
1/3

Manipulating LastWriteTime without leaving traces in the
NTFS USN Journal

gtworek.github.io/PSBits/lastwritetime.html

As we all know, each file and folder on the NTFS volume has its own metadata/attributes,

including the LastWriteTime - set automatically when file write occurs. The

LastWriteTime is relatively easy to read both by Windows Explorer GUI, commandline (in

the dir output) or within PowerShell by issuing (dir

X:\temp\test.txt).LastWriteTime command. Regardless management needs, such

attribute may be priceless when it comes to the Forensics or Incident Response processes.

Finding all files written within some date/time boundaries will significantly narrow the area

for an investigation. Of course, bad actors know about it, and they set the LastWriteTime

to some value from the past, or just the original one, when it comes to files present on the

volume during the attack. Everyone can set this attribute, and the technique is well known: it

relies on SetFileInformationByHandle() API call and may be achieved for example

through PowerShell with simple (dir X:\temp\test.txt).LastWriteTime = "1999-12-

12" etc. Detection of such manipulation is possible both when it happens (scenario I am not

covering here) and later - thanks to the data collected in the NTFS USN Journal. The journal

contains a reliable log describing events related to the volume content change, and

(obviously) it includes LastWriteTime change as well. It may be displayed with

fsutil.exe usn ReadJournal command and clearly identified by the reason presented as

“Basic info change”.

A query against a NTFS USN Journal can help identify manipulated files with same efficiency

and accuracy as checking LastWriteTime does. And it is a common practice during

properly performed investigations. Now it should be obvious, why the technique allowing to

change file without updating its LastWriteTime may be very useful for bad actors. A quick

digression about API and low-level programming of file writes: to write a file, three steps are

usually performed:

https://gtworek.github.io/PSBits/lastwritetime.html
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-setfileinformationbyhandle
https://docs.microsoft.com/en-us/windows/win32/fileio/change-journals
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil-usn

2/3

1. CreateFile() - API call taking the file name and returning a handle to it. Despite its

name it not only creates a file. Opening the existing one (does not matter if the purpose

is to write or just read) will require CreateFile() anyway.

2. WriteFile() - API call, taking the handle obtained in the previous step plus some data,

writing the data to the file.

3. CloseHandle() - API call to let the OS know that the work is finished.

If there is a need to change LastWriteTime , yet another API call is used:

SetFileInformationByHandle() consuming a handle obtained from CreateFile() , the

purpose (FileBasicInfo in this particular case), and dates/times to be set. As the call

requires a valid handle, it should happen somewhere in between CreateFile() and

CloseHandle() . The date/time to be passed is 64-bit value representing the number of

100-nanosecond intervals since January 1, 1601 (UTC) and may be calculated using API

functions (such as SystemTimeToFileTime()) or even simpler: read and stored before file

write operation, then applied after it, leading to a file with unchanged LastWriteTime . The

very simple code could look like this:

handle = CreateFile(filename, ...);
GetFileInformationByHandleEx(handle, FileBasicInfo, oldDateTime, ...);
WriteFile(handle, dataBuffer, ...);
SetFileInformationByHandle(handle, FileBasicInfo, oldDateTime, ...);
CloseHandle(handle);

Even as the file is modified, the oldDateTime stores the original (before write happened)

set of dates and times, and the same set is re-applied just after the write operation, leaving

the file with dates/times looking just like before the operation. When we look at the journal,

we can observe the following set of entries:

1. 0x00000002: Data extend

2. 0x00008002: Data extend | Basic info change

3. 0x80008002: Data extend | Basic info change | Close

It means the file metadata was modified, which is relatively easy to spot. And what if we do

something looking stupid at the first sight: read the original datetime, write it (unchanged!)

and then modify the file content? Like in the code below:

handle = CreateFile(filename, ...);
GetFileInformationByHandleEx(handle, oldDateTime, ...);
SetFileInformationByHandle(handle, FileBasicInfo, oldDateTime, ...); //Set datetime
FIRST
WriteFile(handle, FileBasicInfo, dataBuffer, ...); //Modify file NEXT
CloseHandle(handle);

It looks pointless, as the write operation should change the LastWriteTime and no one

fixes it later, but it works! If you set the date/time BEFORE the content change, specifying

the original one, (or -1), the subsequent file content changes using the same handle will NOT

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/win32/api/handleapi/nf-handleapi-closehandle
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-setfileinformationbyhandle
https://docs.microsoft.com/en-us/windows/win32/api/minwinbase/ne-minwinbase-file_info_by_handle_class
https://docs.microsoft.com/en-us/windows/win32/api/timezoneapi/nf-timezoneapi-systemtimetofiletime
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getfileinformationbyhandleex

3/3

update the datetime and of course will not leave any trace of updating it in the journal.

Journal will contain only:

1. 0x00000002: Data extend

2. 0x80000002: Data extend | Close

I have never seen it documented, but it works. I can also observe some places where it is used

by the Windows itself, which may mean the described behavior is 100% intentional.

Some final thoughts:

1. Be careful when relying on undocumented features, as YMMV.

2. If you want to play on your own, I would suggest to use separate volume (as the C drive

is quite busy and the journal may report hundreds of entries per second) and create a

journal on it with fsutil.exe usn createJournal X:

3. You can observe journal entries ‘live’ with fsutil.exe usn readJournal X: wait

tail

Of course, any file modification will leave own journal entry, even if the date/time change

event is not stored. In practice, DFIR investigators very rarely care about it, because it is too

common. The typical approach relies on hunting for date/time change in the journal and

then checking files, assuming metadata was not manipulated if the journal contains no

evidence of such operation. It leads to a conclusion that your procedure for finding modified

files should be revised and potentially updated.

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil-usn
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil-usn

