
1/12

Datafarm December 30, 2022

Code Execution against Windows HVCI
datafarm-cybersecurity.medium.com/code-execution-against-windows-hvci-f617570e9df0

The Windows VBS and HVCI prevents loading unsigned code into a kernel. Therefore,
attackers can only modify data to manipulate the execution flow with existing code. The
previous public work against HVCI is Kernel Forge and Connor McGarr’s post. They can call
an arbitrary kernel function with arbitrary arguments by relying on Return Oriented
Programming (ROP) technique. The technique does not work when kCET is enabled.

This post provides an alternative approach for calling an arbitrary kernel function.
Additionally, the kernel creating process callback is shown to be possible even when HVCI is
enabled. The code can be found at https://github.com/worawit/malk. But my approach does
not work when Intel Virtualization Technology Redirect Proection (VT-rp) feature is used. I
recommend reading Chao Gao slide for the detail of VT-rp.

Note: I only tested against Windows 11 22H2 on Intel 10th gen.

Arbitrary kernel memory read/write with Dell BIOS driver

Instead of exploiting kernel vulnerabilities, I use the Dell BIOS Driver (DBUtilDrv2.sys)
version 2.7 to gain arbitrary memory read/write. I found the nice project that abusing known
vulnerabilities in the driver is dellicious. So, I copied how the driver is used for read/write
kernel memory.

https://datafarm-cybersecurity.medium.com/code-execution-against-windows-hvci-f617570e9df0
https://github.com/Cr4sh/KernelForge
https://connormcgarr.github.io/hvci/
https://github.com/worawit/malk
https://static.sched.com/hosted_files/osseu2020/ce/LSSEU20_kernel%20integrity%20enforcement%20with%20HLAT%20in%20a%20virtual%20machine_v3.pdf
https://github.com/jbaines-r7/dellicious/


2/12

Disabling Driver Signature Enforcement (DSE)

It is known that an unsigned driver cannot be loaded when HVCI is enabled. I wanted to
prove it myself by attempting to disable DSE and loading an unsigned driver. The
g_CiOptions value is a common value for modification to disable DSE. But its memory is
protected by VBS.

Another known variable for disabling DSE is a pointer to CI!CiValidateImageHeader in
nt!SeCiCallbacks shown in below image. The function returns 0 for valid signature. While any
non-negative is ok because callers check result from NT_SUCCESS macro.

To find a callback address on a target kernel, I start from nt!SeGetCachedSigningLevel,
which is exported function as shown in below image. The function dereferences a variable in
nt!SeCiCallbacks. So, we can find the offset of required pointer to function.

https://j00ru.vexillium.org/2010/06/insight-into-the-driver-signature-enforcement/


3/12

After modifying the pointer to function to CI!CiValidateImageHeader to nt!rand (possible
return values is 0–32767), I tried loading a unsigned driver. The BSOD is occurred with stop
code: SECURE KERNEL ERROR.

Get Physical Memory Access



4/12

Instead of using a vulnerable driver for accessing memory, I want to gain access all physical
memory from a user mode application. I create entries in the Page Directory Page Table
(PDPT) to map the virtual address to the physical address as shown in the below figure for
4GB physical memory.

To find the PDPT address for writing, I start from the PML4 address, which can be found
from DirectoryBase in a nt!EPROCESS object. The DirectoryBase value is a physical
address. However, the MmMapIoSpace function, which is used by the vulnerable driver for
accessing physical memory, cannot be used for page table regions. Thus, we cannot use the
vulnerable for reading/writing with a physical address.

Luckily, we can access the page table from already mapped virtual address. We can find the
translation algorithm from nt!MmGetVirtualForPhysical function. The code for converting
Physical address to Virtual address is shown in below image.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-mmmapiospace


5/12

After getting virtual address of page table, here is the code for modifying page directory
entries, each mapping to 1 GB memory block.

Now, we can access whole guest physical memory without switching to kernel mode. With
this access, we can manually do page walking to access kernel memory or other process
memory from mapped memory. Thus, we no longer require a vulnerable driver.

Note: The mapped memory is not visible in any process viewer because OS does not know
about mapping. So, the mapping might be replaced by OS if the process allocates more
memory.

Call arbitrary kernel function

My target for calling a kernel function is a system call because user mode can control all
arguments. I chose a system call that will never be used in my program. Then, I modify the
SSDT entry before calling the system call for jumping to another kernel function. The below
image is the code for finding the SSDT entry for NtCreateTransaction.



6/12

However, the memory page for SSDT is read-only and protected by the Secure Kernel. Even
if we were able to modify it, the modification would be detected by PatchGuard. So, my
solution is to duplicate the PDPT (Level 3), PDP (Level 2), and PT (Level 1) before
remapping them to a writable memory page. As a result, only the SSDT entry of one process
is modified. Moreover, PatchGuard cannot detect modification because it is not run in the
modified process context. Last, the fake page tables might be paged out. I use the
VirtualLock function to prevent them from being paged out.

The below image is snippet code for calling the KeSetEvent function from a user-mode
application. The code sets the jumping target of the SSDT entry before calling the syscall.
The getCallAddr function is used for getting the syscall function virtual address in ntdll.dll.

Kernel process creation callback

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtuallock
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-kesetevent


7/12

When HVCI is enabled, kernel callback is very challenging. We must reuse code from signed
drivers only. However, the good thing is that we can load signed drivers for code reuse
purposes. To show a feasibility of a kernel callback, I try to control a process creation
callback (using PsSetCreateProcessNotifyRoutine*).

After searching for code in signed drivers, I found the following function in the Process
Monitor driver version 3.91 with the code below (later in this post, all mentions of the Process
Monitor driver are version 3.91).

The function takes only 2 arguments for sending data to a user-mode application with the
FltSendMessage function. So, the idea for using this function is to send all process creation
callback arguments to the user-mode application, which is able to access all guest physical
memory. Then, calling a kernel function to wait until user-mode finishes processing the
callback arguments.

The problem here is how we can pass function arguments to FltSendMessage. The user-
mode application requires register values for the first 4 arguments and a stack pointer for the
5th and more.

Note: The additional advantages of using the Process Monitor driver are

No Control Flow Guard (CFG): we can call to any address in Process Monitor driver
code
The read-only sections are not protected by VTL1: we can modify IATs and exception
handlers without modifying page table entries

Structure Exception Handling (SEH)

When an exception occurs, all registers are saved to a CONTEXT object. If we set our entry
point of process creation callback to the address that caused an exception, all function
arguments will be saved into the CONTEXT object. Then, we have an address for forwarding
function arguments to a user-mode application.

Some understanding of Windows x64 exception handling is needed to abuse SEH. I will
have a short explanation along with the implementation. I recommend reading “Exceptional
behavior: the Windows 8.1 X64 SEH Implementation” and Microsoft page.

First, I searched for process creation callback entry point. I found the below instruction in the
Process Monitor driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-fltsendmessage
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-context
https://blog.talosintelligence.com/exceptional-behavior-windows-81-x64-seh/
https://learn.microsoft.com/en-us/cpp/build/exception-handling-x64?view=msvc-170


8/12

The value for the second argument of the callback is rdx register. In a process creation
callback, the second argument is the process id, which is usually a small integer. Normally,
the low virtual address is not used. So, the access violation exception has occurred.

The exception handler starts by looking up an UNWIND_INFO address in the
RUNTIME_FUNCTION array (in the “.pdata” section). The UNWIND_INFO is used for
determining how an exception will be handled or ignored. Basically, we can modify
UNWIND_INFO, shown in the below image, to call functions for forwarding to a user-mode
application.

Thus, I searched for an exception handler in the RUNTIME_FUNCTION array. I found the
record for the code address range from 0x180003060 to 0x1800034de (our target address is
0x180032c7). The exception information is located at 0x18000d888, as shown in the below
images.

We want to modify UNWIND_INFO to make the target code, that causes an access violation,
surrounded by a __try/__exception block. This kind of exception needs the exception filter
function and target address to be executed when a filter returns
EXCEPTION_EXECUTE_HANDLER (1). This information is stored in the C_SCOPE_TABLE
and C_SCOPE_TABLE_ENTRY struct and used by the __C_specific_handler function.

However, the UNWIND_INFO struct’s Flags value is set to 0. It means there is no exception
handler for this function. We have to modify values in the UNWIND_INFO to make it be SEH
similar to the below image, which means __C_specific_handler will be called.

https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-runtime_function
https://learn.microsoft.com/en-us/cpp/cpp/try-except-statement?view=msvc-170
https://learn.microsoft.com/en-us/windows/win32/devnotes/--c-specific-handler2
https://learn.microsoft.com/en-us/cpp/build/exception-handling-x64?view=msvc-170#struct-unwind_info


9/12

The first byte of UNWIND_INFO_HDR should be 9 (version 1 and
UNW_FLAG_EHANDLER). We can set the last 3 bytes of UNWIND_INFO_HDR to 0
because we don’t need UNWIND_CODE. Followed by UNWIND_INFO, it is a RVA of
EHANDLER. Thus, our fake UNWIND_INFO is 9 and followed by the RVA of
__C_specific_handler.

Next, we have to know how __C_specfic_handler calls an exception filter. When reversing, I
found that the __C_specific_handler function calls a handler routine with the
EXCEPTION_POINTERS pointer and EstablisherFrame arguments as shown in the below
image. The EXCEPTION_POINTERS contains the EXCEPTION_RECORD pointer and the
CONTEXT pointer. This means that we can dereference the CONTEXT address, when our
fake exception filter is called, from the first argument (rcx register).

From the function in the Process Monitor driver for sending data to a user-mode application,
the first argument of an exception filter is the address of data that we need. So, only the rdx
register (second argument) is left to be set to a length of data.

WPP_SF_ function

When looking for a function to set the rdx register to a small value that >= 16, I found a
function named WPP_SF_ as shown in the below image. The function is generated from a
WPP Software Tracing macro. It can be found in many Microsoft drivers. I chose umpass.sys
because it is small in size (easy for finding the function offset dynamically) and is unlikely to
be changed from monthly patches.

https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_pointers
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/wpp-software-tracing


10/12

The function does not touch the rcx register and sets the rdx register to 0x2b. Then it uses
the Control Flow Guard (CFG) function to call WppTraceMessage. So, we can modify
pfnWppTraceMessage or __guard_dispatch_icall_fptr to call the function in the Process
Monitor driver for sending data to a user-mode application.

Because the target RVA cannot be negative, I map the virtual memory page after Process
Monitor driver image to physical page that containing WPP_SF_ function. This is allowed
even when HVCI is enabled because it is mapped to an existing executable physical page.

Waiting for sent data is processed

The ForwardMessageToUser function in the Process Monitor driver uses FltSendMessage
without a reply buffer. So, the function does not wait for a user-mode application to complete
handling callback data. For this task, synchronization is necessary.

When a message is successfully sent, the FltSendMessage function returns 0
(STATUS_SUCCESS). The value 0 for an exception filter is
EXCEPTION_CONTINUE_SEARCH (3 possible values are shown in the below image). The
subsequent scope table entry will be checked by __C_specific_handler.



11/12

Therefore, the next exception filter will be called. I found the function in the Process Monitor
driver as seen in the below image.

To make a kernel wait for a user-mode application, we can modify a mutex object to be an
event object. For the last call to the imported KeReleaseMutex function, we can just modify
the IAT entry to a function that does nothing for continuing exception search. Last, we want
to end an exception, so we set an exception filter in the last CSCOPE_TABLE entry to return
a positive value (>0) for ending an exception search and executing a handler.

User-mode application

The user-mode application for receiving data from a kernel is straight forward. After the
Process Monitor driver is loaded, we can connect to the mini-filter port with the
FilterConnectCommunicationPort function.

Next, we can receive a message with the FilterGetMessage function on the connected port.
Then, we can handle the message by using physical memory access to read/write kernel
memory. Last, call KeSetEvent (by using an arbitrary kernel function call) to signal a waiting
thread as shown in the below image.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-kereleasemutex
https://learn.microsoft.com/en-us/windows/win32/api/fltuser/nf-fltuser-filterconnectcommunicationport
https://learn.microsoft.com/en-us/windows/win32/api/fltuser/nf-fltuser-filtergetmessage
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-kesetevent


12/12

Conclusion

The Windows VBS and HVCI greatly increase the difficulty of executing code in the kernel for
malicious purposes. Attackers can only modify data to manipulate the execution flow. While
more and more kernel data will be mitigated by other security features, such as kCFG, kCET,
KDP.

This post demonstrates calling a kernel function by modifying a SSDT entry with page table
manipulation. This technique does not work when Intel VT-rp (since Intel 12th gen) is used.

As seen in the process creation callback with the Process Monitor driver, Windows drivers
that are not compiled with CFG and other security features enabled are very useful for
attackers. Any address in code section can be used for target of indirect call. Moreover, IAT
and SEH are not protected by VTL1. So, an attacker can modify them to alter the code
execution flow.






https://www.microsoft.com/en-us/security/blog/2020/07/08/introducing-kernel-data-protection-a-new-platform-security-technology-for-preventing-data-corruption/

