Extracting Secrets from LSA by Use of PowerShell

blog.syss.com/posts/powershell-lsa-parsing

Sebastian Holzle January 12, 2022

Sebastian Holzle on Jan 12, 2022
Jan 12, 2022 17 min

During a research project, SySS IT security consultant Sebastian Holzle worked on the
problem of parsing Local Security Authority (LSA) process memory dumps using
PowerShell and here are his results.

Introduction

Within a Windows system, a pentester (or an attacker) focuses on two components which
are usually attacked as soon as the administrative privileges are achieved. The first
component is the Windows registry which holds the sensitive information about local
accounts. On normal clients, this information can be used if the password of the local user
accounts (e.g. the local administrator) is reused on other systems to compromise parts or
the whole network infrastructure.

Next to the registry, the process of the Local Security Authority Subsystem (or short
LSASS) is also a high value target. This process holds information about all logged-on
identities in different forms. So especially within Active Directory environments, this opens
the possibility to extract hashes or even passwords from high value user accounts (e.g.
domain admins).

In case those accounts have or had a logon session which was not properly terminated by a
logoff, the process on the victim machine still holds credential data of those accounts.
Those logon sessions could originate from interactive logons, scheduled tasks, services,
run as application, etc.

By attacking those two key parts within a Windows system, an attacker can extract sensitive
data, which could lead to the compromise of the whole Active Directory environment.

Extraction of sensitive information

In this article, we will focus on the second part, i.e. the extraction of secrets from the
LSASS. exe process. For the extraction of secrets from the Windows registry various tools
are available. Further, due to the use of the Local Admin Password Solution (short
LAPS), this attack vector often is only interesting if the right prerequisites are met.

1/14

https://blog.syss.com/posts/powershell-lsa-parsing/

To extract information from this process, special tools are required. As already implied by
the name, it is a process, which means the information is hold within the random access
memory (RAM) of the target machine. This makes the extraction quite difficult. In case the
secrets have to be extracted live, a tool is required which can communicate with the
process within the RAM. There is one famous tool for this scenario: Mimikatz. The
disadvantage of this tool is that it is well-known, so nearly every endpoint protection solution
is normally able to detect and block it. There are many techniques to hide Mimikatz and the
execution, but this is usually a cat-and-mouse game.

The other possibility to extract sensitive information from the LSASS process are memory
dumps. The idea behind this technique is to create an image of the process which contains
all information (including sensitive information), and to analyze this memory dump on
another system. This possibility is very common but also has its drawbacks. The creation of
the dump file itself can also fail (e.g. due to endpoint protection software, permissions etc.).
But even if this works, the result file needs to be transferred to the system where it can be
analyzed. To analyze such memory images also special tools are required. Usually there
are two quite popular ways to do that.

Next to the challenges the transfer of the created dump file can cause, also a logical flaw
seems to be present. A file created by use of Windows tools containing Windows data
structures needs to be analyzed either by Mimikatz on a completely separate machine or it
needs to be transferred to a Linux machine to use pypykatz. This leads to the question: Is
there no possibility to do that on Windows with already available standard tools? It is a
Windows file with Windows data structures in it; dump files of other processes are used for
troubleshooting inside and outside of Microsoft. So there seems to be a way to work with
those files and therefore also a way to extract the interesting information (e.g. hashes,
credentials) from the dump files without the use of Mimikatz.

Goals of the R&D project

Within the Windows world, the Swiss army knife of doing something is PowerShell. By the
use of PowerShell, many different things can be accomplished (for attackers and
defenders).

To get a better idea of what we want to do, we summarize what we know and which path we
want to explore:

o Extraction of sensitive information from the LSASS . exe process. This can be
accomplished live or by using a memory dump. The live extraction is much more
complicated, requires special permissions, and can usually much easier be detected.
So if we want to extract information from the LSASS process on Windows (ideally on
a host with a turned-on endpoint protection solution) without being detected or
blocked, we should work with memory dumps.

2/14

https://github.com/gentilkiwi/mimikatz
https://github.com/gentilkiwi/mimikatz
https://github.com/gentilkiwi/mimikatz
https://github.com/skelsec/pypykatz
https://github.com/gentilkiwi/mimikatz

+ We know that the memory dump contains all relevant information (crypto material,
sensitive data, etc.), because we can work with the dump on other systems — even
Linux systems. So the memory dump seems to hold all data which is required.

+ We can assume that we require many different functions within Windows itself.
Usually, the most powerful environment on Windows for this is PowerShell. By use of
PowerShell, we get access to various built-in functionalities and also have the
possibility to add and use Microsoft .NET functions if needed.

With the goals laid out, let’s start with the dump of the LSASS process. Since we want to
work with memory dumps, the first question is: What are memory dumps and is there an
easy way to work with those files — ideally within PowerShell?

Memory dumps: a short overview

So first things first: What are memory dumps?

Good question! First of all, memory dumps are images of processes at a certain time. This
means before we start to dig into what dumps are, we should understand what we dump: a
process or, more precisely, the LSASS. exe process.

The LSASS process is responsible for coordinating and provisioning different kinds of
credentials. The list of data within the process goes from the expected logon credentials,
over Kerberos tickets to DPAPI (data protection API) keys. All this information is divided in
different parts and organized in separate libraries (DLLs) or credential packages.

The following image provides a rough overview and gives an idea of the process layout and
connections between the different parts of the logon procedures:

3/14

ser Mode GIMNA Kemel Mode

Application winlogon msgina.dll | [Application
Secur3z. dll Yinlogon.exe | Ksecdd.sys
LPC | Securdz.dll LPC
LsaLogonUser()
Local Security Authority
L J Y Y
- Windows
RPC 'I_‘fansrﬁ'[r'” Service KDL Sockets
. Megaotiate | kdeswve.dll
\
windows
Sockets * M £
Y I I Y Hetlogon RPC
Digest NTLM Kerberos TLS/SSL |t g Metingon.dll
wdigest,dll Msywl_0.dll Kerberos.dll Schannel.dll TTT
| P
+ AR
Security Accounts M anager (SAM) e
RPC Samsry.dll
R
LA J
RpC Directory Services -
Mtdsa.dll LDAP
- Jet Database
Registry
@ Mon-domain controllers Esent.dll

Logon procedure within Windows (source: Microsofft)

With that image in mind, we can assume a memory dump of the Local Security Authority
(LSA) process contains multiple modules (e.g. Kerberos.d11, 1sasrv.dl1l, etc.) which
need to be identified, separated, and analyzed. Further, it is a running process within the
memory of Windows.

Simply put, this means that each module (e.g. 1sasrv.d11) holds one part of data which is
static for the runtime of the process (e.g. the initialization vector), and next to that the
modules hold links to the changing data (like keys, credentials, etc.) which are stored in a
separate part of the process. Later, we will get a more detailed insight in the definition of the
border between those two parts.

Now, we have a very rough idea of the data structure we want to explore. But what kind of
magic are Mimikatz or pypykatz using to dig up the treasures from those data dumps? To
get a better idea where we need to start and how we need to use our chosen tool set
(PowerShell), we have to look at already established tool sets and how they are working.
So the next step is to follow pypykatz through the extraction of the credentials.

The process of the extraction

a/14

https://docs.microsoft.com/en-us/windows-server/security/windows-authentication/credentials-processes-in-windows-authentication
https://github.com/gentilkiwi/mimikatz
https://github.com/skelsec/pypykatz
https://github.com/skelsec/pypykatz

The first observation we make during the understanding of pypykatz is the focus on the
segment of the 1sasrv.d11l. Next to the crypto material, which is required for the decryption
of sensitive data, it also includes the references to the encrypted logon credentials.

But again, let’s start with the basic steps: The credential data is usually encrypted, therefore
we need the crypto material. As explained, the material is located within the memory of the
module 1sasrv.d1ll. Within the 1sasrv.d11 memory, the crypto material can be identified
by use of special patterns and offsets. Those offsets and patterns are differing between the
Windows versions and are the initial navigation points for any further operation within the
dump file.

For the used Windows 10 version, the following pattern and offsets are used:
Pattern: \x83\x64\x24\x30\x00\x48\x8d\x45\xe0\x44\x8b\x4d\xd8\x48\x8d\x15

This pattern needs to be identified within the 1sasrv.d11 and is the initial navigation point
for the following offsets.

Offset to initialization vector (IV) pointer = 67 This offset combined with the pattern
results in a pointer (a memory address) where the initialization vector (V) is located.

Offset to DES key pointer = -89 This offset combined with the pattern results in a pointer
(a memory address) where the DES key is located.

Offset to AES key pointer = 16 This offset combined with the pattern results in a pointer (a
memory address) where the AES key is located.

As result, we should receive the AES key, the DES key, and an IV. This information is
required to decrypt the credential data.

That’s the theory. But how can we identify the 1sasrv.d11 within a memory dump?
Because we want to follow pypykatz by using Windows tools, we use the Microsoft
Console Debugger (cdb.exe). It is a lightweight debugger provided by Microsoft. So to
identify the 1sasrv.d11 module within a memory dump, the Microsoft Console Debugger
provides the command 1m m. By using this option, a module name can be searched within a
dump file. The result looks like this:

5/14

https://github.com/skelsec/pypykatz
https://github.com/skelsec/pypykatz

g Dump File [C:)
» Mini Dump File with Full Memory: Only application data is available

i srv*®
is:
3 UP Free x64
t ver DataCenter SingleUserT5S
1.amd6dfre.rs5_release.186914-1434
ne Name:
Debug session time: Thu Mar 18 86:58:41.98088 2821 (UTC - 7:0@)
System Uptime: @ 8:83

g unloaded module

to add ension : ntsdext

to add ension I uext
Unable to add extension : exts
The call to LoadLibrary Y failed, Win32 error @n2

ystem cannot find the file specified.”

Please ch your debugger configuration and/or network s.
=== ERROR bol file could not be found. Defaulted (port symbols for ntdll.dll -
*% ERROR bol file 1d not be found. Defaulted to ort symbols for lsass.exe -
ntdll!NtReply »14:
eeaR7s" 8 C3 ret
@:060> 1lm m sr
start module name
2008718 4840000 0BEBT7TTE t4ledB0d lsasrwv {deferred)
g:ogds> _

Location of the 1sasrv.d11 module within the memory dump

Within the result output we can see the address range of the 1sasrv.d11 memory. This
comes quite handy because, as already stated, within that memory range we need to
identify the pattern for the crypto material. By use of the commands s and -b we can search
a byte pattern within a given address range.

module name

L4BBB66 8
64 24 36 60 48

Search for byte pattern within the dumped 1sasrv.dl11l memory range

This provides us with the pattern address which needs to be combined with the specified
offsets to receive the crypto material.

The combination of the offset is a very simple mathematical addition. We just need to
convert the hexadecimal string representation to an integer number, add the offset, and
convert the result back to a hexadecimal representation.

6/14

The following images show the different keys. As you may notice the DES and AES key are

stored in different address ranges of the dump. This indicates that the data AES and DES
keys are saved within the heap of the process (not important for what we want to achieve,

just an interesting observation).

Initialization vector (IV):

e:880> dd
geea7 b
gaea7 b’
peee7 b
peae7 b’
geea7 b
gaea7 b’
geea7 b

007 b’

Acquired IV

DES key:

B :6e0 >

g0e061e8” 49528050
po6e81led 49536660
Poeeeled 49536670
ee0661e8" 495300806
Pe06e1e8" 495300890
80e061e8” 49528620
eoe0e1e8” 4952086000
Poee01led 495306C0
Aquired DES key

AES key:

8828886C
slelslslalalsls

dd ©8PEP1e8349520056

00000000
40641417
b94b7417

 49646ecH
806845

ge658864
88616644
slelslalalslsls

BE66eE
85bb5185%

» Bade8cC8a

24846068
8@bc5444

88844749
830648ecs

hhhlﬁ@f4
28808608

d71fsafd
80000000

Bc26a389
BeoBelesd
geo0eeles
Beo5ee74
gad43ee20
Beoleeod
BeaaBead
Beboooeg

foeadldd
agbB9cb2
ea0a80008
2045c24b

44ﬁ“ud4”

0703403

7/14

@:000> dd 9AAAB1283405282838
pee881e8" 6 BBBBEE0.

9469e53a
88866
88866

482Fblea

LA

I

L i T e T Y OO T e Wi Y e O Y
LM
Ll
%]

Pod P [d Pl Pl Ped e
(]
%]

LA
1
(4%

LA
A F]
)

(A DI I
L I v I

o e

LA
1
(%]

r
=
=

LA
1

3 -ﬂ.'

1366fef3 8c a2fbase66
285ab2f7 8 7 424 dadedi142
BcBdafcd 96fccfeSs et b41 348a6ab3

3 3Ib37deeb

#eee81e8
peeee1e8"
peee81e8"

o
L
=

LA
1
(4%

o
LA
W ¥]
e

+=
=+ M
]

Acquired AES key

With the cryptographic keys for the decryption, the next step is the extraction of the actual
credential data. The main difference is that the credential data is organized in lists which
are linked to each other. Therefore, we need to identify the first entry of these lists.

This procedure is the same as for the crypto material. We need to find a byte pattern within
the memory of the module 1sasrv.d11l. When the pattern is identified and the given offsets
are applied, the memory address for the first entry of the credential list is identified.

The pattern used for the tested Windows 10 version is:
\X33\XTFFAX41\x89\x37\x4c\x8b\XxT3\x45\x85\xcO\x74

Combined with the following offset: 23

B:006> dd 66887ffbt

geee7 b’
geee7 b’
geee7 b’
peee7 b’
eeea7 b’
eeea7 b’
eeea7 b’
eeee7 b

LM
]

LM

LM

=,

(W |

LM

LM

LM

=,

LM LA

LM

el le b Lol e
gaobbeeg
gaobbeeg
gaobbeeg
gaobbeeg

Identified entry addresses for credential lists

Be6e81ed
ge6e81lesd

leel el e
slerelelels el
slerelelels el

Boe6ee
slerelelels el

I
gooobees
gooobees
gooobees
gooobees

Be668a!
ge66el1ed

I
geabaeeg
geabaeeg
geabaeeg
geabaeeg

The magic at this point is quite easy to understand: find a byte pattern and follow the
pointers. But this is the easy part; now the credentials need to be identified, extracted, and

decrypted.

Credential data

8/14

As already mentioned, the credential data is organized in linked and nested lists. This
circumstance makes the automated parsing of those lists quite difficult. Both pypykatz and
Mimikatz use process templates for this.

The following figure visualizes the organization of those lists:

Organization of nested lists

When we check the source code of e.g. pypykatz, it becomes clear that the template for the
parsing of those lists is selected based on the Windows operating system version. The
template itself is an instruction of various data types which, if correctly applied, provides the
memory structure of the credential data.

So when we apply the template to the process structure, we are able to parse and extract
the part that is of our interest: the credentials.

But how can we apply a template on a memory dump? First, let's understand what this
template describes, i.e. data types. So for example within the template, there is the data
type FLINK (which indicates the address of the next entry). This data type is 8 bytes long.
This information comes from two sources: the templates of pypykatz and Mimikatz.

To extract this information of the FLINK, we start at the extracted EntryAddresses and read
8 bytes. The next data type is BLINK (also 8 bytes). To extract this information, we need to
read the next 8 bytes after the FLINK, and so on until all data types are applied.

For the application of templates, you start at a given position, read the given number of
bytes, remember the position, and read the next given bytes until no more bytes are left.

If we have correctly applied the templates, we will be rewarded with all the encrypted
credentials.

9/14

https://github.com/skelsec/pypykatz
https://github.com/gentilkiwi/mimikatz
https://github.com/skelsec/pypykatz
https://github.com/skelsec/pypykatz
https://github.com/gentilkiwi/mimikatz

8:686> dd 666061E415C68338

Be686led”

e
Be(

1568330

Be86801ed” 15C
Be0681ed " :
Be0681ed " !
Beoe8l1ed !
Be8681ed !
Be26801ed” 15C
Be0681ed " !
Beoeoled” 15c
Beae81ed” 15c
Be0681ed !
Be0681ed " !
Be0681ed " !
Beae0led” 15c
Bea681ed” 15c
Be0681ed " !
Be0681ed " !
EEEEEiEd““--

000881e4

EEEEEiEﬂ“'
Be0681ed " :
Be0601ed " 15
Bee681ed !
Beae81ed” 15c
Be8681ed " :

EEEEElEd“

15cedd4ed

61t4cbcs
c86fe756
Sedf3d8c
896e33ch
ai%azad’j2
28068327
8fe5fec
cteeldb2
befdSad?

7b9gate9 77a

al2el368
aBdedbo?2
f7cd46cdS
al7959db
27ftfdfef
bafcfeca
o9d1e297d
6bBelc74
el3abia3
88884bs
A40/335+d
Sed76adb
c2f3ibidf
385bac9c
2eb19455
b7bb7196
8bl6f3ea
Bhaababg

Encrypted credentials in memory dump

L78

Fd3trdec
bdébZeda
73aftas5d3
Qeda9777E
deab7855
5718a3el
8e5af35a
lad788bc
alcodeas
B/cho
offS9eSbe
ac7do311
B62271ael
575dBad4d
Oe2do586
17fa7a48
26e000fa
ObcS5tba6
852bes7e

4562d816

c8828ci1b
627174eb
f81f76aa
397657a4
18aaci32
1Edae?db
Cc/578eB5
slaleelelelals

a3t8ddba
gafeslel
aabBde3l8f
0Bp9568a08
bd34f961
edBatd3b
F4157ece
def67ab1
cack7/cl
4551&511
Bbd32
duEELJEG
48924123
t4d7dfoe

[o O i T W
i L3 L

0 LA
Lid P

—+ = L

o
Fd B B ™
W= o m Q0

'|_| r-|_|

l+154ul:

bCce9550e
681c9ed?
49961010

2b5a%ebt
B8e53ilec
23bbdee3
edbcabac
41e58cBb
Q7785867
34bf7abl
878ddodo
Flall2ie
baaBl131
51d869ad

- ba8bafe2

Cebce2b8
1alad49ef

F3 4112%ae4

décaftaab
a287ce2f

F ecababli
F 58269%e3

fhteb764
fBac1dAo
cfda72fa
30ddb7«
1egac5dd

i —i

The extracted credentials are encrypted (we remember, we extracted some crypto

material). So logon credentials (those we are looking for) are encrypted by use of the 3DES

algorithm. Hence, for the decryption of the extracted encrypted credentials, we need the

extracted 3DES key and the corresponding IV.

If both are applied successfully, the result is the username and the NT hash of that specific

user.

10/14

This is basically the process pypykatz follows to extract the logon credentials, and it marks
the goal we want to achieve. Now the question is: How we can implement those steps in
PowerShell?

PowerShell

The first step within PowerShell would be the navigation within the memory dump file, and
ensuring that we are able to identify byte patterns (which are required for the crypto material
and MSV entries). Furthermore, we need to find a way to navigate by use of memory
addresses (to follow the pointers).

When we are able to navigate within the dump file, we can focus on the parsing of memory
areas to extract the relevant credential data.

With those steps on our bucket list, we hit a little roadblock: We could not identify an easy
way to parse the whole memory dump with the original memory addresses. Because for the
extraction of the crypto material and the identification the entry of the credential list exact
memory addresses are used.

We explored some possibilities to parse files as binary files by use of the awesome function
Search-Binary of Atamido, but without the correct memory addresses.

The workaround for this issue is the Microsoft Console Debugger (cdb.exe). This is a
lightweight debugger which can be used to debug and navigate within those files. But it also
provides a command line interface which is very handy for the extraction of single parts of
the memory dump.

So the idea is to call cdb.exe from the PowerShell script with a given address, byte pattern,
or other parameters, and work with the output of this program call. This worked surprisingly
well. So we built a little function named Run-Debugger which calls the debugger with a
command and provides the output of the corresponding program run as result.

11/14

https://github.com/skelsec/pypykatz
https://github.com/Atamido/PowerShell/blob/master/Misc/Search-Binary.ps1

PS C:iZ\Usershadministrator.CONTOSO> Run-Debugger -PathToCDP $PathToDebugger -PathToDMP $PathToDMP —Command "1m m 1sasrwv"

Microsoft (] windows Debugger ion 10.0.17763.168 AMDG4
Copyright (c) Microsoft Corporation. A1l rights reserved.

Loading Dump File [C:%Dumps)lsass.DMP]
User Mini Dump File with Full Memory: Only application data is available

Symbol search path is: VE
Executable search pa H
Windows 10 Version 17 UF Free x64
server, sui erminal Server DataCenter SingleUserTS
.amde4fre.rss_release. 180914-1434

8 06:50:41.000 2021 (UTC - 7:00)

unable to add exte I eXts
The call to Leoad y(ext) failed, Win32 error 0Onz
"The system cannot find the file specified.™
Please check your debugger configuration and/or network access.
=== FRAOR: Symbol Tile could not be Tound. Defaulted to export symbols for ntdl11.d11 -
#zx ERROR: Symbol Tile could not be Tound. Defaulted to export symbols for l1sass.exe -
= itReceivePort+0x14:
4 3 ret
cdb: Reading initial command "Tm m 1sasrv ;Q°
end module nam
g’ F4040000 00007Ff8 f41e4000 Isasrv {deferred)

Debugger command from PowerShell

With that problem resolved, we are able to navigate through the memory dump file and
extract data. The next step is the parsing of the credential data. Here, PowerShell has the
proper solution. By using the Binaryreader .NET function, the credential lists can be
parsed quite easily.

The idea behind the implemented function is that the BinaryReader function starts at a
given position (we remember the extracted list entries). Then, we extract a certain number
of bytes (based on the numbers of the data type and template), add the number of
extracted bytes to the initial position of the Binaryreader and start again. The one decisive
step was the translation of the templates for the parsing to the correct data types.

By using the function Run-Debugger, we are able to extract small portions of the data from
the memory address. Plus, with the BinaryReader function, we are able to read a stream of
raw binary data. But we still need a connection between those two, because the debugger
runs with memory addresses and the BinaryReader works with offsets within a binary file.

There, the awesome function Search-Binary comes into play. It can find byte patterns within
a binary file. We use this in the following way: When we hit a jump point within a credential
list (when we need to switch to different parts of the memory), we extract a pattern of this
memory address by use of the debugger. This is because the debugger can work with the
addresses. The issue comes with the BinaryReader function which is used for the parsing
of the credentials. It does not work with addresses, it uses positions (offsets) within the
binary file.

12/14

https://github.com/Atamido/PowerShell/blob/master/Misc/Search-Binary.ps1

To identify those positions, we hand over the pattern from the debugger to the Search-
Binary function which will provide as a result the exact position within the file and therefore
the position where we need to place the BinaryReader.

After the translation of the templates and some testing (and hours of bug fixing), the result
is our PowerShell software tool Invoke-LSAParse. It includes the executable cdb.exe as
Base64-encoded string which will be written to the temp directory of the user which is
executing the PowerShell script. This executable will be deleted at the end of the execution.
Besides this dependency, Invoke-LSAParse is a pure PowerShell implementation which
currently is undetected by the usual endpoint protection solutions or the Antimalware Scan
Interface (AMSI) of PowerShell. The result of a successful Invoke-LSAParse call is the
username and the NT hash of all logged-on identities, as the following demo exemplarily
shows.

PS C:\> Invoke-LSAParse -PathToDMP C:\dumps'lsass.DMP -Verbose

Demo of Invoke-LSAParse for successfully extracting user credentials from an LSASS
memory dump

The current limitations are the implemented templates for parsing data structures. Currently,
only Windows 10 and Windows Server until 2016 are supported. Older Windows versions
have no templates for the parsing. Another limitation of the current versions concerns the
supported logon credentials (no DPAPI, no Kerberos, etc.).

From a defender point of view, the tool Invoke-LSAParse will not work if PowerShell is
running in constrained language mode or application allowlisting, e.g. using AppLocker,
prevents the execution of executables from the temp directory. Next to those measures
against the tool itself, if the LSASS process is protected (e.g. by Credential Guard or
specific endpoint protection solutions), usually no valid data can be extracted.

Our developed software tool Invoke-LSAParse is available on our SySS GitHub Page.

13/14

https://github.com/Atamido/PowerShell/blob/master/Misc/Search-Binary.ps1
https://github.com/SySS-Research/invoke-lsaparse
https://github.com/SySS-Research/invoke-lsaparse
https://github.com/SySS-Research/invoke-lsaparse
https://github.com/SySS-Research/invoke-lsaparse
https://github.com/SySS-Research/invoke-lsaparse
https://github.com/SySS-Research/

14/14

https://blog.syss.com/categories/paper/
https://blog.syss.com/categories/tool/

