
1/5

Bypassing SACL Auditing on LSASS
tiraniddo.dev/2017/10/bypassing-sacl-auditing-on-lsass.html

Windows NT has supported the ability to audit resource access from day one. Any audit
event ends up in the Security event log. To enable auditing an administrator needs to
configure which types of resource access they want to audit in the Local or Group security
policy, including whether to audit success and failure. Each resource to audit then needs to
have a System Access Control List (SACL) applied which determines what types of access
will be audited. The ACL can also specify a principal which limits the audit to specific groups.

My interest was piqued in this subject when I saw a tweet pointing out a change in Windows
10 which introduced a SACL for the LSASS process. The tweet contains a screenshot from a
page describing changes in Windows 10 RTM. The implication is this addition of a SACL was
to detect the use of tools such as Mimikatz which need to open the LSASS process. But
does it work for that specific goal?

Let’s take apart this SACL for LSASS, what it means from an auditing perspective and then
go into why this isn’t a great mechanism to discover Mimikatz or similar programs trying to
access the memory of LSASS.

Let’s start by setting up a test system so we can verify the SACL is present, then enable
auditing to check that we get auditing events when opening LSASS. I updated one of my
Windows 10 1703 VMs, then installed the NtObjectManager PowerShell module.





A few things to note here, you must request the ACCESS_SYSTEM_SECURITY access
right when opening the process otherwise you can’t access the SACL. You must also

https://www.tiraniddo.dev/2017/10/bypassing-sacl-auditing-on-lsass.html
https://twitter.com/Antonlovesdnb/status/916431117712060417
https://docs.microsoft.com/en-gb/windows/whats-new/whats-new-windows-10-version-1507-and-1511
https://www.powershellgallery.com/packages/NtObjectManager
https://blogger.googleusercontent.com/img/a/AVvXsEhoCH__NAQpIyNW7jSRGX9Iqsg5lJf7xKrK9Rly8FJ1YAaBpNOZIR6yfQdspUJ2PjNsjF-24KQ2DXEZCDroaLxR6qAFZDhFLtFjNoF-VpHjLta3JuurLJDU6OySsQGJOWO21wrd-nzoMkxxGkyMrlOLn7z1njoTzL4zOn3aeX7NuFmxXvw4jqy7v8oH=s979


2/5

explicitly request the SACL when access the process’ security descriptor. We can see the
SACL as an SDDL string, which matches with the SDDL string from the tweet/Microsoft web
page. The SDDL representation isn’t a great way of understanding a SACL ACE, so I also
expand it out in the middle. The expanded form tells us the ACE is an Audit ACE as
expected, that the principal user is the Everyone group, the audit is enabled for both success
and failure events and that the mask is set to 0x10.

Okay, let’s configure auditing for this event. I enabled Object Auditing in the system’s local
security policy (for example run gpedit.msc) as shown:

You don’t need to reboot to change the auditing configuration, so just reopen the LSASS
process as we did earlier in PowerShell, we should then see an audit event generated in the
security event log as shown:

https://blogger.googleusercontent.com/img/a/AVvXsEifSBKOazLGiRKtSFiylqvznfr1z8v5W_vaF-_XPlwD376zh1HnZitgKjvA98Pm4kUxl1ix3yWCZNl82muguVaWlflJTWfJ6LErtEk_X7k0pnGbX40LylkIfjNPSbrxpeZt0Ph-4LtGbfi7L2Yp7BkREQeeETmYmQDMaZPTC1ekrR3uqzpbGZOzd0gj=s754


3/5

We can see that the event contains the target process (LSASS) and the source process
(PowerShell) is logged. So how can we bypass this? Well let’s look back at what the SACL
ACE means. The process the kernel goes through to determine whether to generate an audit
event based on a SACL isn’t that much different from how the DACL is used in an access
check. The kernel tries to find an ACE with a principal which is in the current token’s groups
and the mask represents one or more access rights which the opened handle has been
granted. So looking back at the SACL ACE we can conclude that the audit event will be
generated if the current token has the Everyone group and the handle has been granted
access 0x10. What’s 0x10 when applied to a process? We can find out using the Get-
NtAccessMask cmdlet.

PS C:\> Get-NtAccessMask -AccessMask 0x10 -ToSpecificAccess Process
VmRead

This shows that the access represents PROCESS_VM_READ, which makes sense. If you’re
trying to block a process scraping the contents of LSASS the handle needs that access right
to call ReadProcessMemory.

The first thought for bypassing this is can you remove the Everyone group from your token
and then open the process, at which point the audit rule shouldn’t match? Turns out not
easily, for a start the only easy way of removing a group from a token is to convert it into a
Deny Only group using CreateRestrictedToken. However, the kernel treats Deny Only groups
as enabled for the purposes of auditing access checks. You can craft a new token without
the group if you have SeCreateTokenPrivilege but it turns out that based on testing that the
Everyone group is special and it doesn’t matter what groups you have in your token it will still
match for auditing.

https://blogger.googleusercontent.com/img/a/AVvXsEjBGIi9Gnh6GAi0p-1aB3lRm3vVA-fAWE95Fpnwp0pMQNEgt5S8ihWu89KnTRWw2cYwmzKB7O_SA3Z_XKzeeCMmvx5Yey2ymUdI5xqYLB5WYWOdDBLfvd5gbvLUFGKkVXq0cztR6kg6P24R_UnECG-jwaAjPniPFpe3SIkdq3-MvgLn12_ApemVHLyY=s924
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553(v=vs.85).aspx


4/5

So what about the access mask instead? If you don’t request PROCESS_VM_READ then
the audit event isn’t triggered. Of course we actually want that access right to do the memory
scraping, so how could we get around this? One way is you could open the process for
ACCESS_SYSTEM_SECURITY then modify the SACL to remove the audit entry. Of course
changing a SACL generates an audit event, though a different event ID to the object access
so if you’re not capturing those events you might miss it. But it turns out there’s at least one
easier way, abusing handle duplication.

As I explained in a P0 blog post the DuplicateHandle system call has an interesting
behaviour when using the pseudo current process handle, which has the value -1.
Specifically if you try and duplicate the pseudo handle from another process you get back a
full access handle to the source process. Therefore, to bypass this we can open LSASS with
PROCESS_DUP_HANDLE access, duplicate the pseudo handle and get
PROCESS_VM_READ access handle. You might assume that this would still end up in the
audit log but it won’t. The handle duplication doesn’t result in an access check so the
auditing functions never run. Try it yourself to prove that it does indeed work.

Of course this is just the easy way of bypassing the auditing. You could easily inject arbitrary
code and threads into the process and also not hit the audit entry. This makes the audit
SACL pretty useless as malicious code can easily circumvent it. As ever, if you’ve got
administrator level code running on your machine you’re going to have a bad time.



So what’s the takeaway from this? One thing is you probably shouldn’t rely on the configured
SACL to detect malicious code trying to exploit the memory in LSASS. The SACL is very
weak, and it’s trivial to circumvent. Using something like Sysmon should do a better job
(though I’ve not personally tried it) or enabling Credential Guard should stop the malicious
code opening LSASS in the first place.

UPDATE: I screwed up by description of Credential Guard. CG is using Virtual Secure Mode
to isolate the passwords and hashes in LSASS from people scraping the information but it
doesn't actually prevent you opening the LSASS process. You can also enable LSASS as a
PPL which will block access but I wouldn't trust PPL security.

https://googleprojectzero.blogspot.co.uk/2016/03/exploiting-leaked-thread-handle.html
https://blogger.googleusercontent.com/img/a/AVvXsEiPNaAqqpcfRnytxNY9ruox6PLuZIFXGfSEk7t-dsQauZF_y2UYXNkcx_4ExFsu-DygmcCPS8phvnDboW2pxO2Y7-a47_0RUjg4suLV5JTBQC4H2pJAkC_7G5TZ5vS0FTA6OZ-Qgzc7x6vduKQbD-R84TAqCI8-Gsuz1r7d5V1g4NhZQx7kuG0GtwiW=s787


5/5







