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For a recent project, I had to do research into methods rootkits are detected and the most

effective measures to catch them when I asked the question, what are some existing solutions

to rootkits and how do they function? My search eventually landed me on the TrendMicro

RootkitBuster which describes itself as "A free tool that scans hidden files, registry entries,

processes, drivers, and the master boot record (MBR) to identify and remove rootkits".

The features it boasted certainly caught my attention. They were claiming to detect several

techniques rootkits use to burrow themselves into a machine, but how does it work under the

hood and can we abuse it? I decided to find out by reverse engineering core components of

the application itself, leading me down a rabbit hole of code that scarred me permanently, to

say the least.

https://billdemirkapi.me/how-to-use-trend-micros-rootkit-remover-to-install-a-rootkit/
https://billdemirkapi.me/tag/security-research/
https://billdemirkapi.me/author/bill/
https://billdemirkapi.me/author/bill/
https://www.trendmicro.com/en_us/forHome/products/free-tools/rootkitbuster.html
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Discovery

Starting the adventure, launching the application resulted in a fancy warning by Process

Hacker that a new driver had been installed.

Already off to a good start, we got a copy of Trend Micro's "common driver", this was

definitely something to look into. Besides this driver being installed, this friendly window

opened prompting me to accept Trend Micro's user agreement.

https://processhacker.sourceforge.io/
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I wasn't in the mood to sign away my soul to the devil just yet, especially since the terms

included a clause stating "You agree not to attempt to reverse engineer, decompile, modify,

translate, disassemble, discover the source code of, or create derivative works from...".

Thankfully, Trend Micro already deployed their software on to my machine before I accepted

any terms. Funnily enough, when I tried to exit the process by right-clicking on the

application and pressing "Close Window", it completely evaded the license agreement and

went to the main screen of the scanner, even though I had selected the "I do not accept the

terms of the license agreement" option. Thanks Trend Micro!
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I noticed a quick command prompt flash when I started the application. It turns out this was

the result of a 7-Zip Self Extracting binary which extracted the rest of the application

components to %TEMP%\RootkitBuster .
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Let's review the driver we'll be covering in this article.

The tmcomm  driver which was labeled as the "TrendMicro Common Module" and

"Trend Micro Eyes". A quick overlook of the driver indicated that it accepted

communication from privileged user-mode applications and performed common

actions that are not specific to the Rootkit Remover itself. This driver is not only used in

the Rootkit Buster and is implemented throughout Trend Micro's product line.

In the following sections, we'll be deep diving into the tmcomm  driver . We'll focus our

research into finding different ways to abuse the driver's functionality, with the end goal

being able to execute kernel code. I decided not to look into the tmrkb.sys  because

although I am sure it is vulnerable, it seems to only be used for the Rootkit Buster.

TrendMicro Common Module (tmcomm.sys)

Let's begin our adventure with the base driver that appears to be used not only for this

Rootkit Remover utility, but several other Trend Micro products as well. As I stated in the

previous section, a very brief look-over of the driver revealed that it does allow for

communication from privileged user-mode applications.
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One of the first actions the driver takes is to create a device to accept IOCTL communication

from user-mode. The driver creates a device at the path \Device\TmComm  and a symbolic

link to the device at \DosDevices\TmComm  (accessible via \\.\Global\TmComm ). The

driver entrypoint initializes a significant amount of classes and structure used throughout the

driver, however, for our purposes, it is not necessary to cover each one.

I was happy to see that Trend Micro made the correct decision of restricting their device to

the SYSTEM  user and Administrators. This meant that even if we did find exploitable code,

because any communication would require at least Administrative privileges, a significant

amount of the industry would not consider it a vulnerability. For example, Microsoft

themselves do not consider Administrator to Kernel to be a security boundary because of the

significant amount of access they get. This does not mean however exploitable code in Trend

Micro's drivers won't be useful.

https://www.microsoft.com/en-us/msrc/windows-security-servicing-criteria
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TrueApi

A large component of the driver is its "TrueApi" class which is instantiated during the driver's

entrypoint. The class contains pointers to imported functions that get used throughout the

driver. Here is a reversed structure:
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struct TrueApi 
{ 
 BYTE Initialized; 
 PVOID ZwQuerySystemInformation; 
 PVOID ZwCreateFile; 
 PVOID unk1; // Initialized as NULL. 
 PVOID ZwQueryDirectoryFile; 
 PVOID ZwClose; 
 PVOID ZwOpenDirectoryObjectWrapper; 
 PVOID ZwQueryDirectoryObject; 
 PVOID ZwDuplicateObject; 
 PVOID unk2; // Initialized as NULL. 
 PVOID ZwOpenKey; 
 PVOID ZwEnumerateKey; 
 PVOID ZwEnumerateValueKey; 
 PVOID ZwCreateKey; 
 PVOID ZwQueryValueKey; 
 PVOID ZwQueryKey; 
 PVOID ZwDeleteKey; 
 PVOID ZwTerminateProcess; 
 PVOID ZwOpenProcess; 
 PVOID ZwSetValueKey; 
 PVOID ZwDeleteValueKey; 
 PVOID ZwCreateSection; 
 PVOID ZwQueryInformationFile; 
 PVOID ZwSetInformationFile; 
 PVOID ZwMapViewOfSection; 
 PVOID ZwUnmapViewOfSection; 
 PVOID ZwReadFile; 
 PVOID ZwWriteFile; 
 PVOID ZwQuerySecurityObject; 
 PVOID unk3; // Initialized as NULL. 
 PVOID unk4; // Initialized as NULL. 
 PVOID ZwSetSecurityObject; 
};

Looking at the code, the TrueApi is primarily used as an alternative to calling the functions

directly. My educated guess is that Trend Micro is caching these imported functions at

initialization to evade delayed IAT hooks. Since the TrueApi is resolved by looking at the

import table however, if there is a rootkit that hooks the IAT on driver load, this mechanism

is useless.

XrayApi

Similar to the TrueApi, the XrayApi is another major class in the driver. This class is used to

access several low-level devices and to interact directly with the filesystem. A major

component of the XrayConfig is its "config". Here is a partially reverse-engineered structure

representing the config data:
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struct XrayConfigData 
{ 
 WORD Size; 
 CHAR pad1[2]; 
 DWORD SystemBuildNumber; 
 DWORD UnkOffset1; 
 DWORD UnkOffset2; 
 DWORD UnkOffset3; 
 CHAR pad2[4]; 
 PVOID NotificationEntryIdentifier; 
 PVOID NtoskrnlBase; 
 PVOID IopRootDeviceNode; 
 PVOID PpDevNodeLockTree; 
 PVOID ExInitializeNPagedLookasideListInternal; 
 PVOID ExDeleteNPagedLookasideList; 
 CHAR unkpad3[16]; 
 PVOID KeAcquireInStackQueuedSpinLockAtDpcLevel; 
 PVOID KeReleaseInStackQueuedSpinLockFromDpcLevel; 
 ... 
};

The config data stores the location of internal/undocumented variables in the Windows

Kernel such as the IopRootDeviceNode , PpDevNodeLockTree ,

ExInitializeNPagedLookasideListInternal , and ExDeleteNPagedLookasideList .

 My educated guess for the purpose of this class is to access low-level devices directly rather

than use documented methods which could be hijacked.

IOCTL Requests

Before we get into what the driver allows us to do, we need to understand how IOCTL

requests are handled.

In the primary dispatch function, the Trend Micro driver converts the data alongside a

IRP_MJ_DEVICE_CONTROL  request to a proprietary structure I call a TmIoctlRequest .

struct TmIoctlRequest 
{ 
 DWORD InputSize; 
 DWORD OutputSize; 
 PVOID UserInputBuffer; 
 PVOID UserOutputBuffer; 
 PVOID Unused; 
 DWORD_PTR* BytesWritten; 
};

The way Trend Micro organized dispatching of IOCTL requests is by having several "dispatch

tables". The "base dispatch table" simply contains an IOCTL Code and a corresponding "sub

dispatch function". For example, when you send an IOCTL request with the code
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0xDEADBEEF , it will compare each entry of this base dispatch table and pass along the data

if there is a table entry that has the matching code. A base table entry can be represented by

the structure below:

typedef NTSTATUS (__fastcall *DispatchFunction_t)(TmIoctlRequest *IoctlRequest);
 
struct BaseDispatchTableEntry 
{ 
 DWORD_PTR IOCode; 
 DispatchFunction_t DispatchFunction; 
};

After the DispatchFunction  is called, it typically verifies some of the data provided

ranging from basic nullptr  checks to checking the size of the input and out buffers. These

"sub dispatch functions" then do another lookup based on a code passed in the user input

buffer to find the corresponding "sub table entry". A sub table entry can be represented by

the structure below:

typedef NTSTATUS (__fastcall *OperationFunction_t)(PVOID InputBuffer, PVOID 
OutputBuffer); 
 
struct SubDispatchTableEntry 
{ 
 DWORD64 OperationCode; 
 OperationFunction_t PrimaryRoutine; 
 OperationFunction_t ValidatorRoutine; 
};

Before calling the PrimaryRoutine , which actually performs the requested action, the sub

dispatch function calls the ValidatorRoutine . This routine does "action-specific"

validation on the input buffer, meaning that it performs checks on the data the

PrimaryRoutine  will be using. Only if the ValidatorRoutine  returns successfully will

the PrimaryRoutine  be called.

Now that we have a basic understanding of how IOCTL requests are handled, let's explore

what they allow us to do. Referring back to the definition of the "base dispatch table", which

stores "sub dispatch functions", let's explore each base table entry and figure out what each

sub dispatch table allows us to do!

IoControlCode == 9000402Bh

Discovery

This first dispatch table appears to interact with the filesystem, but what does that actually

mean? To start things off, the code for the "sub dispatch table" entry is obtained by

dereferencing a DWORD  from the start of the input buffer. This means that to specify which
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sub dispatch entry you'd like to execute, you simply need to set a DWORD  at the base of the

input buffer to correspond with that entries' **OperationCode** .

To make our lives easier, Trend Micro conveniently included a significant amount of

debugging strings, often giving an idea of what a function does. Here is a table of the

functions I reversed in this sub dispatch table and what they allow us to do.

OperationCode PrimaryRoutine Description

2713h IoControlCreateFile Calls NtCreateFile, all parameters
are controlled by the request.

2711h IoControlFindNextFile Returns
STATUS_NOT_SUPPORTED.

2710h IoControlFindFirstFile Performs nothing, returns
STATUS_SUCCESS always.

2712h IoControlFindCloseFile Calls ZwClose, all parameters are
controlled by the request.

2715h IoControlReadFileIRPNoCache References a FileObject using
HANDLE from request. Calls
IofCallDriver and reads result.

2714h IoControlCreateFileIRP Creates a new FileObject and
associates DeviceObject for
requested drive.

2716h IoControlDeleteFileIRP Deletes a file by sending an
IRP_MJ_SET_INFORMATION
request.

2717h IoControlGetFileSizeIRP Queries a file's size by sending an
IRP_MJ_QUERY_INFORMATION
request.

2718h IoControlSetFilePosIRP Set's a file's position by sending an
IRP_MJ_SET_INFORMATION
request.

2719h IoControlFindFirstFileIRP Returns
STATUS_NOT_SUPPORTED.

271Ah IoControlFindNextFileIRP Returns
STATUS_NOT_SUPPORTED.

2720h IoControlQueryFile Calls NtQueryInformationFile, all
parameters are controlled by the
request.
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OperationCode PrimaryRoutine Description

2721h IoControlSetInformationFile Calls NtSetInformationFile, all
parameters are controlled by the
request.

2722h IoControlCreateFileOplock Creates an Oplock via
IoCreateFileEx and other filesystem
API.

2723h IoControlGetFileSecurity Calls NtCreateFile and then
ZwQuerySecurityObject. All
parameters are controlled by the
request.

2724h IoControlSetFileSecurity Calls NtCreateFile and then
ZwSetSecurityObject. All parameters
are controlled by the request.

2725h IoControlQueryExclusiveHandle Check if a file is opened exclusively.

2726h IoControlCloseExclusiveHandle Forcefully close a file handle.

IoControlCode == 90004027h

Discovery

This dispatch table is primarily used to control the driver's process scanning features. Many

functions in this sub dispatch table use a separate scanning thread to synchronously search

for processes via various methods both documented and undocumented.

OperationCode PrimaryRoutine Description

C350h GetProcessesAllMethods Find processes via
ZwQuerySystemInformation and
WorkingSetExpansionLinks.

C351h DeleteTaskResults* Delete results obtained through other
functions like GetProcessesAllMethods.

C358h GetTaskBasicResults* Further parse results obtained through
other functions like
GetProcessesAllMethods.

C35Dh GetTaskFullResults* Completely parse results obtained through
other functions like
GetProcessesAllMethods.



13/28

OperationCode PrimaryRoutine Description

C360h IsSupportedSystem Returns TRUE if the system is "supported"
(whether or not they have hardcoded
offsets for your build).

C361h TryToStopTmComm Attempt to stop the driver.

C362h GetProcessesViaMethod Find processes via a specified method.

C371h CheckDeviceStackIntegrity Check for tampering on devices
associated with physical drives.

C375h ShouldRequireOplock Returns TRUE if oplocks should be used
for certain scans.

These IOCTLs revolve around a few structures I call "MicroTask" and "MicroScan". Here are

the structures reverse-engineered:
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struct MicroTaskVtable 
{ 
 PVOID Constructor; 
 PVOID NewNode; 
 PVOID DeleteNode; 
 PVOID Insert; 
 PVOID InsertAfter; 
 PVOID InsertBefore; 
 PVOID First; 
 PVOID Next; 
 PVOID Remove; 
 PVOID RemoveHead; 
 PVOID RemoveTail; 
 PVOID unk2; 
 PVOID IsEmpty; 
};
 
struct MicroTask 
{ 
 MicroTaskVtable* vtable; 
 PVOID self1; // ptr to itself. 
 PVOID self2; // ptr to itself. 
 DWORD_PTR unk1; 
 PVOID MemoryAllocator; 
 PVOID CurrentListItem; 
 PVOID PreviousListItem; 
 DWORD ListSize; 
 DWORD unk4; // Initialized as NULL. 
 char ListName[50]; 
};
 
struct MicroScanVtable 
{ 
 PVOID Constructor; 
 PVOID GetTask; 
};
 
struct MicroScan 
{ 
 MicroScanVtable* vtable; 
 DWORD Tag; // Always 'PANS'. 
 char pad1[4]; 
 DWORD64 TasksSize; 
 MicroTask Tasks[4]; 
};

For most of the IOCTLs in this sub dispatch table, a MicroScan is passed in by the client

which the driver populates. We'll look into how we can abuse this trust in the next section.

Exploitation
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When I was initially reverse engineering the functions in this sub dispatch table, I was quite

confused because the code "didn't seem right". It appeared like the MicroScan  kernel

pointer returned by functions such as GetProcessesAllMethods  was being directly passed

onto other functions such as DeleteTaskResults  by the client. These functions would then

take this untrusted kernel pointer and with almost no validation call functions in the virtual

function table specified at the base of the class.

Taking a look at the "validation routine" for the DeleteTaskResults  sub dispatch table

entry, the only validation performed on the MicroScan  instance specified at the input

buffer + 0x10  was making sure it was a valid kernel address.
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The only other check besides making sure that the supplied pointer was in kernel memory

was a simple check in DeleteTaskResults  to make sure the Tag  member of the

MicroScan  is PANS .

Since DeleteTaskResults  calls the constructor specified in the virtual function table of the

MicroScan  instance, to call an arbitrary kernel function we need to:

1. Be able to allocate at least 10 bytes of kernel memory (for vtable and tag).

2. Control the allocated kernel memory to set the virtual function table pointer and the

tag.

3. Be able to determine the address of this kernel memory from user-mode.

Fortunately a mentor of mine, Alex Ionescu, was able to point me in the right direction when

it comes to allocating and controlling kernel memory from user-mode. A HackInTheBox

Magazine from 2010 had an article by Matthew Jurczyk called "Reserve Objects in Windows

7". This article discussed using APC Reserve Objects, which was introduced in Windows 7, to

allocate controllable kernel memory from user-mode. The general idea is that you can queue

an Apc to an Apc Reserve Object with the ApcRoutine  and ApcArgumentX  members being

the data you want in kernel memory and then use NtQuerySystemInformation  to find the

Apc Reserve Object in kernel memory. This reserve object will have the previously specified

KAPC  variables in a row, allowing a user-mode application to control up to 32 bytes of

kernel memory (on 64-bit) and know the location of the kernel memory. I would strongly

suggest reading the article if you'd like to learn more.

This trick still works in Windows 10, meaning we're able to meet all three requirements. By

using an Apc Reserve Object, we can allocate at least 10 bytes for the MicroScan  structure

and bypass the inadequate checks completely. The result? The ability to call arbitrary kernel

pointers:

https://twitter.com/aionescu
http://magazine.hitb.org/issues/HITB-Ezine-Issue-003.pdf
https://twitter.com/j00ru
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Although I provided a specific example of vulnerable code in DeleteTaskResults , any of

the functions I marked in the table with asterisks are vulnerable. They all trust the kernel

pointer specified by the untrusted client and end up calling a function in the MicroScan

instance's virtual function table.

IoControlCode == 90004033h

Discovery

This next sub dispatch table primarily manages the TrueApi class we reviewed before.

OperationCode PrimaryRoutine Description

EA60h IoControlGetTrueAPIPointer Retrieve pointers of functions in the
TrueApi class.

EA61h IoControlGetUtilityAPIPointer Retrieve pointers of utility functions
of the driver.

EA62h IoControlRegisterUnloadNotify* Register a function to be called on
unload.

EA63h IoControlUnRegisterUnloadNotify Unload a previously registered
unload function.

Exploitation

IoControlRegisterUnloadNotify

This function caught my eye the moment I saw its name in a debug string. Using this sub

dispatch table function, an untrusted client can register up to 16 arbitrary "unload routines"

that get called when the driver unloads. This function's validator routine checks this pointer
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from the untrusted client buffer for validity. If the caller is from user-mode, the validator

calls ProbeForRead  on the untrusted pointer. If the caller is from kernel-mode, the

validator checks that it is a valid kernel memory address.

This function cannot immediately be used in an exploit from user-mode. The problem is that

if we're a user-mode caller, we must provide a user-mode pointer, because the validator

routine uses ProbeForRead . When the driver unloads, this user-mode pointer gets called,

but it won't do much because of mitigations such as SMEP. I'll reference this function in a

later section, but it is genuinely scary to see an untrusted user-mode client being able to

direct a driver to call an arbitrary pointer by design.

IoControlCode == 900040DFh

This sub dispatch table is used to interact with the XrayApi. Although the Xray Api is

generally used by scans implemented in the kernel, this sub dispatch table provides limited

access for the client to interact with physical drives.

OperationCode PrimaryRoutine Description

15F90h IoControlReadFile Read a file directly from a disk.

15F91h IoControlUpdateCoreList Update the kernel pointers used by the
Xray Api.

15F92h IoControlGetDRxMapTable Get a table of drives mapped to their
corresponding devices.

IoControlCode == 900040E7h

Discovery

The final sub dispatch is used to scan for hooks in a variety of system structures. It was

interesting to see the variety of hooks Trend Micro checks for including hooks in object types,

major function tables, and even function inline hooks.

OperationCode PrimaryRoutine Description

186A0h TMXMSCheckSystemRoutine Check a few system routines
for hooks.

186A1h TMXMSCheckSystemFileIO Check file IO major functions
for hooks.

186A2h TMXMSCheckSpecialSystemHooking Check the file object type and
ntoskrnl Io functions for
hooks.

https://en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention
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OperationCode PrimaryRoutine Description

186A3h TMXMSCheckGeneralSystemHooking Check the Io manager for
hooks.

186A4h TMXMSCheckSystemObjectByName Recursively trace a system
object (either a directory or
symlink).

186A5h TMXMSCheckSystemObjectByName2* Copy a system object into
user-mode memory.

Exploitation

Yeah, TMXMSCheckSystemObjectByName2  is as bad as it sounds. Before looking at the

function directly, here's a few reverse engineered structures used later:

struct CheckSystemObjectParams 
{ 
    PVOID Src; 
    PVOID Dst; 
    DWORD Size; 
    DWORD* OutSize; 
};
 
struct TXMSParams 
{ 
    DWORD OutStatus; 
    DWORD HandlerID; 
    CHAR unk[0x38]; 
    CheckSystemObjectParams* CheckParams; 
};

TMXMSCheckSystemObjectByName2  takes in a Source pointer, Destination pointer, and a

Size in bytes. The validator function called for TMXMSCheckSystemObjectByName2  checks

the following:

ProbeForRead  on the CheckParams  member of the TXMSParams  structure.

ProbeForRead  and ProbeForWrite  on the Dst  member of the

CheckSystemObjectParams  structure.

Essentially, this means that we need to pass a valid CheckParams  structure and the Dst

pointer we pass is in user-mode memory. Now let's look at the function itself:
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Although that for loop may seem scary, all it is doing is an optimized method of checking a

range of kernel memory. For every memory page in the range Src  to Src + Size , the

function calls MmIsAddressValid . The real scary part is the following operations:

These lines take an untrusted Src  pointer and copies

Size  bytes to the untrusted Dst  pointer... yikes. We can

use the memmove  operations to read an arbitrary kernel

pointer, but what about writing to an arbitrary kernel pointer? The problem is that the

validator for TMXMSCheckSystemObjectByName2  requires that the destination is user-mode

memory. Fortunately, there is another bug in the code.

The next *params->OutSize = Size;  line takes the Size  member from our structure

and places it at the pointer specified by the untrusted OutSize  member. No verification is

done on what OutSize  points to, thus we can write up to a DWORD each IOCTL call. One

caveat is that the Src  pointer would need to point to valid kernel memory for up to Size

bytes. To meet this requirement, I just passed the base of the ntoskrnl  module as the

source.

Using this arbitrary write primitive, we can use the previously found unload routines trick to

execute code. Although the validator routine prevents us from passing in a kernel pointer if

we're calling from user-mode, we don't actually need to go through the validator. Instead, we

can write to the unload routine array inside of the driver's .data  section using our write

primitive and place the pointer we want.

Really, really bad code

Typically, I like sticking to strictly security in my blog posts, but this driver made me break

that tradition. In this section, we won't be covering the security issues of the driver, rather

the terrible code that's used by millions of Trend Micro customers around the world.
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Bruteforcing Processes

Let's take a look at what's happening here. This function has a for loop from 0 to 0x10000,

incrementing by 4, and retrieves the object of the process behind the current index (if there is

one). If the index does match a process, the function checks if the name of the process is

csrss.exe . If the process is named csrss.exe , the final check is that the session ID of

the process is 0. Come on guys, there is literally documented API to enumerate processes

from kernel... what's the point of bruteforcing?

Bruteforcing Offsets

EPROCESS ImageFileName Offset
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When I first saw this code, I wasn't sure what I was looking at. The function takes the current

process, which happens to be the System process since this is called in a System thread, then

it searches for the string "System" in the first 0x1000 bytes. What's happening is... Trend

Micro is bruteforcing the ImageFileName  member of the EPROCESS  structure by looking

for the known name of the System process inside of its EPROCESS  structure. If you wanted

the ImageFileName  of a process, just use ZwQueryInformationProcess  with the

ProcessImageFileName  class...

EPROCESS Peb Offset
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In this function, Trend Micro uses the PID of the csrss  process to brute force the Peb

member of the EPROCESS  structure. The function retrieves the EPROCESS  object of the

csrss  process by using PsLookupProcessByProcessId  and it retrieves the

PebBaseAddress  by using ZwQueryInformationProcess . Using those pointers, it tries

every offset from 0 to 0x2000 that matches the known Peb  pointer. What's the point of

finding the offset of the Peb  member when you can just use

ZwQueryInformationProcess , as you already do...

ETHREAD StartAddress Offset

Here Trend Micro uses the current system thread with a known start address to brute force

the StartAddress  member of the ETHREAD  structure. Another case where finding the raw

offset is unnecessary. There is a semi-documented class of ZwQueryInformationThread

called ThreadQuerySetWin32StartAddress  which gives you the start address of a thread.

Unoptimized Garbage

When I initially decompiled this function, I thought IDA Pro might be simplifying a memset

operation, because all this function was doing was setting all of the TrueApi  structure

members to zero. I decided to take a peek at the assembly to confirm I wasn't missing

something...
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Yikes... looks like someone turned off optimizations.

Cheating Microsoft's WHQL Certification

So far we've covered methods to read and write arbitrary kernel memory, but there is one

step missing to install our own rootkit. Although you could execute kernel shellcode with just

a read/write primitive, I generally like finding the path of least resistance. Since this is a

third-party driver, chances are, there is some NonPagedPool  memory allocated which we

can use to host and execute our malicious shellcode.
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Let's take a look at how Trend Micro allocates memory. Early in the entrypoint of the driver,

Trend Micro checks if the machine is a "supported system" by checking the major version,

minor version, and the build number of the operating system. Trend Micro does this because

they hardcode several offsets which can change between builds.

Fortunately, the PoolType  global variable which is used to allocate non-paged memory is

set to 0 ( NonPagedPool ) by default. I noticed that although this value was 0 initially, the

variable was still in the .data  section, meaning it could be changed. When I looked at what

wrote to the variable, I saw that the same function responsible for checking the operating

system's version also set this PoolType  variable in certain cases.

From a brief glance, it looked like if our operating system is Windows 10 or a newer version,

the driver prefers to use NonPagedPoolNx . Good from a security standpoint, but bad for us.

This is used for all non-paged allocations, meaning we would have to find a spare

ExAllocatePoolWithTag  that had a hardcoded NonPagedPool  argument otherwise we

couldn't use the driver's allocated memory on Windows 10. But, it's not that straightforward.

What about MysteriousCheck() , the second requirement for this if statement?

What MysteriousCheck()  was doing was checking if Microsoft's Driver Verifier was

enabled... Instead of just using NonPagedPoolNx  on Windows 8 or higher, Trend Micro

placed an explicit check to only use secure memory allocations if they're being

watched. Why is this not just an example of bad code? Trend Micro's driver is WHQL

certified:

https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/driver-verifier
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/whql-release-signature
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Passing Driver Verifier has been a long-time requirement of obtaining WHQL certification.

On Windows 10, Driver Verifier enforces that drivers do not allocate executable memory.

Instead of complying with this requirement designed to secure Windows users, Trend

Micro decided to ignore their user's security and designed their driver to cheat

any testing or debugging environment which would catch such violations.

Honestly, I'm dumbfounded. I don't understand why Trend Micro would go out of their way

to cheat in these tests. Trend Micro could have just left the Windows 10 check, why would

you even bother creating an explicit check for Driver Verifier? The only working theory I have

is that for some reason most of their driver is not compatible with NonPagedPoolNx  and

that only their entrypoint is compatible, otherwise there really isn't a point.

Delivering on my promise

As I promised, you can use Trend Micro's driver to install your own rootkit. Here is what you

need to do:

1. Find any NonPagedPool  allocation by the driver. As long as you don't have Driver

Verifier running, you can use any of the non-paged allocations that have their pointers

stored in the .data  section. Preferably, pick an allocation that isn't used often.

2. Write your kernel shellcode anywhere in the memory allocation using the arbitrary

kernel write primitive in TMXMSCheckSystemObjectByName2 .

3. Execute your shellcode by registering an unload routine (directly in .data ) or using

the several other execution methods present in the 90004027h  dispatch table.
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It's really as simple as that.

Conclusion

I reverse a lot of drivers and you do typically see some pretty dumb stuff, but I was shocked

at many of the findings in this article coming from a company such as Trend Micro. Most of

the driver feels like proof-of-concept garbage that is held together by duct tape.

Although Trend Micro has taken basic precautionary measures such as restricting who can

talk to their driver, a significant amount of the code inside of the IOCTL handlers includes

very risky DKOM. Also, I'm not sure how certain practices such as bruteforcing anything

would get through adequate code review processes. For example, the Bruteforcing Processes

code doesn't make sense, are Trend Micro developers not aware of enumerating processes via

ZwQuerySystemInformation ? What about disabling optimizations? Anti-virus already gets

flak for slowing down client machines, why would you intentionally make your driver slower?

To add insult to injury, this driver is used in several Trend Micro products, not just their

rootkit remover. All I know going forward is that I won't be a Trend Micro customer anytime

soon.


