
1/7

vivami April 18, 2023

Process injection in 2023, evading leading EDRs
vanmieghem.io/process-injection-evading-edr-in-2023

Home
Blog
Projects

Tuesday. April 18, 2023 - 11 mins
Nowadays when I speak with my red team friends and touch upon the topic of process
injection, the response is usually “Yes… but no…”. The risks of detection outweigh the need
for having an implant “parasiting” in a host process. Typical process injection techniques
stand out too much and more often than not is the injection linked to malicious activity.
Occasionally, I like to pick-up this “AV evasion” hobby, and achieving process injection with
arguably the most signatured malicious shellcode against today’s best endpoint protection,
seemed like a fun exercise to me.

So in this blog post, we’ll walk through what combination of evasive techniques can be used
to achieve process injection with zero detections or alerts.

My last year’s blog post is still relevant, and the techniques outlined there are used in this
evasive loader as well. If you haven’t read that one (A blueprint for evading industry leading
endpoint protection in 2022), I recommend reading that first. On top of those techniques, this
post will cover the techniques in a similar fashion: no source code, but a blueprint of what
readily available code can be glued together to achieve our objective.

1. A custom version of GetProcAddress()

Many evasive techniques rely on the use of the WINAPI function GetProcAddress() to obtain
the virtual memory address of functions. For example, a typical way to obtain the memory
address of an Nt* function to execute direct system calls (as first demonstrated in Combining
Direct System Calls and sRDI to bypass AV/EDR) is:

GetProcAddress(GetModuleHandle(L"ntdll.dll"), L"NtWriteProcessMemory");

https://vanmieghem.io/process-injection-evading-edr-in-2023/
https://vanmieghem.io/
https://vanmieghem.io/blog
https://vanmieghem.io/projects
https://vanmieghem.io/blueprint-for-evading-edr-in-2022/
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/

2/7

Everything in the above line is a signature for detection. The combination of strings
"NtWriteProcessMemory" and "ntdll.dll" are suspicious, especially as arguments of
GetModuleHandle and GetProcAddress. Both are used to resolve the memory location of a
function, aiming to bypass the use of the exported (and potentially) API functions. Nowadays,
GetProcAddress is a closely monitored function.

To evade both of these detection techniques, we can use our own implementation of
GetProcAddress() that uses the process’ PEB structure to obtain the memory address of
(exported) functions in the executable. The PEB contains lots of information about the
process, loaded modules (DLLs), functions etc., that we can read out ourselves to obtain
their memory locations. Fetching the memory location of ntdll.dll, walking its PEB down to
AddressOfNames gives us a list of WINAPI-function memory addresses which we can call
directly. There are various implementations out there, most boil down to the same principle.

The strings we will obfuscate using previously described methods. You can also consider
look-ups using hashes of API calls.

2. System calls using hardware breakpoints

This relatively new evasion technique to bypass hooks I first spotted in @EthicalChaos’s
post In-Process Patchless AMSI Bypass. His post outlines how EDR hooks in ntdll.dll can
be bypassed using hardware breakpoints and Vectored Exception Handlers (VEH), which
avoid in-memory patching of ntdll.dll (indicator of malicious activity). The technique is
fairly straight forward:

1. Register a VEH to handle the exception triggered by the breakpoint. VEHs are handled
in the thread that raises the exception and the VEH has access to the corresponding
thread context (including all registers).

2. Set a breakpoint on the memory address that you want to intercept execution for, i.e.
WINAPI NtWriteProcessMemory. Setting the DR7 register causes the OS to call the
registered VEH.

GetThreadContext(myThread, &ctx); /* get thread context */

ctx.Dr0 = (UINT64)&bp_addr; /* address you want to break on */

ctx.Dr7 |= (1 << 0); /* set first bit in DR7 */

ctx.Dr7 &= ~(1 << 16); /* clear 16 an 17th bit */

ctx.Dr7 &= ~(1 << 17);

SetThreadContext(myThread, &ctx) /* set the thread context, putting the
breakpoint in place */

3. From the VEH it’s then possible to take over the control flow, and bypass the EDR
hook.

https://www.ired.team/offensive-security/defense-evasion/windows-api-hashing-in-malware
https://twitter.com/_EthicalChaos_
https://ethicalchaos.dev/2022/04/17/in-process-patchless-amsi-bypass/

3/7

@Dec0ne created HWSyscalls in which the above steps are implemented. In the VEH, it
uses HalosGate to resolve the syscall number (SSN) when it detects the WINAPI is hooked
(e.g. next instruction after the address in a JMP instruction). As a nice addition, HWSyscalls
will point RIP (instruction pointer) to a syscall; ret instruction in ntdll.dll, making the
return address (RAX) point back to ntdll.dll memory instead of directly from our loader’s
executable memory (indication of direct system calls).

HWSyscalls is an easy to integrate module. We’ll use that in our loader.

3. Threadless injection

The next new technique, which is really the star of this loader, is Threadless Process
Injection by @EthicalChaos. This technique only requires VirtualAlloc,
WriteProcessMemory (and VirtualProtect) and avoids the use of NtCreateThread (hence
“threadless”, I assume). The absence of the last call breaks the typical process injection
detection combination. It goes as follows:

1. Find a memory location (a “memory hole”, or “code cave”) in the remote process that is
large enough to hold our shellcode and a small trampoline to.

2. Write the shellcode plus stub to the code cave. The stub will function as a trampoline.
3. Add a JMP instruction right after a commonly used ntdll function (e.g. NtOpen).
4. Wait for a legitimate thread to call NtOpen, follow the JMP instruction and execute our

shellcode.
5. The trampoline redirect control flow back to the legitimate NtOpen instructions to

continue the process execution and avoid a crash.

More details are available on the ThreadlessInject repo.

4. Evading common malicious patterns

This is really just a repetition of the same technique previously explained. I still believe one of
the key detection techniques is a VirtualAlloc and WriteProcessMemory (or Nt
equivalents) call for ~300KB of memory (the side of common implant’s shellcode). Chunking
those memory operations evade that detection, which DripLoader introduced 2 years ago.
Let’s also use this technique in our loader.

https://twitter.com/dec0ne
https://github.com/Dec0ne/HWSyscalls
https://blog.sektor7.net/#!res/2021/halosgate.md
https://github.com/CCob/ThreadlessInject
https://twitter.com/_EthicalChaos_
https://github.com/CCob/ThreadlessInject
https://github.com/xuanxuan0/DripLoader

4/7

High level representation of the loader execution flow.

5. Sleep evasion

For a majority of the time the implant will be sleeping, waiting for the next C2 check-in. Once
we have a successful execution of the implant’s shellcode, hiding its presence in memory
while sleeping is key for EDR evasion. There have been a few new implementations for
sleep evasion, but not many write-ups, so let’s expand a bit on this topic.

In my last post, I used a half-baked memory obfuscation solution (it didn’t encrypt the heap).
It also uses a hook on the Sleep() function which leaves indicators in memory of ntdll.dll.

Most modern sleep evasion implementations are based on the FOLIAGE technique by
Austin Hudson. One of them, Ekko by 5pider is probably the most widely used
implementation nowadays.

Ekko (like FOLIAGE, but uses queued timers instead of queued APCs) uses Thread Pools to
delegate the sleep obfuscation work to a worker thread. The worker thread handles the sleep
obfuscation of the main thread (where beacon resides), and alerts the main thread when the
implant execution should continue. It does so using the following steps:

1. Create a new Event and a TimerQueue to queue the obfuscation operations on.

hEvent = CreateEventW(0, 0, 0, 0);

hTimerQueue = CreateTimerQueue();

https://twitter.com/ilove2pwn_
https://github.com/Cracked5pider/Ekko
https://twitter.com/C5pider

5/7

2. Create a snapshot of the current (main) thread using RtlCaptureContext and save it in
&CtxThread (the WaitForSingleObject call just waits for RtlCaptureContext to finish
saving the snapshot).

if (CreateTimerQueueTimer(&hNewTimer, hTimerQueue, RtlCaptureContext,
&CtxThread, 0, 0, WT_EXECUTEINTIMERTHREAD)) {

 WaitForSingleObject(hEvent, 0x32);

3. Then Ekko defines 6 different context structures that each hold an obfuscation
operation to perform:

memcpy(&RopProtRW, &CtxThread, sizeof(CONTEXT)); // 1. Set memory
protection to RW

memcpy(&RopMemEnc, &CtxThread, sizeof(CONTEXT)); // 2. Encrypt memory
image, multi-byte RC4 without needing memory allocations

memcpy(&RopDelay, &CtxThread, sizeof(CONTEXT)); // 3. Delay (sleep) for
specified amount of time, using WaitForSingleObject on something that does not
become alertable

memcpy(&RopMemDec, &CtxThread, sizeof(CONTEXT)); // 4. Decrypt the memory
image

memcpy(&RopProtRX, &CtxThread, sizeof(CONTEXT)); // 5. Set memory
protection to RX

memcpy(&RopSetEvt, &CtxThread, sizeof(CONTEXT)); // 6. Call SetEvent to
alert our main thread that the worker thread is finished.

4. Queue all the above calls into the thread pool for the worker thread to execute and alert
the main thread when finished:

CreateTimerQueueTimer(&hNewTimer, hTimerQueue, NtContinue, &RopProtRW, 100, 0,
WT_EXECUTEINTIMERTHREAD);

CreateTimerQueueTimer(&hNewTimer, hTimerQueue, NtContinue, &RopMemEnc, 200, 0,
WT_EXECUTEINTIMERTHREAD);

CreateTimerQueueTimer(&hNewTimer, hTimerQueue, NtContinue, &RopDelay, 300, 0,
WT_EXECUTEINTIMERTHREAD);

CreateTimerQueueTimer(&hNewTimer, hTimerQueue, NtContinue, &RopMemDec, 400, 0,
WT_EXECUTEINTIMERTHREAD);

CreateTimerQueueTimer(&hNewTimer, hTimerQueue, NtContinue, &RopProtRX, 500, 0,
WT_EXECUTEINTIMERTHREAD);

CreateTimerQueueTimer(&hNewTimer, hTimerQueue, NtContinue, &RopSetEvt, 600, 0,
WT_EXECUTEINTIMERTHREAD);

This technique does not require hooks or other sketchy RWX give-aways for memory
scanners.

Ekko is implemented in Cobalt Strike’s 4.7+ sleepmask kit, I recommend enabling that.
Additionally, you can consider adding patchless evasion of ETW and AMSI.

For this injection PoC we will use Kyle Avery’s Cobalt Strike reflective loader AceLdr that
implements the above for us. In addition, it also spoofs the return address while we sleep by
pointing to a random other thread context using NtSetContextThread and “namazso’s x64

https://github.com/ScriptIdiot/sleepmask_PatchlessHook
https://twitter.com/kyleavery_
https://github.com/kyleavery/AceLdr

6/7

return address spoofer” (his DEF CON 30 talk is highly recommended).

Process injection on Microsoft Defender for Endpoint with 0 detections (not screenshotted,
you have to trust me).
So, that’s it; process injection in 2023, bypassing detection of (at least one) leading EDR
solution. All in a pure C .exe, no fancy languages, runtimes, obscure file extensions or
anything. Just “double-click and go”.

OK, but what about other EDRs? In my last blog post I showed the loader bypass
CrowdStrike Falcon, for which I got into trouble. I don’t have access to other (good) EDR
solutions. If you do and are happy to publish the results, please reach out.

https://www.youtube.com/watch?v=edIMUcxCueA

7/7

Related Posts

