
1/12

Cornelis June 19, 2019

Red Team Tactics: Combining Direct System Calls and
sRDI to bypass AV/EDR

outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr

In this blog post we will explore the use of direct system calls, restore hooked API calls and
ultimately combine this with a shellcode injection technique called sRDI. We will combine
these techniques in proof of concept code which can be used to create a LSASS memory
dump using Cobalt Strike, while not touching disk and evading AV/EDR monitored user-
mode API calls.

As companies grow in their cybersecurity maturity level, attackers also evolve in their
attacking capabilities. As a red team we try to offer the best value to our customers, so we
also need to adapt to more advanced tactics and techniques attackers are using to bypass
modern defenses and detection mechanisms. Recent malware research shows that there is
an increase in malware that is using direct system calls to evade user-mode API hooks used
by security products. So time for us to sharpen our offensive tool development skills.

Source code of the PoC can be found here:

https://github.com/outflanknl/Dumpert

What are direct system calls?

In order to understand what system calls really are, we first have to dig a little bit into
Operating System architecture, specifically Windows.

If you are old (not like me… ) and have a MS-DOS background, you probably remember that
a simple application crash could result in a complete system crash. This was due to the fact
that the operating system was running in real mode, which means that the processor is
running in a mode in which no memory isolation and protection is applied. A bad program or
bug could result in a complete crash of the Operating System due to critical system memory
corruption, as there was no restriction in what memory regions could be accessed or not.

This all changed with newer processors and Operating Systems supporting the so-
called protected mode. This mode introduced many safeguards and could protect the system
from crashes by isolating running programs from each other using virtual memory and
privilege levels or rings. On a Windows system two of these rings are actually used.
Application are running in user-mode, which is the equivalent of ring 3 and critical system
components like the kernel and device drivers are running in kernel-mode which corresponds
to ring 0. 

https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://www.cyberbit.com/blog/endpoint-security/malware-mitigation-when-direct-system-calls-are-used/
https://github.com/outflanknl/Dumpert


2/12

Using these protection rings makes sure that applications are isolated and cannot directly
access critical memory sections and system resources running in kernel-mode. When an
application needs to execute a privileged system operation, the processor first needs to
switch into ring 0 to handover the execution flow into kernel-mode. This is where system
calls come into place.

Let’s demonstrate this privilege mode switching while monitoring a notepad.exe process and
saving a simple text file:

WriteFile call stack in Process Monitor .

The screenshot shows the program flow (call stack) from the notepad.exe process when we
save a file. We can see the Win32 API WriteFile call following the Native API NtWriteFile call
(more on APIs later).

https://outflank.nl/wp-content/uploads/2019/06/Picture2.png


3/12

For a program to save a file on disk, the Operating System needs access to the filesystem
and device drivers. These are privileged operations and not something the application itself
should be allowed to do. Accessing device drivers directly from an application could result in
very bad things. So, the last API call before entering kernel-mode is responsible for pulling
the dip switch into kernel land. 



The CPU instruction for entering kernel-mode is the syscall instruction (at least on x64
architecture, which we will discuss in this blog only). We can see this in the following
WinDBG screenshot, which shows the unassembled NtWriteFile instruction:

Disassembled NtWriteFile API call in WinDBG.

The NtWriteFile API from ntdll.dll is responsible for setting up the relevant function call
arguments on the stack, then moving the system call number from the NtWriteFile call in the
EAX register and executing the syscall instruction. After that, the CPU will jump into kernel-
mode (ring 0). The kernel uses the dispatch table (SSDT) to find the right API call belonging
to the system call number, copies the arguments from the user-mode stack into the kernel-
mode stack and executes the kernel version of the API call (in this case ZwWriteFile). When
the kernel routines are finished, the program flow will return back into user-mode almost the
same way, but will return the return values from the kernel API calls (for example a pointer to
received data, or a handle to a file).

This (user-mode) is also the place where many security products like AV, EDR and sandbox
software put their hooks, so they can detour the execution flow into their engines to monitor
and intercept API calls and block anything suspicious. As you have seen in the disassembled
view of the NtWriteFile instruction you may have noticed that it only uses a few assembly
instructions, from which the syscall number and the syscall instruction itself are the most
important. The only important thing before executing a direct system call is that the stack is
setup correctly with the expected arguments and using the right calling convention.

So, having this knowledge… why not execute the system calls directly and bypass the
Windows and Native API, so that we also bypass any user-mode hooks that might be in
place? Well this is exactly what we are going to do, but first a little bit more about the

https://outflank.nl/wp-content/uploads/2019/06/Picture3.png


4/12

Windows programming interfaces.

The Windows programming interfaces

In the following screenshot we see a high-level overview of the Windows OS Architecture:

For a user-mode application to interface with the underlying operating system, it uses an
application programming interface (API). If you are a Windows developer writing C/C++
application, you would normally use the Win32 API. This is Microsoft’s documented
programming interfaces which consists of several DLLs (so called Win32 subsystem DLLs).

Underneath the Win32 API sits the Native API (ntdll.dll), which is actually the real interface
between the user-mode applications and the underlying operating system. This is the most
important programming interface but “not officially” documented and should be avoided by
programmers in most circumstances.

The reason why Microsoft has put another layer on top of the Native API is that the real
magic occurs within this Native API layer as it is the lowest layer between user-mode and the
kernel. Microsoft probably decided to shield off the documented APIs using an extra layer, so

https://outflank.nl/wp-content/uploads/2019/06/Picture4.png
https://docs.microsoft.com/en-us/windows/desktop/api/


5/12

they could make architectural OS changes without affecting the Win32 programming
interface.

So now we know a bit more about system calls and the Windows programming APIs, let’s
see how we can actually skip the programming APIs and invoke the APIs directly using their
system call number or restore potentially hooked API calls.

Using system calls directly

We already showed how to disassemble native API calls to identify the
corresponding system call numbers. Using a debugger this could take a lot of time. So, the
same can be done using IDA (or Ghidra) by opening a copy of ntdll.dll and lookup the
needed function:

Disassembled NtWriteFile API call in IDA.

One slight problem… system call numbers change between OS versions and sometimes
even between service pack/built numbers.

Fortunately @j00ru from Google project Zero comes to the rescue with his online system call
tables.

j00ru did an amazing job keeping up with all system call numbers in use by different
Windows versions and between builds. So now we have a great resource to look up all the
system calls we want to use.

In our code, we want to invoke the system calls directly using assembly. Within Visual Studio
we can enable assembly code support using the masm build dependency, which allows us to
add .asm files and code within our project.

https://ghidra-sre.org/
https://outflank.nl/wp-content/uploads/2019/06/Picture5.png
https://twitter.com/j00ru
https://j00ru.vexillium.org/syscalls/nt/64/


6/12

Assembly system call functions in .asm file.

All we need to do is gather OS version information from the system we are using and create
references between the native API function definitions and OS version specific system call
functions in assembly language. For this we can use the Native API RtlGetVersion routine
and save this information into a version info structure.

Reference function pointers based on OS info.

https://outflank.nl/wp-content/uploads/2019/06/Picture6-3.png
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/wdm/nf-wdm-rtlgetversion
https://outflank.nl/wp-content/uploads/2019/06/Picture7.png


7/12

Exported OS specific assembly functions + native API function definitions.

Now we can use the system call functions in our code as if they are normal native API
functions:

Using ZwOpenProcess systemcall function as a Native API call.

Restoring hooked API calls with direct system calls

Writing advanced malware that only uses direct system calls and completely evades user-
mode API calls is practically impossible or at least extremely cumbersome. Sometimes you
just want to use an API call in your malicious code. But what if somewhere in the call stack
there is a user-mode hook by AV/EDR? Let’s have a look how we can remove the hook using
direct system calls.

Basic user-mode API hooks by AV/EDR are often created by modifying the first 5 bytes of the
API call with a jump (JMP) instruction to another memory address pointing to the security
software. The technique of unhooking this method has already been documented within two
great blog posts by @SpecialHoang, and by MDsec’s Adam Chester and Dominic Chell.

https://outflank.nl/wp-content/uploads/2019/06/Picture8.png
https://outflank.nl/wp-content/uploads/2019/06/Picture9.png
https://medium.com/@fsx30/bypass-edrs-memory-protection-introduction-to-hooking-2efb21acffd6
https://medium.com/@fsx30/bypass-edrs-memory-protection-introduction-to-hooking-2efb21acffd6
https://www.mdsec.co.uk/2019/03/silencing-cylance-a-case-study-in-modern-edrs/
https://twitter.com/_xpn_
https://twitter.com/domchell


8/12

If you study these methods carefully, you will notice the use of API calls such as
VirtualProtectEx and WriteProcessMemory to unhook Native API functions. But what if the
first API calls are hooked and monitored already somewhere in the call stack? Inception, get
it? Direct system calls to the rescue!

In the PoC code we created we basically use the same unhooking technique by restoring the
first 5 bytes with the original assembly instructions, including the system call number. The
only difference is that the API calls we use to unhook the APIs are direct systems call
functions (ZwProtectVirtualMemory and ZwWriteVirtualMemory).

Using direct system call function to unhook APIs.

Proof of concept

In our operations we sometimes need Mimikatz to get access to credentials, hashes and
Kerberos tickets on a target system. Endpoint detection software and threat hunting
instrumentation are pretty good in detection and prevention of Mimikatz nowadays. So, if you
are in an assessment and your scenario requires to stay under the radar as much as
possible, using Mimikatz on an endpoint is not best practice (even in-memory). Also,
dumping LSASS memory with tools such as procdump is often caught by modern AV/EDR
using API hooks.

So, we need an alternative to get access to LSASS memory and one option is to create a
memory dump of the LSASS process after unhooking relevant API functions. This technique
was also documented in @SpecialHoang blog. 

As a proof of concept, we created a LSASS memory dump tool called “Dumpert”. This tool
combines direct system calls and API unhooking and allows you to create a LSASS
minidump. This might help bypassing defenses of modern AV and EDR products.

https://outflank.nl/wp-content/uploads/2019/06/Picture10.png
https://medium.com/@fsx30/bypass-edrs-memory-protection-introduction-to-hooking-2efb21acffd6


9/12

The minidump file can be used in Mimikatz to extract credential information without running
Mimikatz on the target system.

https://outflank.nl/wp-content/uploads/2019/06/Picture11.png


10/12

Mimikatz minidump import.

Of course, dropping executable files on a target is probably something you want to avoid
during an engagement, so let’s take this a step further…

sRDI – Shellcode Reflective DLL Injection

If we do not want to touch disk, we need some sort of injection technique. We can create a
reflective loadable DLL from our code, but reflective DLL injection leaves memory artefacts
behind that can be detected. My colleague @StanHacked recently pointed me to an
interesting DLL injection technique called shellcode Reflective DLL Injection.

sRDI allows for the conversion of DLL files to position independent shellcode. This technique
is developed by Nick Landers (@monoxgas) from Silent Break Security and is basically a
new version of RDI. 

Some advantages of using sRDI instead of standard RDI:

You can convert any DLL to position independent shellcode and use standard
shellcode injection techniques.
Your DLL does not need to be reflection-aware as the reflective loader is implemented
in shellcode outside of your DLL.
Uses proper Permissions, no massive RWX blob.
Optional PE Header Cleaning.

More detailed information about sRDI can be found in this blog.

https://outflank.nl/wp-content/uploads/2019/06/Picture12.png
https://github.com/stephenfewer/ReflectiveDLLInjection
https://twitter.com/stanhacked
https://twitter.com/monoxgas
https://silentbreaksecurity.com/srdi-shellcode-reflective-dll-injection


11/12

Let our powers combine!

Okay with all the elements in place, let’s see if we can combine these elements and
techniques and create something more powerful that could be useful during Red Team
operations:

We created a DLL version of the “dumpert” tool using the same direct system calls and
unhooking techniques. This DLL can be run standalone using the following command
line: “rundll32.exe C:\Dumpert\Outflank-Dumpert.dll,Dump”, but in this case we are
going to convert it to a sRDI shellcode.
Compile the DLL version using Visual Studio and turn it into a position independent
shellcode. This can be done using the ConvertToShellcode.py script from the sRDI
project: “python3 ConvertToShellcode.py Outflank-Dumpert.dll”
To inject the shellcode into a remote target, we can use Cobalt Strike’s shinject
command. Cobalt Strike has a powerful scripting language called aggressor script
which allows you to automate this step.  To make this easier we provided an aggressor
script which enables a “dumpert” command in the beacon menu to do the dirty job.

https://github.com/monoxgas/sRDI/tree/master/Python
https://www.cobaltstrike.com/
https://github.com/outflanknl/Dumpert/tree/master/Dumpert-Aggressor
https://outflank.nl/wp-content/uploads/2019/06/Picture14.png


12/12

The dumpert script uses shinject to inject the sRDI shellcode version of the dumpert
DLL into the current process (to avoid CreateRemoteThread API). Then it waits a few
seconds for the lsass minidump to finish and finally download the minidump file from
the victim host.
Now you can use Mimikatz on another host to get access to the lsass memory dump
including credentials, hashes e.g. from our target host. For this you can use the
following command: “sekurlsa::minidump C:\Dumpert\dumpert.dmp”﻿

Conclusion

Malware that evades security product hooks is increasing and we need to be able to embed
such techniques in our projects.

In this blog we used references between the native API function definitions and OS version
specific system call functions in assembly. This allows us to use direct system calls function
as if they were normal Native API functions. We combined this technique together with an
API unhooking technique to create a minidump from the LSASS process and used sRDI in
combination with Cobalt Strike to inject the dumpert shellcode into memory of a target
system.

Detecting malicious use of system calls is difficult. Because user-mode programming
interfaces are bypassed, the only place to look for malicious activity is the kernel itself. But
with kernel PatchGuard protection it is infeasible for security products to create hooks or
modification in the running kernel.

I hope this blogpost is useful in understanding the advanced techniques attackers are using
nowadays and provides a useful demonstration on how to emulate these techniques during
Red Team operations.

Any feedback or additional ideas, let me know.









https://en.wikipedia.org/wiki/Kernel_Patch_Protection
https://twitter.com/Cneelis

