
1/3

ShimBad the Sailor
hexacorn.com/blog/2020/03/18/shimbad-the-sailor

March 18, 2020 in Anti-Forensics, Autostart (Persistence), Code Injection, Living off the

land, LOLBins

Application Shims have been extensively covered by security researchers – a very

comprehensive overview of the available techniques was presented at BH2015 (PDF warning)

by Sean Pierce (@secure_sean who also happens to host a page dedicated to the subject at

https://sdb.tools/).

I wondered if we could look at shims from a slightly different perspective, and this post is

about it.

What if…

…we didn’t change anything, didn’t add any new entries, no custom databases etc.

What if…

We analyzed the existing shims and identified some that could do some interesting things for

us? We would then need to fulfill the conditions required for shim to be triggered, and voila…

we could now do things via a covert channel – that is, shim engine could be doing the dirty

deed and a casual observer would be none the wiser.

Demo time.

On Windows 7, AOL Instant Messenger can be loaded via aim.exe with following versioninfo

properties:

CompanyName = America Online, Inc.

ProductName = AOL Instant Messenger

When system detects such program it applies a SHIM:

The shim loads a library rtvideo.dll.

I took a basic example from masm32

package and changed the properties of the

file accordingly:

https://www.hexacorn.com/blog/2020/03/18/shimbad-the-sailor/
https://www.hexacorn.com/blog/category/anti-forensics/
https://www.hexacorn.com/blog/category/autostart-persistence/
https://www.hexacorn.com/blog/category/code-injection/
https://www.hexacorn.com/blog/category/living-off-the-land/
https://www.hexacorn.com/blog/category/living-off-the-land/lolbins/
https://www.blackhat.com/docs/eu-15/materials/eu-15-Pierce-Defending-Against-Malicious-Application-Compatibility-Shims-wp.pdf
https://twitter.com/secure_sean
https://sdb.tools/
https://www.hexacorn.com/blog/wp-content/uploads/2020/03/shim_3-1.png


2/3

and then compiled, renamed to aim.exe and the phantom DLL was added to the program by

the shim engine.

This is just a basic example of what is possible/available.

Some of the shims create files, rename them, modify stack, fake reading files, etc. etc. . This

offers a gamut of possibilities that are worth considering from various perspectives:

anti-sandbox, anti-analysis tricks

capture the flag tricks

after building a repo of shim gadgets one could potentially deliver a lot of functionality

by using dummy, non-malicious files ran in a proper sequence

copy files

patch bytes (<win10)

load DLLs

run executables

https://www.hexacorn.com/blog/wp-content/uploads/2020/03/shim_2.png
https://www.hexacorn.com/blog/wp-content/uploads/2020/03/shim_1.png


3/3

the example with aim.exe is truly fascinating as it represents a possibly novelty type of

code injection: phantom sideloading

we sideload that DLL with a predetermined name w/o calling any obvious

function inside the .exe

in the example I am using a custom aim.exe that is just quick & dirty piece of test

code; one could potentially find that legitimate, original aim.exe and play with

that

the latter could be potentially signed

and even better, could be not even directly referring to rtvideo.dll

as such, it could be a signed .exe phantom sideloading a DLL with a

predetermined name — and in some cases becoming a potential phantom lolbin

as well

persistence is there too to consider

Now, this might have sounded a bit rosy, but reality is that analysing shims is a bit of a pain &

options they offer are still pretty limited. Yes, the number of really useful shims is pretty low,

let alone these that could be meeting all the cool requirements I listed above… As such,

defenders shouldn’t worry about this trick too much… Until this topic is explored a bit more

 

 


