
1/11

COM Hijacking for Persistence
cyberstruggle.org/2021/12/14/com-hijacking-for-persistence

COM Object?

The Microsoft Component Object Model (COM) is an interface standard that allows the

software components to interact and communicate with each other’s code without knowledge

of their internal implementation. Microsoft says

COM is a technology that allows objects to interact across process and computer boundaries as
easily as within a single process

It uses client/server architecture. COM clients are the programs that use COM objects, and

the COM servers are the COM objects themselves. The COM server can be hosted either in a

DLL (called an in-process server) or in an EXE (called an out-of-process server).

COM objects ,can be created and used by in any languages, was designed to support reusable

software components that could be utilized by all programs. Some COM clients examples:

VBA -> CreateObject

PowerShell -> New-Object -COMObject

Python -> pywin32

Ruby -> win32ole

COM objects are identified by their globally unique identifiers (GUIDs) known as class

identifiers (CLSIDs) and interface identifiers (IIDs) and they are registered in

https://cyberstruggle.org/2021/12/14/com-hijacking-for-persistence/

2/11

* HKEY_CURRENT_USER\Software\Classes\<CLSID> (Per-User)

---merged---> HKEY_CLASSES_ROOT\CLSID

* HKEY_LOCAL_MACHINE\Software\Classes\<CLSID> (System-Wide)

registry hives. The merged registry hive HKCR contains the combined information of HKCU

and HKLM.

HKCU vs HKLM

HKLM contains information related to the computer while HKCU contains information

specific to the user.

If there is a change in HKLM, it affects every user of that computer but if HKCU has a

change, it only affects that user.

HKLM requires administrator privileges while it is enough to have regular user

privileges for HKCU

HKLM is loaded on start-up, HKCU is loaded when the user logged in.

Some important registry sub-keys:

InprocServer/InprocServer32 – represents a path to a dynamic link library (DLL)

implementation, in-process COM objects

LocalServer/LocalServer32 – represents a path to an executable (exe) implementation,

in another process

TreatAs – Points another CLSID

ProgID – human-readable text equivalent

Some Use Cases

Malware authors can use malicious VBA macros to run arbitrary commands. Here is an

example of the usage of WScript.Shell COM objects in VBA:

Sub WriteRegistry()

Dim WshShell As Object

3/11

Set Wshshell = CreateObject("WScript.Shell")

WshShell.Run("powershell.exe <command>")

End Sub

As another example, an Excel sheet can be embedded in a Word document.

Also, COM can be used in third-party applications. We can show 7-Zip right-click menu items

as an example. Here, the Windows explorer shell is the COM client.

Abusing COM Objects – COM Hijacking

4/11

Before a process can access a COM object, registration is needed first. Via regsvr32.exe ,

COM object can self-register.

regsvr32.exe /n <dllname>.dll

When registering an object, HKCU key has precedence over HKLM key. This means that keys

are read from HKCU before HKLM, and to add keys HKCU no special privileges are required.

Thus, COM hijacking can be performed with regular user privileges.

Any object is registered in HKCU hive will be loaded before an object is registered in the

HKLM hive.

Exception:

High integrity processes (elevated) load only from HKLM to prevent elevation of privileges.

When the legitimate programs used COM objects, their associated DLLs get loaded into the

process address space of the client program. This is where the idea comes into play. If the

attacker replaces the registry entry with the malicious DLL, when the hijacked object is used

through normal system operation, the adversary’s code will be executed.

In short, a system-wide COM object is replaced by a malicious user-specific object.

COM hijacking technique can be used for persistence, lateral movement, privilege escalation

and defense evasion.

To hijack a COM object:

First, we need to find hijackable keys and extract them to use.

Second, we need to create our payload.

Finally, hijack the key.

Let’s see how we can enumerate the keys with Procmon.

How to Find COM Hijacking Opportunity Using Sysinternal Tools

For enumerating possible keys to hijack, we can use Process Monitor from Sysinternals. We

can discover COM servers that have missing CLSIDs under the HKCU.

For that let us filter the ProcMon.

5/11

Do standart user things and ProcMon will capture events and they are orphaned CLSIDs.

6/11

This lists consists of possibly hijackable trusted processes. Let’s save it and then we will

extract keys to hijack. David Tulis developed a script for that called acCOMplice.

Finding missing libraries on the system

https://twitter.com/kafkaesqu3
https://github.com/nccgroup/acCOMplice

7/11

As a result, Process Monitor can be used to enumerate CLSIDs. When you find a possible

CLSID, you can hijack it with one of the techniques.

How It Can Be Used For Persistence

COM hijacking is a stealthy persistence technique. We can find this technique in Mitre

ATT&CK framework.

It has multiple techniques like hijacking existent components by CLSID, ProgID, or

scheduled tasks etc. Let’s cover some of them.

Hijacking by CLSID

We know that COM components are identified by CLSIDs and HKCU takes precedent. So

attackers can enter their own malicious dll here. With this technique, malicious dll will run

instead of the real COM component. This impacts only the current user and does not require

special privileges. However, this will have a suspicious look because the real component will

not be launched and do their functions. To avoid this situation, the combination of malicious

payload and instance of the original COM component will work.

Let’s try to get a reverse shell with this technique.

HKEY_CURRENT_USER\Software\Classes\CLSID > New > Key

https://attack.mitre.org/techniques/T1546/015/

8/11

Then add the same CLSID as a commonly used component and point it to malicious dll.

Now, if the victim tries to load the component that the attacker chose, it launches a reverse

shell back to the attacker.

Hijacking by ProgID

An application can use the ProgID when they do not know the CLSID of a component.

Similarly, to hijack by ProgID, a false ProgID entry can be added under the HKCU with the

malicious CLSID.

Hijacking by TreatAs

According to Microsoft, TreatAs specifies the CLSID of a class that can emulate the current

class. With TreatAs, we can make a reference to a different component.

https://docs.microsoft.com/en-us/windows/win32/com/treatas

9/11

After creating the malicious CLSID, we need a new CLSID (as the same with the target

component) and add the TreatAs key with the CLSID of the malicious class.

If the victim tries to load the target component, again, the malicious payload will run.

Hijacking Orphaned Keys

Sometimes, there may be nonexistent InprocServer32/InprocServer and

LocalServer32/LocalServer key-values. For example, this case can occur when 3rd party

software components are uninstalled. In this situation, an attacker can place a malicious

payload at abandoned paths, but this is not feasible all the time because most COM servers

require Administrator privileges for writing.

Search Order Hijacking

This technique based on registry precedence rules. Like Bohops says in the blog post, “By

adding the proper registry keys in the HKCU Registry hive, keys located in HKLM are

overridden (and ‘added’ to HKCR) when referencing the target COM object.”

When you load a different dll, it may crash the applications. To avoid that

leoloobeek wrote COMProxy. It allows us to run the malicious functionality and at the same

same time the original DLL’s functionality. So, it protects applications from breaking.

Scheduled Tasks

Since Scheduled tasks take action from HKCR\CLSID, we can find a possibility to hijack

because of the precedence rules.

Like enigma0x3 mentioned in his blog post before, some of the scheduled tasks have

“Custom Handler” action. When we look at their XML schema file, we will see an

COMHandler under the Actions Context CLSID.

https://twitter.com/bohops
https://bohops.com/2018/08/18/abusing-the-com-registry-structure-part-2-loading-techniques-for-evasion-and-persistence/
https://github.com/leoloobeek
https://github.com/leoloobeek/COMProxy
https://twitter.com/enigma0x3
https://enigma0x3.net/2016/05/25/userland-persistence-with-scheduled-tasks-and-com-handler-hijacking/

10/11

32 Posts

cyberstruggle

https://cyberstruggle.org/author/user/
https://cyberstruggle.org/author/user/

11/11

Previous PostRatelimit Bypass Tool: Whitepass

https://cyberstruggle.org/2020/09/17/ratelimit-bypass-tool-whitepass/

