4d2 0f05 syscall

00007ffa`4874d4d4 c3 ret

ntdll!NtOpenProcess+0x15:

00007ffa`4874d4d5 cd2e int 2Eh

00007ffa`4874d4d7 c3 ret

At address 00007ffa~4874d4d2 there syscall instruction. This instruction transfers the
execution to the system-handler at the kernel. The handler is specified using pre-defined
SSN number loaded into EAX Register (In this case EAX = 0x26 at address

3/26

00007ffa~4874d4c3).
So, to make a syscall The SSN associated.
The code stub of the
syscalls is simple.

mov r10, rcx

mov eax,
<syscall_number>

syscall

ret

Now, the missing thing is the syscall_number. These numbers are changing based on the
Build version of windows. There are some techniques to get these numbers.

1. SysWhispers

SysWhispers That generate the table of these numbers in the form of a header file and
assembly file that can be embedded in the code. The generated code contains syscall
number for multiple versions, The right windows build version is detected at runtime using
PEB structure.

...

+0x118 OSMajorVersion :
Uint4B

+0x11c OSMinorVersion :
Uint4B

+0x120 OSBuildNumber :
Uint2B

...

The assembly code generated (Full document at example-output)

...

NtOpenProcess PROC

mov rax, gs:[60h] ; Load PEB into RAX.

NtOpenProcess_Check_X_X_XXXX: ; Check major version.

cmp dword ptr [rax+118h], 5

je NtOpenProcess_SystemCall_5_X_XXXX

cmp dword ptr [rax+118h], 6

je NtOpenProcess_Check_6_X_XXXX

cmp dword ptr [rax+118h], 10

je NtOpenProcess_Check_10_0_XXXX

jmp NtOpenProcess_SystemCall_Unknown

NtOpenProcess_Check_6_X_XXXX: ; Check minor version for Windows
Vista/7/8.

cmp dword ptr [rax+11ch], 0

https://github.com/jthuraisamy/SysWhispers
https://raw.githubusercontent.com/jthuraisamy/SysWhispers/master/example-output/syscalls.asm

4/26

je NtOpenProcess_Check_6_0_XXXX

cmp dword ptr [rax+11ch], 1

je NtOpenProcess_Check_6_1_XXXX

cmp dword ptr [rax+11ch], 2

je NtOpenProcess_SystemCall_6_2_XXXX

cmp dword ptr [rax+11ch], 2

je NtOpenProcess_SystemCall_6_3_XXXX

jmp NtOpenProcess_SystemCall_Unknown

NtOpenProcess_Check_6_0_XXXX: ; Check build number for Windows
Vista.

cmp dword ptr [rax+120h], 6000

je NtOpenProcess_SystemCall_6_0_6000

cmp dword ptr [rax+120h], 6001

je NtOpenProcess_SystemCall_6_0_6001

cmp dword ptr [rax+120h], 6002

je NtOpenProcess_SystemCall_6_0_6002

jmp NtOpenProcess_SystemCall_Unknown

NtOpenProcess_Check_6_1_XXXX: ; Check build number for Windows 7.

cmp dword ptr [rax+120h], 7600

je NtOpenProcess_SystemCall_6_1_7600

cmp dword ptr [rax+120h], 7601

je NtOpenProcess_SystemCall_6_1_7601

jmp NtOpenProcess_SystemCall_Unknown

NtOpenProcess_Check_10_0_XXXX: ; Check build number for Windows 10.

cmp dword ptr [rax+120h], 10240

je NtOpenProcess_SystemCall_10_0_10240

cmp dword ptr [rax+120h], 10586

je NtOpenProcess_SystemCall_10_0_10586

...

5/26

1. SSN code stub
This technique doesn’t Look for SSN number, instead it gets the code
stub of the required API. This can be done by opening the PE file and parsing the
Export table of ntdll

2. Extract SSN
It Extract the SSN from ntdll by parsing the Export table. The difference
between it and the previous one is that it only extracts the syscall number. Both
methods load ntdll.dll from the disk first using win32 API OpenFile which might be
hooked. hell’s gate for more.

https://github.com/am0nsec/HellsGate

6/26

3. Syscalls’ number sequence
This method take advantage of the SSNs are in a
sequence for example if a syscall number is 0x26 the following will be 0x27 and so on.
This relies also on the fact that not all the system calls are hooked! So, to get the SSN
of a function, you need to find the nearest unhooked syscall. this was presented by
halos gate. But This is not valid in newer versions of Windows as the SSNs sequence
is no longer valid.

4. Parallel loading
This is an interesting technique explained in this blog. It uses windows
feature introduced in windows 10 to load DLLs through multiple threads instead of one
in older versions of windows. It was found that the syscall stub of native Functions
NtOpenFile(), NtCreateSection(), ZwQueryAttributeFile(), ZwOpenSection() and Z
wMapViewOfFile() -There is a lot of things happens between the two actions, detailed
explanation in the previously mentioned blog -are copied into LdrpThunkSignature
array. This is done to check the integrity of the functions’ code. These APIs’ syscall
numbers can be used to load a new version of ntdll.dll from the disk and avoid any
user-mood hooks.

5. Sorting by system call address
This technique uses the relation between the
address of the system call stub and the SSN. It is known as FreshyCalls . In simple
words, it walks the Export Address Table of ntdll and saves the Name -or a hash of
the name- and Address of each entry in a table. Then, it sorts the entries by the
addresses in ascending order. It was found that the first function NtAccessCheck (by
address) has an SSN = 0

https://blog.sektor7.net/#!res/2021/halosgate.md
https://www.mdsec.co.uk/2022/01/edr-parallel-asis-through-analysis/
https://www.mdsec.co.uk/2022/01/edr-parallel-asis-through-analysis/
https://github.com/crummie5/FreshyCalls

7/26

0:007> uf NtAccessCheck

ntdll!NtAccessCheck:

00007ffa`4874d000 4c8bd1 mov r10,rcx

00007ffa`4874d003 b800000000 mov eax,0

00007ffa`4874d008 f604250803fe7f01 test byte ptr [SharedUserData+0x308
(00000000`7ffe0308)],1

00007ffa`4874d010 7503 jne ntdll!NtAccessCheck+0x15
(00007ffa`4874d015) Branch

ntdll!NtAccessCheck+0x12:

00007ffa`4874d012 0f05 syscall

00007ffa`4874d014 c3 ret

ntdll!NtAccessCheck+0x15:

00007ffa`4874d015 cd2e int 2Eh

00007ffa`4874d017 c3 ret

and if we unassembled the next function by adding one to the last address (as ret opcode is
one byte) we will get that the next function’s SSN is 1!

8/26

0:007> uf 00007ffa`4874d017+1

ntdll!NtAccessCheck+0x18:

00007ffa`4874d018 0f1f840000000000 nop dword ptr [rax+rax]

00007ffa`4874d020 4c8bd1 mov r10,rcx

00007ffa`4874d023 b801000000 mov eax,1

00007ffa`4874d028 f604250803fe7f01 test byte ptr [SharedUserData+0x308
(00000000`7ffe0308)],1

00007ffa`4874d030 7503 jne ntdll!NtWorkerFactoryWorkerReady+0x15
(00007ffa`4874d035) Branch

ntdll!NtWorkerFactoryWorkerReady+0x12:

00007ffa`4874d032 0f05 syscall

00007ffa`4874d034 c3 ret

ntdll!NtWorkerFactoryWorkerReady+0x15:

00007ffa`4874d035 cd2e int 2Eh

00007ffa`4874d037 c3 ret

So, by sorting the functions by the addresses, we have the SSN. for the code, look at MDSec
(8. Sorting by System Call Address) blog or see FreshlyCalls implementation.
The execution
of the system call is not direct by calling syscall instruction. Instead. It uses the method
explained below. Briefly, it uses the syscall instructions from ntdll.

Indirect syscalls

https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-system-calls-for-red-teams/#8.%20Sorting%20by%20System%20Call%20Address
https://github.com/crummie5/FreshyCalls/blob/112bdf0db63a5f7104ba5243af6a672bc098a1ad/syscall.cpp#L65

9/26

All the methods described are workarounds to get the system call number without getting
caught. syscall instruction reveals that some suspicious activity is going on. This is done
using KPROCESS!InstrumentationCallback in windows.

0:030> dt _kprocess

ntdll!_KPROCESS

 +0x000 Header :
_DISPATCHER_HEADER

 ...

 +0x3d8 InstrumentationCallback : Ptr64
Void

 ...

 +0x3f8 EndPadding : [8] Uint8B

Any time the windows is done with a syscall and returns to user-mode, it checks this member
it is not NULL, the execution will be transferred to that pointer. To check if the syscall is legit,
the return address after finishing the syscall is checked to see if it is not from a valid place. If
the address is in the address space of the process running, it’s not a legitimate place to
make a syscall. This check was done by ScyllaHide to detect manual syscalls, the source
code can be found here.

if (InterlockedOr(TlsGetInstrumentationCallbackDisabled(), 0x1) == 0x1)

 return ReturnVal; // Do not recurse

 const PVOID ImageBase = NtCurrentPeb()->ImageBaseAddress;

 const PIMAGE_NT_HEADERS NtHeaders = RtlImageNtHeader(ImageBase);

 if (NtHeaders != nullptr && ReturnAddress >= (ULONG_PTR)ImageBase &&

 ReturnAddress < (ULONG_PTR)ImageBase + NtHeaders-
>OptionalHeader.SizeOfImage)

 {

 // Syscall return address within the exe file

 ReturnVal = (ULONG_PTR)(ULONG)STATUS_PORT_NOT_SET;

 // Uninstall ourselves after we have completed the sequence { NtQIP,
NtQIP }. More NtSITs will follow but we can't do anything about them

 NumManualSyscalls++;

 if (NumManualSyscalls >= 2)

 {

 InstallInstrumentationCallbackHook(NtCurrentProcess, TRUE);

 }

 }

 InterlockedAnd(TlsGetInstrumentationCallbackDisabled(), 0);

 return ReturnVal;

}

https://github.com/x64dbg/ScyllaHide/blob/master/HookLibrary/HookedFunctions.cpp#L176-L187

10/26

It checks the return address of the successful system call. If it resides on the address space
of the binary we are running, it is an indication of manual system call.

The Solution
The solution to this hooking method is done by Bouncy Gate and Recycled
Gate method. The idea is quite simple, it is an adjusted version of Hell’s Gate. Instead of
directly executing syscall instruction and getting caught by static signatures and system call
callbacks described above, the author replaces the syscall instruction with a trampoline
jump (JMP) to a syscall instruction address from ntdll.dll. now there is no direct syscall
instruction and the system call originated from a legitimate place ntdll. This is also
implemented in SysWhispers3. To get the address of the syscall instruction in ntdll we can
parse the export table and search for syscall, ret opcodes 0F 05 0C or the constant pattern

https://github.com/eversinc33/BouncyGate
https://github.com/thefLink/RecycledGate
https://github.com/eversinc33/BouncyGate
https://github.com/klezVirus/SysWhispers3

11/26

of syscalls in ntdll can be used to get the syscall address. If the function is not hooked, the
syscall instruction is on offset 0x12 from the function’s address, we can verify that by
comparing the opcodes.

Indirect syscalls in Cobalt Strike

The sample from Dodo’s blog Where he already analyzed how indirect syscalls implemented
in Cobalt Strike. for easy access, here is UnpacMe Results
020b20098f808301cad6025fe7e2f93fa9f3d0cc5d3d0190f27cf0cd374bcf04. The sample is
packed. The unpacking process is easy. Just put a breakpoint on VirtualProtect and get
the base address (First Argument).
Function sub_18001B6B0 contains the important part,
system call SSN retrieving and execution methods. You can get to this function by following
the call instruction to rax which contains a qword memory area or a call to the qword
directly. These locations are populated with addresses of the required APIs in this function.
We can see multiple calls to sub_18001A73C with arguments: qword_*, a hash (such as
0B12B7A69h), variable passed to the function sub_18001A7F4 and another allocated memory
which is also passed to sub_18001A7F4.

https://github.com/dodo-sec/Malware-Analysis/blob/main/Cobalt%20Strike/Indirect%20Syscalls.md
https://www.unpac.me/results/4a29ad52-97b6-4208-a8e2-2cd99be3fff4#/

12/26

Function sub_18001A73C is to resolve the function address (syscall stub address) by the
hash. And function sub_18001A7F4 used to populate the list with the system call SSN and
system call stub. So, sub_18001A7F4 is our target. In the following picture is the beginning of
the function.

The function starts with getting a pointer to the first entry in InLoadOrderModuleList
structure by going through reading the Process Environment Block (PEB). here in the
picture, r10 is holding the current entry of the structure and r9 is like a variable to get each

13/26

entry, this is the breaking condition of the loop as the _LIST_ENTRY structure wrap around
itself (doubly linked list).

The next step is to get the Export directory of ntdll.dll but first, get ntdll address in
memory.

It is looking for the right module in the InLoadOrderModuleList by going through each entry,
the flink is a pointer to LDR_DATA_TABLE_ENTRY where we can get a pointer to the module.
By parsing the module (going through PE file headers) to get the name of the DLL which
resides in the Export directory (First member) which is the first member of
IMAGE_DATA_DIRECTORY structure. It is then tested to see if it is the target module (ntdll).
If
the module is ntdll, it saves a pointer to AddressOfFunctions, AddressOfNames and
AddressOfNameOrdinals. A memory region of size 0x1f40 is then zeroed as it will hold the
structures of the system call information needed.
The next part is checking the function prefix
Ki and Zw. It looks for only one function prefixed by Ki with the hash 8DCD4499h, but I
couldn’t find function with this hash (using debugger). Then, a call to a hashing function is
made. The hashing function is simple.

14/26

It uses 0x52964EE9 as an initial key value to start the process then:

Get 2-bytes of the Function name (little endian).
Rotate the key by 8 (2 characters).
Add the key and the 2-bytes of the name.
Increment the counter by 1 (Resulting that all the chars in between the start and end
taken two times in the calculation for example ZwOpenProcess will take Wz in the first
iteration and Ow in the second and so on).
The result of the addition is XORed with the key to produce the new key.
The hash
value returned is the last result of the XOR operation.

The resulting value is stored in the following form, in the pre-allocated space.

The first DWORD is the hash.
The second DWORD is the Relative Virtual Address (RVA) of the system call0.
The third QWORD is the Virtual Address (VA) of the system call stub (RVA + ntdll Base
Address).

So, it can be written as:

15/26

struct syscall_info {

DWORD API_hash;

DWORD
syscall_stub_RVA;

QWORD
syscall_stub_address;

};

After populating the structure with the addresses. The structure elements are being sorted by
the RVA of the system call stub (second entry in the structure).

After the sorting algorithm is done, the memory structure look like the following:

16/26

The first address is the address to the Lowest address ZwMapUserPhysicalPagesScatter
(Could be different at newer versions of windows) at address 00000000774E1340 If we see
the system call SSN of it:

system call number is zero. This is how it gets the SSN for any function, by iterating the
structure to get the right hash, the counter will be used to get the SSN (SSN = counter).
So
far, this is remarkably like MDSec (8. Sorting by System Call Address) implementation of the
technique known as FreshlyCalls.
We could rewrite the technique using MDSec
implementation as follows:

#define RVA2VA(Type, DllBase, Rva) (Type)((ULONG_PTR) DllBase + Rva)

static

void

GetSyscallList(PSYSCALL_LIST List) {

 PPEB_LDR_DATA Ldr;

 PLDR_DATA_TABLE_ENTRY LdrEntry;

 PIMAGE_DOS_HEADER DosHeader;

 PIMAGE_NT_HEADERS NtHeaders;

 DWORD i, j, NumberOfNames, VirtualAddress, Entries=0;

 PIMAGE_DATA_DIRECTORY DataDirectory;

 PIMAGE_EXPORT_DIRECTORY ExportDirectory;

 PDWORD Functions;

 PDWORD Names;

 PWORD Ordinals;

 PCHAR DllName, FunctionName;

 PVOID DllBase;

 PSYSCALL_ENTRY Table;

 SYSCALL_ENTRY Entry;

 //

 // Get the DllBase address of NTDLL.dll

 // NTDLL is not guaranteed to be the second in the list.

 // so it's safer to loop through the full list and find it.

 Ldr = (PPEB_LDR_DATA)NtCurrentTeb()->ProcessEnvironmentBlock->Ldr;

 // For each DLL loaded

 for (LdrEntry=(PLDR_DATA_TABLE_ENTRY)Ldr->Reserved2[1];

 LdrEntry->DllBase != NULL;

 LdrEntry=(PLDR_DATA_TABLE_ENTRY)LdrEntry->Reserved1[0])

 {

 DllBase = LdrEntry->DllBase;

 DosHeader = (PIMAGE_DOS_HEADER)DllBase;

 NtHeaders = RVA2VA(PIMAGE_NT_HEADERS, DllBase, DosHeader->e_lfanew);

 DataDirectory = (PIMAGE_DATA_DIRECTORY)NtHeaders-
>OptionalHeader.DataDirectory;
 VirtualAddress =
DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress;

 if(VirtualAddress == 0) continue;

 ExportDirectory = (PIMAGE_EXPORT_DIRECTORY) RVA2VA(ULONG_PTR, DllBase,
VirtualAddress);

 DllName = RVA2VA(PCHAR,DllBase, ExportDirectory->Name);

https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-system-calls-for-red-teams/#8.%20Sorting%20by%20System%20Call%20Address

17/26

 if((*(ULONG*)DllName | 0x20202020) != 'ldtn') continue;

 if((*(ULONG*)(DllName + 4) | 0x20202020) == 'ld.l') break;

 }

 NumberOfNames = ExportDirectory->NumberOfNames;

 Functions = RVA2VA(PDWORD,DllBase, ExportDirectory->AddressOfFunctions);

 Names = RVA2VA(PDWORD,DllBase, ExportDirectory->AddressOfNames);

 Ordinals = RVA2VA(PWORD, DllBase, ExportDirectory->AddressOfNameOrdinals);

 Table = List->Table;

 do {

 FunctionName = RVA2VA(PCHAR, DllBase, Names[NumberOfNames-1]);

 if(*(USHORT*)FunctionName == 'iK' && HashSyscall(FunctionName) ==
0x8DCD4499) {

 Table[Entries].API_Hash = HashSyscall(&FunctionName);

 Table[Entries].syscall_stub_RVA = Functions[Ordinals[NumberOfNames-1]];

 Table[Entries].syscall_stub_address = RVA2VA(void,
DllBase,Functions[Ordinals[NumberOfNames-1]]);

 Entries++;

 if(Entries == MAX_SYSCALLS) break;

 }

 if(*(USHORT*)FunctionName == 'wZ') {

 Table[Entries].API_Hash = HashSyscall(&FunctionName);

 Table[Entries].syscall_stub_RVA = Functions[Ordinals[NumberOfNames-1]];

 Table[Entries].syscall_stub_address = RVA2VA(void,
DllBase,Functions[Ordinals[NumberOfNames-1]]);

 Entries++;

 if(Entries == MAX_SYSCALLS) break;

 }

 } while (--NumberOfNames);

 //

 // Save total number of system calls found.

 //

 List->Entries = Entries;

 //

 // Sort the list by address in ascending order.

 //

 for(i=0; i<Entries - 1; i++) {

 for(j=0; j<Entries - i - 1; j++) {

 if(Table[j].syscall_stub_RVA > Table[j+1].syscall_stub_RVA) {

 //

 // Swap entries.

 //

 Entry.Hash = Table[j].Hash;

 Entry.Address = Table[j].Address;

 Table[j].API_Hash = Table[j+1].API_Hash;

 Table[j].syscall_stub_RVA = Table[j+1].syscall_stub_RVA;

 Table[j].syscall_stub_address = Table[j+1].syscall_stub_address;

 Table[j+1].API_Hash = Entry.API_Hash;

 Table[j+1].syscall_stub_RVA = Entry.syscall_stub_RVA;

 Table[j+1].syscall_stub_address = Entry.syscall_stub_address;

18/26

 }

 }

 }

}

19/26

20/26

21/26

22/26

23/26

The next thing is to use the structure to get the SSN. and syscall instruction to call. This is
done by function sub_18001A73C.

The function takes the following parameters:

The array of structures that has the system call info (called syscall_info above)
constant value 0x1F4 the maximum length of the structure members (structure size =
0x1F4 * 0x10).
Pre-Allocated memory
The function hash.
Global variable to get the system call SSN and stub.
The function is simple, it searches
the populated structure to find the given hash. If it’s found, the counter value is taken
and to get the Address of the system call stub. To get the address, the base address of
the structure is added to the offset multiplied by 0x10 (struct size) and add 8 to get the
last QWORD.

API_Address = *(STRUCT_BASE_ADDR + COUNTER * 0x10
+ 8)

The address the passed to get_syscall_ret_address to get the syscall ret addresses to
use it to execute the system call to bypass the callback mentioned before (call stack tracing
is be used to detect this trick).

24/26

The global variable is used to store:

QWORD to store System call address (function address at ntdll)
QWORD to store syscall , ret instruction sequence address.
DWORD to store system call number SSN.
We can rewrite it as follows:

struct
syscall_required_addresses {

QWORD syscall_stub_address;

QWORD
syscall_intruction_address;

DWORD syscall_number;

};

(Creative names I know :))

There are some choices to call the required function. This is done based on the value at a
global variable (0x18004BC6C):

1 : Direct call using the first member of the structure (Address of the function in ntdll)
2 : Indirect system call using trampoline jump using the system call number and the
syscall address stored before.

25/26

anything else: Direct call to Win32 API.

Detecting syscalls

System calls can be used to bypass user mood hooks but there are other methods to detect
Direct and Indirect syscalls.
To detect Direct system calls, Windows provides a large set of
callback functions, one of them is KPROCESS!InstrumentationCallback . This callback is
triggered whenever the system returns from the kernel mode to user mode. This could be
used to check the return address of the syscall which reveals the location of syscall
instruction execution. This location should be ntdll but in case of the direct system calls, it
will be from the .text section of the PE file. This was used by ScyllaHide.
Indirect system
calls solved this problem by getting the address of syscall instruction in ntdll and jump to
it. To detect indirect syscalls the call stack tracing method can be used to check from where
the system call originated -before jumping to ntdll-. This also can be bypassed by creating
a new thread to get a new call stack using callback functions like TpAllocWork and
RtlQueueWorkItem. If you want to know more about this, you can read Hiding In PlainSight
1&2

Note: This was personal notes I wrote when I was learning about syscalls, if there’s
anything not accurate, please let me know

References

https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-
system-calls-for-red-teams/

https://www.youtube.com/watch?v=elA_eiqWefw&t=3176s

https://offensivedefence.co.uk/posts/dinvoke-syscalls/

https://www.felixcloutier.com/x86/syscall.html

https://www.mdsec.co.uk/2022/04/resolving-system-service-numbers-using-the-exception-
directory/

https://github.com/j00ru/windows-syscalls/

https://cocomelonc.github.io/malware/2023/06/07/syscalls-1.html

https://github.com/x64dbg/ScyllaHide/blob/master/HookLibrary/HookedFunctions.cpp
https://0xdarkvortex.dev/hiding-in-plainsight/
https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-system-calls-for-red-teams/
https://www.youtube.com/watch?v=elA_eiqWefw&t=3176s
https://offensivedefence.co.uk/posts/dinvoke-syscalls/
https://www.felixcloutier.com/x86/syscall.html
https://www.mdsec.co.uk/2022/04/resolving-system-service-numbers-using-the-exception-directory/
https://github.com/j00ru/windows-syscalls/
https://cocomelonc.github.io/malware/2023/06/07/syscalls-1.html

26/26

https://www.crummie5.club/freshycalls/

https://github.com/x64dbg/ScyllaHide/blob/master/HookLibrary/HookedFunctions.cpp

https://eversinc33.com/posts/avoiding-direct-syscall-instructions/

https://redops.at/en/blog/direct-syscalls-a-journey-from-high-to-low

https://github.com/dodo-sec/Malware-Analysis/blob/main/Cobalt Strike/Indirect Syscalls.md

https://github.com/crummie5/FreshyCalls/blob/112bdf0db63a5f7104ba5243af6a672bc098a1
ad/syscall.cpp#L65

https://0xdarkvortex.dev/hiding-in-plainsight/

https://0xdarkvortex.dev/proxying-dll-loads-for-hiding-etwti-stack-tracing/

Pikabot deep analysis

https://www.crummie5.club/freshycalls/
https://github.com/x64dbg/ScyllaHide/blob/master/HookLibrary/HookedFunctions.cpp
https://eversinc33.com/posts/avoiding-direct-syscall-instructions/
https://redops.at/en/blog/direct-syscalls-a-journey-from-high-to-low
https://github.com/dodo-sec/Malware-Analysis/blob/main/Cobalt%20Strike/Indirect%20Syscalls.md
https://github.com/crummie5/FreshyCalls/blob/112bdf0db63a5f7104ba5243af6a672bc098a1ad/syscall.cpp#L65
https://0xdarkvortex.dev/hiding-in-plainsight/
https://0xdarkvortex.dev/proxying-dll-loads-for-hiding-etwti-stack-tracing/
https://d01a.github.io/pikabot/

