
1/12

The hidden side of Seclogon part 3: Racing for LSASS
dumps

splintercod3.blogspot.com/p/the-hidden-side-of-seclogon-part-3.html

by splinter_code - 28 June 2022

After my previous post "The hidden side of Seclogon part 2: Abusing leaked handles

to dump LSASS memory" in which i described how to leverage the seclogon service in

https://splintercod3.blogspot.com/p/the-hidden-side-of-seclogon-part-3.html
https://blogger.googleusercontent.com/img/a/AVvXsEg1EDy9Uy7-DOXclChWndDksL3NFfapBe0EuSm9qRZeWVU12s_hJB0CXqRXc7uHTovvQsf9EB2oI4Y53q1t1gOepSF9B2nBiyMySHAxhV_OhK_qIHh0ip-Rg3PgfdoSz6GSrNNtOcqDByhKoWhS1sFXnMWN9iHy45mG1lSRQeVZqusrj4s1W4TxXxE8=s1000
https://splintercod3.blogspot.com/p/the-hidden-side-of-seclogon-part-2.html

2/12

order to perform stealthier lsass dumps, i decided to continue this blog post series with

another post about our beloved seclogon service, so here we are!

This blog post will cover, as promised, one of the mentioned point in the part 2:

"Unfortunately, even if the seclogon process opens a new process handle to lsass to create a

child process, we cannot duplicate that handle from seclogon because it's closed shortly

after. I didn't want to deal with race conditions, so I started to explore some alternative

way to get my hands on a lsass process handle... (Well, technically it's possible to steal that

lsass handle in a reliable way. But this is something for another blog post :D)"

Just to recap, the seclogon service makes the bad assumption to determine the PID of the

caller process by trusting the user input provided by the caller itself, i'm sure you know how

this can go wrong.

A privileged attacker can exploit this behavior and can carry out stealthier operations like

handle duplication and ppid spoofing.

In the previous post we observed how the seclogon implements all the operations required to

expose the CreateProcessWithLogonW and CreateProcessWithTokenW functions, and more

specifically implemented in the server function SlrCreateProcessWithLogon.

The first operation performed is an OpenProcess call to get a handle to the RPC caller by

using a value under our control as the PID. The requested access is

PROCESS_QUERY_INFORMATION | PROCESS_CREATE_PROCESS |

PROCESS_DUP_HANDLE. This handle is opened also with the required access for the

process cloning trick, more on that later.

By spoofing our current process NtCurrentTeb()->ClientId->UniqueProcess value to the

LSASS pid and then invoking the seclogon, we can trick the service into opening a handle to

LSASS.

The problem with this handle is that it's closed shortly after its usage. Is there any way to

delay this operation in order to give us enough time to duplicate this handle in our running

process?

The best thing would be to find some operations involving files and set an OpLock on it to

stop the execution flow and allow us to duplicate that handle before the CloseHandle call.

By inspecting all the code between the OpenProcess and CloseHandle calls, i couldn't find

any file-related functions 😕

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithlogonw
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithlogonw
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

3/12

However, i noticed that one of the latest operations before the CloseHandle call was

CreateProcessAsUser:

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessasuserw

4/12

CreateProcessAsUser allows to run a new process in the security context of the user

represented by the specified token. Once some preparation steps are performed, it calls

CreateProcessInternalW from kernel32.dll that will do all the dirty jobs of preparing the

required data before going to the kernel (NtCreateUserProcess). One of the operation

performed in the kernel is to open the provided file path and create the section object. Below

a nice representation from the "Windows Internals part 1" book:

5/12

The main idea is to set an OpLock (thanks @tiraniddo) to a file under our control and then

use that path as the input parameter for the create process function. In this way we expect

that when the seclogon issues a CreateProcessAsUser call it will hit the oplock and will halt

the process before it closes the lsass handle.

E.g. We can set an OpLock to "C:\Windows\System32\license.rtf" and then provide it as

input to a CreateProcessWithLogonW call.

Seems a cool plan, let's try it out :D

https://github.com/googleprojectzero/symboliclink-testing-tools/blob/main/CommonUtils/FileOpLock.cpp
https://twitter.com/tiraniddo

6/12

As you can observe in the above screenshot, in the right capture of procmon the

Malseclogon.exe process set an oplock to the "license.rtf" file and then shortly after we see

the seclogon service (running under svchost.exe) trying to access to the file <-- here is when

the lock condition happens. On the left side of procexp we can see that one process handle to

lsass is still open in the seclogon process, ready to be duplicated :)

Great! Now we know we can lock the seclogon service for all the time required to duplicate

the needed lsass handle. If you are wondering how the call stack looks like when the seclogon

is locked, here you have it:

7/12

As a side note, even an unprivileged user can lock the seclogon service and the service won't

be available for all users on the system ¯_(ツ)_/¯

Back to the point, we have everything needed to steal the leaked handle to lsass in this fun

race:

1. Set an OpLock on "C:\Windows\System32\license.rtf";

2. Patch the pid value in the current process TEB and specify the lsass PID;

3. Use CreateProcessWithLogonW and specify "C:\Windows\System32\license.rtf" as the

name of the module to be executed;

4. Wait the OpLock event to be signaled through GetOverlappedResults, this will occur

once the seclogon tries to access our locked file;

5. Find the seclogon service pid. For bonus swag points i used a trick through

NtQueryInformationFile described in my previous post, in this way i avoided to interact

with the service control manager;

6. Enumerate all the process handles in the seclogon process through

NtQuerySystemInformation;

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithlogonw
https://docs.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-getoverlappedresult
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntqueryinformationfile
https://splintercod3.blogspot.com/p/a-very-simple-and-alternative-pid-finder.html
https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntquerysysteminformation

8/12

7. Once a process handle to lsass is found, create an lsass clone through

NtCreateProcessEx and use its handle in a call to MiniDumpWriteDump.

Thanks to a trick by @_RastaMouse i avoided to hook NtOpenProcess like i did in the

other dumping techniques. It turns out that by using 0 as the pid parameter of

MiniDumpWriteDump it will do the job for preventing an additional open process to

lsass;

8. Race won!

All good, all working, right? Yes, until i did the mistake to try this technique on a Windows 11

to check for newer compatibility:

On my Windows 11 vm i forgot to disable Windows Defender and of course it pestered me...

I usually dislike playing the cat and mouse game with these kinds of detection, but this way of

detecting malicious stuff hurted my eyes too much, so i had to prove its uselessness.

Basically someone thought it was a good idea to detect lsass dumps by blocking the generated

output file. Highly likely grepping some particular string + checking the MDMP header...

What we can do is just XORing the dump content in memory before writing back to disk and

then restore the content offline on another machine when we need to parse it and extract the

credentials.

https://docs.microsoft.com/en-us/windows/win32/api/minidumpapiset/nf-minidumpapiset-minidumpwritedump
https://rastamouse.me/dumping-lsass-with-duplicated-handles/
https://twitter.com/_RastaMouse

9/12

The first thing that came to my mind is to use a pipe and provide it in the

MiniDumpWriteDump function as the file handle parameter. However it seemed a bit dirty

and MiniDumpWriteDump allows a cleaner way to do it through a minidump callback.

Luckily, i found a working and ready to copy-paste code here that does the job.

Once the lsass memory content is dumped into our memory process we simply apply a 1-byte

Xor encryption to the content before writing back to the disk.

Putting it all together, finally i got the dumping technique through leaked handle and race

condition fully working:

I have released this new dumping technique in the Malseclogon repo -->

https://github.com/antonioCoco/MalSeclogon

That's all folks :)

This is the last post about lsass dumping related to the seclogon service.

In the next post of "The hidden side of Seclogon" series i will cover the part 1 that will mainly

explain all of the cool code behind RunasCs :D

If you are curious to read about the enhancement i did to the PPID spoofing feature in

Malseclogon, feel free to read the bonus section below 👇 of course a bit unrelated to LSASS

dumping.

.

.

.

https://www.ired.team/offensive-security/credential-access-and-credential-dumping/dumping-lsass-passwords-without-mimikatz-minidumpwritedump-av-signature-bypass#minidumpwritedump-to-memory-using-minidump-callbacks
https://github.com/antonioCoco/MalSeclogon
https://github.com/antonioCoco/RunasCs

10/12

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

[BONUS SECTION] - PPID spoofing running as SYSTEM

In the previous post we have seen how to leverage the seclogon service in order to perform a

PPID spoofing primitive. This was achieved by using CreateProcessWithLogonW with the

magic flag LOGON_NETCREDENTIALS_ONLY. This will allow to run a child process

running in the security context of the rpc caller.

One desired outcome when performing PPID spoofing is to spawn a process with the same

privileges of the parent and that wasn't the case while abusing CreateProcessWithLogonW.

However, the CreateProcessWithTokenW function allows to specify a token as input

parameter. Could we leverage this other function in the seclogon? Let's reverse how this is

implemented:

11/12

Basically, the seclogon firstly impersonates the rpc caller. Then it checks if it holds the

Impersonation privilege. If that's the case it duplicates the token handle from the rpc caller to

the seclogon service. Considering that the rpc caller is under our control with the spoofing

trick, we could use a token inside the parent we want to spoof, of course if it exists.

Then, the duplicated token is used in a CreateProcessAsUserW call to spawn the child

process:

https://blogger.googleusercontent.com/img/a/AVvXsEhyESEeWn6Qmr3AEztONzK8cfAuHYesHUG50ZiZX5xv1WqIBl8ya2medBko7dFirLoGdSTiADacX4dhU2APVweeqXaJl6TMMzx-YjaSlzlLF5itmH4ocaNdvx7QORiRuqBSClDq5mLNYEnz_baB1s3tO8IGj0O5GuNlMQt35mpPxYpxPShuU9Z4eAxO
https://blogger.googleusercontent.com/img/a/AVvXsEip-1A2S6PERcRQu8pvcLIGXWtkG_03Zzbgo92s1996nUVyEQIH8o6hsoOyg0JxMUsIniDmdlN4RtZjDtaYMJET-8L-yDalWW42Qz9vwt5TkMhsvuyIUMKK-UgPoZq-Wt7BaX184T7rbdV_b8WgVDYOZ-CnOqAMYLMowyeiIbUeYlzJaHqx4hBMi5zx

12/12

The idea here is to try to specify a token handle residing in the process we want to spoof and

see if we inherits either the primary token of the process and the spoofed parent itself:

And done, the child process is running with the token of the parent :D

https://blogger.googleusercontent.com/img/a/AVvXsEiyjPb3Z0R9j0Uwo3L3LPv-Jrjjkjx6OoOp9phJYl6183-tEFYoXMw4ChH3KlfFg1fng5LIgUoLxxd18FpznemFZkEI0n1agNOaRg6qBWk3SU-d9xeKeAqQxAeS4nfCnoRkNCaGSLIjmiEwBiKEpjOXL5RNbkLOyhAHDyG0RHdN-5ISRoIlq8_a9o_V

