How to use Trend Micro's Rootkit Remover to Install a
Rootkit

E billdemirkapi.me/how-to-use-trend-micros-rootkit-remover-to-install-a-rootkit/

May 18, 2020

Security Research

Bill Demirkapi

b

, .
OJE/_ RootkitBuster o —

Trend Micro RootkitBuster is subject to the terms and conditions of the Trend Micro license agreement below.
Please read it carefully

TREND MICRO END USER AGREEMENT ~

Software/Service: Trend Micro Tools and Services
Version: English/Multi-country
Date: April 2012

Important: The following Agreement sets forth the terms and conditions under which Trend Micro is willing to allow you,
an individual or an authorized representative of an entity, to access and use the Software and/or online Software and
Service. Read it carefully before deciding whether you accept or do not acceptits terms.

BY SELECTING THE "| ACCEPT AGREEMENT” BUTTON OR BOX BELOW, YOU ARE EXPRESSING YOUR INTENT TO
ENTER INTO, AND ARE ENTERING INTO, A BINDING LEGAL CONTRACT ("AGREEMENT") BETWEEN YQU AND
TREMND MICRO INCORPORATED OR ONE OF ITS AFFILIATES (TREND MICRO"). THE TERMS AND CONDITIONS OF
THE AGREEMENT THEM APPLY TO YOUR USE OF THE SOFTWARE AND/OR SERVICE. WE ENCOURAGE YOU TO

PRINT A COPY OF THE AGREEMENT FOR YOUR RECORDS OR SAVE A COPY TO YOUR COMPUTER'S HARD v
DRIVE.
() | accept the terms of the license agreement & Printthis page
(®) | do not accept the terms of the license agreement
Cancel
) TREND. Copyright @ 2008-2014 Trend Micro, Inc. All rights reserved. |

The opinions expressed in this publication are those of the authors. They do not reflect the
opinions or views of my employer. All research was conducted independently.

For a recent project, I had to do research into methods rootkits are detected and the most
effective measures to catch them when I asked the question, what are some existing solutions
to rootkits and how do they function? My search eventually landed me on the TrendMicro
RootkitBuster which describes itself as "A free tool that scans hidden files, registry entries,
processes, drivers, and the master boot record (MBR) to identify and remove rootkits".

The features it boasted certainly caught my attention. They were claiming to detect several
techniques rootkits use to burrow themselves into a machine, but how does it work under the
hood and can we abuse it? I decided to find out by reverse engineering core components of
the application itself, leading me down a rabbit hole of code that scarred me permanently, to
say the least.

1/28

https://billdemirkapi.me/how-to-use-trend-micros-rootkit-remover-to-install-a-rootkit/
https://billdemirkapi.me/tag/security-research/
https://billdemirkapi.me/author/bill/
https://billdemirkapi.me/author/bill/
https://www.trendmicro.com/en_us/forHome/products/free-tools/rootkitbuster.html

Discovery

Starting the adventure, launching the application resulted in a fancy warning by Process

Hacker that a new driver had been installed.

.7 tmcomm Properties ot

General Recovery Dependendes Dependents Triggers Other Comment

Trend Micro Common Engine Driver

Type: | Driver w | Starttype: |System start R
Error control: | Mormal ~ | (Group: | Extended Base
Binary path: | YSystemRootisystem32\DRIVERS \tmcomm, sys Browse...

User account:
Password: T
Service DLL: M/A

Delayed start
Permissions

Corcel

Already off to a good start, we got a copy of Trend Micro's "common driver", this was

definitely something to look into. Besides this driver being installed, this friendly window

opened prompting me to accept Trend Micro's user agreement.

2/28

https://processhacker.sourceforge.io/

@E RootkitBuster 2t

e

Trend Micro RootkitBuster is subject to the terms and conditions of the Trend Micro license agreement below.
Flease read it carefully.

TREND MICRO END USER AGREEMENT ~

Software/Service: Trend Micro Tools and Senvices
Verzion: EnglishiMulti-country
Date: April 2012

Important: The following Agreement sets forth the terms and conditions under which Trend Micro is willing to allow you,
an individual or an authorized representative of an entity, to access and use the Software and/or online Software and
Service. Read it carefully before deciding whether you accept or do not accept its terms.

BY SELECTING THE "| ACCEPT AGREEMENT™ BUTTOM OR BOX BELOW, YOU ARE EXPRESSING YOUR INTENT TO
ENTER INTO, AND ARE ENTERIMNG INTO, ABIMDING LEGAL CONTRACT ("AGREEMENT™) BETWEEN YOU AND
TREMD MICRO INCORPORATED OR ONE OF ITS AFFILIATES ("TREND MICRO"). THE TERMS AND COMDITIONS OF
THE AGREEMEMT THEM APPLY TO YOUR USE OF THE SOFTWARE AMDI/OR SERVICE. WE ENCOURAGE YOU TO

PRINT A COPY OF THE AGREEMEMNT FOR YOUR RECORDS OR SAVE A COPY TO YOUR COMPUTER'S HARD v
DRIVE
() | accept the terms of the license agreement Ifi_‘l Print this page
® | do not accept the terms of the license agreement
lext Cancel
“,
b) TREND, Copyright © 2006-2014 Trend Micro, Inc. Al rights reserved. |

I wasn't in the mood to sign away my soul to the devil just yet, especially since the terms
included a clause stating "You agree not to attempt to reverse engineer, decompile, modify,
translate, disassemble, discover the source code of, or create derivative works from...".

Thankfully, Trend Micro already deployed their software on to my machine before I accepted
any terms. Funnily enough, when I tried to exit the process by right-clicking on the
application and pressing "Close Window", it completely evaded the license agreement and
went to the main screen of the scanner, even though I had selected the "I do not accept the
terms of the license agreement" option. Thanks Trend Micro!

3/28

@'@. RootkitBuster et

—-_— 5 s

Select what to scam:

Files or Master Boot Records (MBR)

Senices

Kernel Code Patches
=
[@! Scan Now

=
bj TREND. Copyright @ 2006-2014 Trend Micro, Inc. All rights reserved. | V5.0.0 Build 1212

I noticed a quick command prompt flash when I started the application. It turns out this was
the result of a 7-Zip Self Extracting binary which extracted the rest of the application
components to %TEMP%\RootkitBuster .

4/28

Marne
B oe
l interface

l update

.' CleanBootLog.log
l' compenent_info.cfg

[AU_SDEK. exe
EEJ interface.cab
B LPTSVPN.1TE

B scan_db.sql
B sqlite3.dn
g trncomm.cat
I' tmcomm.inf
B TmEngDre.dil
Q tmrkb.cat

I' trirkb.inf

B MRKScan.dil
B vsapidi

Date modified

31172020 2:11 AM
f2020 2:11 AM
S2020 2:11 AM
f2020 2:11 AM
f2020 2:11 AM
f2020 2:11 AM
f2020 2:11 AM
/2020 2:11 AM
f2020 2:11 AM
f2020 2:11 AM
S2020 2:11 AM
f2020 2:11 AM
f2020 2:11 AM
f2020 2:11 AM
f2020 2:11 AM
/2020 2:11 AM
f2020 2:11 AM

f2020 2:11 AM

Type

File folder

File folder

File folder

Text Document

CFG File
Application
WinRAR archive

176 File

SCL File
Application extens...
security Catalog
setup Information
Application extens...
security Catalog
Setup Information
Systern file
Application extens...

Application extens...

O KB

893 KB
9 KB
5KB

73 KB

Let's review the driver we'll be covering in this article.

The tmcomm driver which was labeled as the "TrendMicro Common Module" and
"Trend Micro Eyes". A quick overlook of the driver indicated that it accepted
communication from privileged user-mode applications and performed common
actions that are not specific to the Rootkit Remover itself. This driver is not only used in
the Rootkit Buster and is implemented throughout Trend Micro's product line.

In the following sections, we'll be deep diving into the tmcomm driver . We'll focus our
research into finding different ways to abuse the driver's functionality, with the end goal
being able to execute kernel code. I decided not to look into the tmrkb.sys because
although I am sure it is vulnerable, it seems to only be used for the Rootkit Buster.

TrendMicro Common Module (tmcomm.sys)

Let's begin our adventure with the base driver that appears to be used not only for this
Rootkit Remover utility, but several other Trend Micro products as well. As I stated in the
previous section, a very brief look-over of the driver revealed that it does allow for
communication from privileged user-mode applications.

5/28

status = WdmlibIoCreateDeviceSecure(
DriverObject,

a,
&heviceName,
@x22u,
Bx186u,
a,
&DefaultsDDLString, // System and Administrators allowed
Bigd,
&0eviceObject);
if (status »= @)
1
status = IoCreateSymboliclink(&SymboliclinkName, &DewviceName};
if { status >=8)
1
riverObject-*MajorFunction[14] = (PDRIVER_DISPATCH)IOCTLHandler;
~iverfbject-*MajorFunction[15] = DriverObject-*MajorFunction[14];
r ~Object-*MajorFunction[2] = Driverobi -*MajorFunction[15];

=2

ject-*MajorFunction[18] = DriverObject-»*MajorFunction[2];
ject-*MajorFunction[@] = DriverObject-*MajorFunction[18];
ject-:DriverUnload = (PDRIVER_UNLOAD)DriverUnload;

F
m M M M M M
[=l = i

]
Lo

[R e e [e [e I e
[

i)

4

One of the first actions the driver takes is to create a device to accept IOCTL communication
from user-mode. The driver creates a device at the path \Device\TmComm and a symbolic
link to the device at \DosDevices\TmComm (accessible via \\.\Global\TmComm). The
driver entrypoint initializes a significant amount of classes and structure used throughout the
driver, however, for our purposes, it is not necessary to cover each one.

I was happy to see that Trend Micro made the correct decision of restricting their device to
the SYSTEM user and Administrators. This meant that even if we did find exploitable code,
because any communication would require at least Administrative privileges, a significant
amount of the industry would not consider it a vulnerability. For example, Microsoft
themselves do not consider Administrator to Kernel to be a security boundary because of the
significant amount of access they get. This does not mean however exploitable code in Trend
Micro's drivers won't be useful.

6/28

https://www.microsoft.com/en-us/msrc/windows-security-servicing-criteria

NTSTATUS _ fastcall IOCTLHandler(PDEVICE_OBJECT Device, PIRP Irp)

1
2
3| NTSTATUS status; // [rsp+28h] [rbp-48h]

4| UCHAR majorFunction; // [rsp+24h] [rbp-44h]

5| struct _I0 STACK_LOCATION *currentStackLocation; // [rsp+28h] [rbp-48h]
6| TmIoctlRequest IoctlRequest; // [rsp+38h] [rbp-38h]

status = 8xCeeaseal;
3| currentStacklocation = CAMSchedule::GetEvent(Irp);
18| Irp-»IoStatus.Information = @i64;

11| majorfFunction = currentStacklLocation->MajorFunction;

12| if (currentStackLocation-»MajorFunction)

13

14 if (majorFunction == 2) // IRP_MI_CLOSE

15 {

16 IsLastHandle();

17 status = @;

18

19 else if (majorFunction » 13u)

28 {

21 if (majorFunction <= 15u)} // IRP_MJ_DEVICE_CONTROL
22 {

23 ToctlRequest.UserInputBuffer = currentStacklocation-»>Parameters.DeviceloControl. Type3InputBuffer;

24 I 1Request.UserOutputBuffer = Irp->»UserBuffer;

25 IRequest.InputSize = currentStacklocation->Parameters.DeviceloControl.InputBufferLength;

26 IoctlRequest.OutputSize = currentStackLocation->Parameters.DeviceIoControl.OutputBufferLength;

27 ToctlRequest.BytesWritten = &Irp-»IoStatus.Information;

28 status = DispatchIoctlRequest(currentstacklocation->Parameters.DeviceloControl.IoControlCode, &TIoctl
29 3

TrueApi

A large component of the driver is its "TrueApi" class which is instantiated during the driver's
entrypoint. The class contains pointers to imported functions that get used throughout the

driver. Here is a reversed structure:

7/28

struct TrueApi

{

BYTE Initialized;
ZwQuerySystemInformation;

PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID
PVOID

iy

Looking at the code, the TrueApi is primarily used as an alternative to calling the functions
directly. My educated guess is that Trend Micro is caching these imported functions at
initialization to evade delayed IAT hooks. Since the TrueApi is resolved by looking at the
import table however, if there is a rootkit that hooks the IAT on driver load, this mechanism

is useless.

XrayApi

ZwCreateFile;

unkl; // Initialized as
ZwQueryDirectoryFile;
ZwClose;

NULL.

ZwOpenDirectoryObjectWrapper;

ZwQueryDirectoryObject;
ZwDuplicateObject;
unk2; // Initialized as
ZwOpenKey;
ZwWwEnumerateKey,
ZwEnumerateValueKey;
ZwCreateKey;
ZwQueryValueKey;
ZwQueryKey;
ZwDeleteKey;
ZwTerminateProcess;
ZwOpenProcess;
ZwSetValueKey;
ZwDeleteValueKey;
ZwCreateSection;
ZwQueryInformationFile;
ZwSetInformationFile;
ZwMapViewOfSection;
ZwUnmapViewOfSection;
ZwReadFile;
ZwWriteFile;
ZwQuerySecurityObject;
unk3; // Initialized as
unk4; // Initialized as
ZwSetSecurityObject;

NULL.

NULL.
NULL.

Similar to the TrueApi, the XrayApi is another major class in the driver. This class is used to
access several low-level devices and to interact directly with the filesystem. A major
component of the XrayConfig is its "config". Here is a partially reverse-engineered structure

representing the config data:

8/28

struct XrayConfigData
{
WORD Size;
CHAR padi[2];
DWORD SystemBuildNumber;
DWORD UnkOffsetl;
DWORD UnkOffset2;
DWORD UnkOffset3;
CHAR pad2[4];
PVOID NotificationEntryIdentifier;
PVOID NtoskrnlBase;
PVOID IopRootDeviceNode;
PVOID PpDevNodeLockTree;
PVOID ExInitializeNPagedLookasideListInternal;
PVOID ExDeleteNPagedLookasidelList;
CHAR unkpad3[16];
PVOID KeAcquireInStackQueuedSpinLockAtDpcLevel;
PVOID KeReleaseInStackQueuedSpinLockFromDpclLevel;

}

The config data stores the location of internal/undocumented variables in the Windows
Kernel such as the IopRootDeviceNode , PpDevNodeLockTree ,

ExInitializeNPagedLookasidelListInternal ,and ExDeleteNPagedLookasidelList .
My educated guess for the purpose of this class is to access low-level devices directly rather
than use documented methods which could be hijacked.

IOCTL Requests

Before we get into what the driver allows us to do, we need to understand how IOCTL
requests are handled.

In the primary dispatch function, the Trend Micro driver converts the data alongside a
IRP_MJ_DEVICE_CONTROL request to a proprietary structure I calla TmIoctlRequest .

struct TmIoctlRequest

{
DWORD InputSize;
DWORD OutputSize;
PVOID UserInputBuffer;
PVOID UserOutputBuffer;
PVOID Unused;
DWORD_PTR* BytesWritten;

1

The way Trend Micro organized dispatching of IOCTL requests is by having several "dispatch
tables". The "base dispatch table" simply contains an IOCTL Code and a corresponding "sub
dispatch function". For example, when you send an IOCTL request with the code

9/28

OXDEADBEEF , it will compare each entry of this base dispatch table and pass along the data
if there is a table entry that has the matching code. A base table entry can be represented by
the structure below:

typedef NTSTATUS (__fastcall *DispatchFunction_t)(TmIoctlRequest *IoctlRequest);

struct BaseDispatchTableEntry

{
DWORD_PTR IOCode;

DispatchFunction_t DispatchFunction;

}i

After the DispatchFunction is called, it typically verifies some of the data provided
ranging from basic nullptr checks to checking the size of the input and out buffers. These
"sub dispatch functions" then do another lookup based on a code passed in the user input
buffer to find the corresponding "sub table entry". A sub table entry can be represented by
the structure below:

typedef NTSTATUS (__fastcall *OperationFunction_t)(PVOID InputBuffer, PVOID
OutputBuffer);

struct SubDispatchTableEntry

{
DWORD64 OperationCode;
OperationFunction_t PrimaryRoutine;
OperationFunction_t ValidatorRoutine;
}

Before calling the PrimaryRoutine , which actually performs the requested action, the sub
dispatch function calls the validatorRoutine . This routine does "action-specific"
validation on the input buffer, meaning that it performs checks on the data the

PrimaryRoutine will be using. Only if the validatorRoutine returns successfully will
the PrimaryRoutine be called.

Now that we have a basic understanding of how IOCTL requests are handled, let's explore
what they allow us to do. Referring back to the definition of the "base dispatch table", which
stores "sub dispatch functions", let's explore each base table entry and figure out what each
sub dispatch table allows us to do!

loControlCode == 9000402Bh

Discovery

This first dispatch table appears to interact with the filesystem, but what does that actually
mean? To start things off, the code for the "sub dispatch table" entry is obtained by
dereferencing a DWORD from the start of the input buffer. This means that to specify which

10/28

sub dispatch entry you'd like to execute, you simply need to set a DWORD at the base of the
input buffer to correspond with that entries' **0OperationCode** .

To make our lives easier, Trend Micro conveniently included a significant amount of
debugging strings, often giving an idea of what a function does. Here is a table of the
functions I reversed in this sub dispatch table and what they allow us to do.

OperationCode PrimaryRoutine

2713h

loControlCreateFile

Description

Calls NtCreateFile, all parameters
are controlled by the request.

2711h

loControlFindNextFile

Returns
STATUS_NOT_SUPPORTED.

2710h

loControlFindFirstFile

Performs nothing, returns
STATUS_SUCCESS always.

2712h

loControlFindCloseFile

Calls ZwClose, all parameters are
controlled by the request.

2715h

loControlReadFileIRPNoCache

References a FileObject using
HANDLE from request. Calls
lofCallDriver and reads result.

2714h

loControlCreateFilelRP

Creates a new FileObject and
associates DeviceObject for
requested drive.

2716h

loControlDeleteFileIRP

Deletes a file by sending an
IRP_MJ_SET_INFORMATION
request.

2717h

loControlGetFileSizelRP

Queries a file's size by sending an
IRP_MJ_QUERY_INFORMATION
request.

2718h

loControlSetFilePosIRP

Set's a file's position by sending an
IRP_MJ_SET_INFORMATION
request.

2719h

loControlFindFirstFileIRP

Returns
STATUS _NOT_SUPPORTED.

271Ah

loControlFindNextFileIRP

Returns
STATUS_NOT_SUPPORTED.

2720h

loControlQueryFile

Calls NtQuerylnformationFile, all
parameters are controlled by the
request.

11/28

OperationCode PrimaryRoutine

Description

2721h loControlSetInformationFile

Calls NtSetInformationFile, all
parameters are controlled by the
request.

2722h loControlCreateFileOplock

Creates an Oplock via
loCreateFileEx and other filesystem
API.

2723h loControlGetFileSecurity

Calls NtCreateFile and then
ZwQuerySecurityObject. All
parameters are controlled by the
request.

2724h loControlSetFileSecurity

Calls NtCreateFile and then
ZwSetSecurityObject. All parameters
are controlled by the request.

2725h

loControlQueryExclusiveHandle

Check if a file is opened exclusively.

2726h

loControlCode == 90004027h

loControlCloseExclusiveHandle

Forcefully close a file handle.

Discovery

This dispatch table is primarily used to control the driver's process scanning features. Many
functions in this sub dispatch table use a separate scanning thread to synchronously search
for processes via various methods both documented and undocumented.

OperationCode PrimaryRoutine

C350h GetProcessesAllMethods

Description

Find processes via
ZwQuerySystemInformation and
WorkingSetExpansionLinks.

C351h DeleteTaskResults*

Delete results obtained through other
functions like GetProcessesAllMethods.

C358h GetTaskBasicResults*

Further parse results obtained through
other functions like
GetProcessesAllMethods.

C35Dh GetTaskFullResults*

Completely parse results obtained through
other functions like
GetProcessesAllMethods.

12/28

OperationCode PrimaryRoutine

Description

C360h IsSupportedSystem Returns TRUE if the system is "supported”
(whether or not they have hardcoded
offsets for your build).

C361h TryToStopTmComm Attempt to stop the driver.

C362h GetProcessesViaMethod Find processes via a specified method.

C371h CheckDeviceStackintegrity Check for tampering on devices
associated with physical drives.

C375h ShouldRequireOplock Returns TRUE if oplocks should be used

for certain scans.

These IOCTLs revolve around a few structures I call "MicroTask" and "MicroScan". Here are
the structures reverse-engineered:

13/28

struct MicroTaskVtable

{
PVOID Constructor;
PVOID NewNode;
PVOID DeleteNode;
PVOID Insert;
PVOID InsertAfter;
PVOID InsertBefore;
PVOID First;
PVOID Next;
PVOID Remove;
PVOID RemoveHead;
PVOID RemoveTail;
PVOID unk2;
PVOID IsEmpty,

1

struct MicroTask
{
MicroTaskVtable* vtable;
PVOID selfl; // ptr to itself.
PVOID self2; // ptr to itself.
DWORD_PTR unk1;
PVOID MemoryAllocator;
PVOID CurrentListItem;
PVOID PreviousListItem;
DWORD ListSize;
DWORD unk4; // Initialized as NULL.
char ListName[50];

};

struct MicroScanVtable

{
PVOID Constructor;

PVOID GetTask;
}

struct MicroScan

{

MicroScanVtable* vtable;
DWORD Tag; // Always 'PANS'.
char padi[4];

DWORD64 TasksSize;

MicroTask Tasks[4];

}

For most of the IOCTLs in this sub dispatch table, a MicroScan is passed in by the client
which the driver populates. We'll look into how we can abuse this trust in the next section.

Exploitation

14/28

When I was initially reverse engineering the functions in this sub dispatch table, I was quite
confused because the code "didn't seem right". It appeared like the MicroScan kernel

pointer returned by functions such as GetProcessesAllMethods was being directly passed

onto other functions such as DeleteTaskResults by the client. These functions would then

take this untrusted kernel pointer and with almost no validation call functions in the virtual
function table specified at the base of the class.

NTSTATUS _ fastcall DeleteTaskResults(_ inte4 InputBuffer)

1

27

3| NTSTATUS status; // [rsp+28h] [rbp-38h]
4| MicroScan *scanj // [rsp+3gh] [rbp-28h]
5
6
7
a

status = BxCBEREEEE ;
if { *(QWORD *){InputBuffer + @x18))}
1

g scan = *(MicroScan **)(InputBuffer + @x18);
1@ if { (int)CheckTag({*(MicroScan **)(InputBuffer 4+ 8x18)}) »>= 8)
11 7
12 if { scan)
13 ({woid (_ fastcall *)(MicroScan *, _ int64))}scan-»vtable->Constructor)(scan, 1i64});
14 status = @;
15 1
16 1}
17| return status;
18}

Taking a look at the "validation routine" for the DeleteTaskResults sub dispatch table
entry, the only validation performed on the MicroScan instance specified at the input
buffer + 0x10 was making sure it was a valid kernel address.

1| BoOL8 _ fastcall ValidateDeleteTaskResults(_ _int&4 InputBuffer)
21

3| BOOL validKernelAddress; // [rsp+38h] [rbp-18h]

4

5| walidkKernelAddress = @;

6| if (InputBuffer)

7 validkernelAddress = ValidateAddressWithSize(*(void **)(InputBuffer + 8x18), @, @xléuisd, lu, 8);
8| return validKerneliddress;

9F

1| BoOL8 _ fastcall ValidateAddressWithSize(void *Buffer, BOOLEAN WriteOperation, SIZE_T BufferSize, ULONG Alignment, KPROCESSOR_MODE PrevicusMode)
2ff

3| BOOL validBuffer; // [rsp+38h] [rbp-18h]

4

5| walidBuffer = @;

6| if (Buffer && Buffersize && Alignment)

7

3 if (PrevicusMode == 1)

9

1@ if (WriteOperation)

11

12 if (WriteOperation != 1)

13 ProbeForRead{Buffer, Buffersize, Alignment);

14 ProbeForWrite(Buffer, BufferSize, Alignment);

15 1

16 else

17

18 ProbeForRead(Buffer, Buffersize, Alignment);

19 1

26 validBuffer = 1;

21 1

22 else if (!((Alignment - 1) & (unsigned int)Buffer))

23

24 validBuffer = ValidateKernelmodeAddress((unsigned _ int64)Buffer, BufferSize);
25 1

26 }

27| return validBuffer;

28[}

15/28

| BOOLE _ fastcall ValidateKernelmodeAddress{unsigned _ int64 Pointer, _ ints4 Size)

2ff

3| return Pointer

. 8% Size

5 && Pointer »= MmSystemRangeStart

B && (unsigned _ int8)MmIsAddressvValid({Pocinter)

7 && (unsigned _ int8)MmIsAddressvValid({Pocinter + 5ize - 1};
8/}

The only other check besides making sure that the supplied pointer was in kernel memory
was a simple check in DeleteTaskResults to make surethe Tag member of the
MicroScan is PANS .

NTSTATUS _ fastcall CheckTag(MicroScan *al)

2

1

3| NTSTATUS status; // [rsp+28h] [rbp-18h]

5 status = 83

6| if { (unsigned int)CheckMicroScanTag(al)} != '"PANS")

status = @xCeeaaaas ;
return status;

=]

e

Since DeleteTaskResults calls the constructor specified in the virtual function table of the
MicroScan instance, to call an arbitrary kernel function we need to:

1. Be able to allocate at least 10 bytes of kernel memory (for vtable and tag).

2. Control the allocated kernel memory to set the virtual function table pointer and the
tag.

3. Be able to determine the address of this kernel memory from user-mode.

Fortunately a mentor of mine, Alex Ionescu, was able to point me in the right direction when
it comes to allocating and controlling kernel memory from user-mode. A HackInTheBox
Magazine from 2010 had an article by Matthew Jurczyk called "Reserve Objects in Windows
7". This article discussed using APC Reserve Objects, which was introduced in Windows 7, to
allocate controllable kernel memory from user-mode. The general idea is that you can queue
an Apc to an Apc Reserve Object with the ApcRoutine and ApcArgumentxX members being
the data you want in kernel memory and then use NtQuerySystemInformation to find the
Apc Reserve Object in kernel memory. This reserve object will have the previously specified

KAPC variables in a row, allowing a user-mode application to control up to 32 bytes of
kernel memory (on 64-bit) and know the location of the kernel memory. I would strongly
suggest reading the article if you'd like to learn more.

This trick still works in Windows 10, meaning we're able to meet all three requirements. By

using an Apc Reserve Object, we can allocate at least 10 bytes for the MicroScan structure
and bypass the inadequate checks completely. The result? The ability to call arbitrary kernel
pointers:

16/28

https://twitter.com/aionescu
http://magazine.hitb.org/issues/HITB-Ezine-Issue-003.pdf
https://twitter.com/j00ru

Breall instruction exception — code 80000003 {(first chance)

nt | KeCheckStackAndTarget Addres=+0x43 :

fffff803° 2echalcl co int 3

Cokdr k

Child-5F Retiddr Call Site

fEL££905 a84£93d0 £££££803° 22d9d 305 nt | KeCheckStackindTargetAddres=+0x42
fE£££905 284£9400 £f£££f£803° 2edchblaf nt!_C_specific handler+0z45

fE£A05 a84£9470 £££££803° 2ecfa?db nt|REtlpExecuteHandlerForEzcept ion+0xf
f£905 aB4f94a0 £££££803° 2ecfelbe nt|BtlDi=zpatchExcept 1ion+0=x4ab

f£905 a84£f9bf0 f£f£f££803° 2eddd3ld nt!KiDispatchException+lxzlae

f£305 ad4fazal f££££803° 2edd0505 nt!|KiEzceptionDi=spatch+0=x11d

f£905 aB4£fa480 00000000 deadbesf nt|KiPageFault+0xzd45

f£f905 aBd4fanld f££££803° 37473732 Dxdeadbest

f£905 alBdfan20 £££££803° 3745d7Ef tmoomm_sy=+0x23732

f£905 aB4fani0 f£803°3746082d tncomm_sys+0xd7 £
f
f
f
f
.F

=

f305 agd4fan=0 f£803° 37461014 tncomm_=v=+0x1032d
fA05 addfa20 8037 2ed0a939 tmcomm_sys+0x11014
f905 aB4fa7al f£803°2f2b2bds nt!IofCallDriver+0=z59
f
.F

I:r'| [F=] [o (28 P) o) FEY () (o P =8

fA05 ag4fatel f803° 2£2b29=0 nt ! IopSynchronousServiceTall+0xlakb
FREONT2F2R1TARE vt I T Wewl bt =l B T aklw—11

:|-:-|-:-|-:- -:-|-:-|-:-|-:-|-:-|-:-|-:-|-:-|-:-|-:-|D
=Nyl ot}

=+ Hh AR R
=+ Hh AR R
=+ Hh AR R

FANC aRAF=000

Although I provided a specific example of vulnerable code in DeleteTaskResults , any of
the functions I marked in the table with asterisks are vulnerable. They all trust the kernel
pointer specified by the untrusted client and end up calling a function in the MicroScan
instance's virtual function table.

loControlCode == 90004033h

Discovery

This next sub dispatch table primarily manages the TrueApi class we reviewed before.

OperationCode PrimaryRoutine Description

EAG60h loControlGetTrueAPIPointer Retrieve pointers of functions in the
TrueApi class.

EAG1h loControlGetUtilityAPIPointer Retrieve pointers of utility functions
of the driver.

EA62h loControlRegisterUnloadNotify* Register a function to be called on
unload.

EAG3h loControlUnRegisterUnloadNotify Unload a previously registered

unload function.

Exploitation

loControlRegisterUnloadNotify

This function caught my eye the moment I saw its name in a debug string. Using this sub
dispatch table function, an untrusted client can register up to 16 arbitrary "unload routines"
that get called when the driver unloads. This function's validator routine checks this pointer

17/28

from the untrusted client buffer for validity. If the caller is from user-mode, the validator
calls ProbeForRead on the untrusted pointer. If the caller is from kernel-mode, the
validator checks that it is a valid kernel memory address.

This function cannot immediately be used in an exploit from user-mode. The problem is that
if we're a user-mode caller, we must provide a user-mode pointer, because the validator
routine uses ProbeForRead . When the driver unloads, this user-mode pointer gets called,
but it won't do much because of mitigations such as SMEP. I'll reference this function in a
later section, but it is genuinely scary to see an untrusted user-mode client being able to
direct a driver to call an arbitrary pointer by design.

loControlCode == 900040DFh

This sub dispatch table is used to interact with the XrayApi. Although the Xray Api is
generally used by scans implemented in the kernel, this sub dispatch table provides limited
access for the client to interact with physical drives.

OperationCode PrimaryRoutine Description

15F90h loControlReadFile Read a file directly from a disk.

15F91h loControlUpdateCoreList Update the kernel pointers used by the
Xray Api.

15F92h loControlGetDRxMapTable Get a table of drives mapped to their

corresponding devices.

loControlCode == 900040E7h

Discovery

The final sub dispatch is used to scan for hooks in a variety of system structures. It was
interesting to see the variety of hooks Trend Micro checks for including hooks in object types,
major function tables, and even function inline hooks.

OperationCode PrimaryRoutine Description

186A0h TMXMSCheckSystemRoutine Check a few system routines
for hooks.

186A1h TMXMSCheckSystemFilelO Check file 10 major functions
for hooks.

186A2h TMXMSCheckSpecialSystemHooking Check the file object type and
ntoskrnl lo functions for
hooks.

18/28

https://en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention

OperationCode PrimaryRoutine Description

186A3h TMXMSCheckGeneralSystemHooking Check the lo manager for
hooks.

186A4h TMXMSCheckSystemObjectByName Recursively trace a system
object (either a directory or
symlink).

186A5h TMXMSCheckSystemObjectByName2* Copy a system object into

user-mode memory.

Exploitation

Yeah, TMXMSCheckSystemObjectByName2 is as bad as it sounds. Before looking at the
function directly, here's a few reverse engineered structures used later:

struct CheckSystemObjectParams

{
PVOID Src;
PVOID Dst;
DWORD Size;
DWORD* QutSize;
}
struct TXMSParams
{
DWORD OutStatus;
DWORD HandlerID;
CHAR unk[0x38];
CheckSystemObjectParams* CheckParams;
}

TMXMSCheckSystemObjectByName2 takes in a Source pointer, Destination pointer, and a
Size in bytes. The validator function called for TMXMSCheckSystemObjectByName2 checks
the following;:

e ProbeForRead onthe CheckParams member of the TXMSParams structure.
* ProbeForRead and ProbeForWrite onthe Dst member of the
CheckSystemObjectParams structure.

Essentially, this means that we need to pass a valid CheckParams structure and the Dst
pointer we pass is in user-mode memory. Now let's look at the function itself:

19/28

1l|signed _ inte4 _ fastcall TMMMSCheckSystemObjectByName2(TXMSParams *inbuf)
2

3| wunsigned int i; // [rsp+2@h] [rbp-38h]

4| DWORD Sizej // [rsp+24h] [1

5| PWOID Src; // [rsp+3@h] [rbp-28h]

6| CheckSystemObjectParams *params; // [rsp+38h] [rbp-28h]

7| PVOID Dst; // [rsp+48h] [rbp-18h]

8

9| params = inbuf-»CheckParams;

18| Src = params->Src;

11| Dst = params->Dst;

12| 5ize = params-»>Size;

13| if (params-»>Src <= (PVOID)MmSystemRangeStart)

14 return @xCeeeaeaDics; // STATUS_INVALID PARAMETER
15 for (i = @; i < (unsigned int)}{({(unsigned _ intl6)5rc & @xFFF) + (unsigned _ int64)5ize + 4695) >»> 12); ++i)
16

17 if (!'(unsigned _ int8)MmIsAddressValid((char *}5rc + 4896 * i})

18 return @xCeeeaeaDics; // STATUS_INVALID PARAMETER
19 }

28 memmove(Dst, Src, Size);

21| *params-»0utSize = Size;

22| return @i64;

23}

Although that for loop may seem scary, all it is doing is an optimized method of checking a
range of kernel memory. For every memory page in the range Src to Src + Size ,the
function calls MmIsAddressvalid . The real scary part is the following operations:

These lines take an untrusted Src pointer and copies

Size bytes to the untrusted Dst pointer... yikes. We can
use the memmove operations to read an arbitrary kernel
pointer, but what about writing to an arbitrary kernel pointer? The problem is that the
validator for TMXMSCheckSystemObjectByName2 requires that the destination is user-mode
memory. Fortunately, there is another bug in the code.

28| memmove(Dst, Src, Size);
21| *params-»0QutSize = Size;

The next *params->0utSize = Size; linetakesthe Size member from our structure
and places it at the pointer specified by the untrusted outSize member. No verification is
done on what OutSize points to, thus we can write up to a DWORD each IOCTL call. One
caveat is that the Src pointer would need to point to valid kernel memory for up to Size
bytes. To meet this requirement, I just passed the base of the ntoskrnl module as the
source.

Using this arbitrary write primitive, we can use the previously found unload routines trick to
execute code. Although the validator routine prevents us from passing in a kernel pointer if
we're calling from user-mode, we don't actually need to go through the validator. Instead, we
can write to the unload routine array inside of the driver's .data section using our write
primitive and place the pointer we want.

Really, really bad code

Typically, I like sticking to strictly security in my blog posts, but this driver made me break
that tradition. In this section, we won't be covering the security issues of the driver, rather
the terrible code that's used by millions of Trend Micro customers around the world.

20/28

Bruteforcing Processes

14| csrssPid = @ied;

15 ocess = @ie64;

16 sName, "csrss.exe");

17| LODWORD(sLen) = 9;

18| for (1 i < Ox100080 &8& !csrssPid; i +=4)

19| {

28 currentProcess = 9i64;

21 currentPid = ReturnFirstArg(i);

22 PsLookupProcessByProcessId(currentPid, ¤tProcess);

23 if (currentProcess)

24 {

25 currentProcessiame = (char *)UtilGetProcessName(currentProcess, @i64, 0i64);
26 if (currentProcessName)

27

23 if (!strnicmp(&csrssName, currentProcessName, (unsigned int)Csrssien))
29

38 Handle = @i64;

31 LOBYTE(AccessMode) = @; // KernelMode

3z if ((signed int)ObOpenObjectByPointer(currentProcess, 512i64, @i64, @i64, PsProcessType, AccessMode, &Handle) »>= @)
33 {

34 if (Handle }

35

36 Sessionld = @;

37 HIDWORD(Csrsslen) = @;

38 if ((signed int)ZwQueryInformaticonProcess(Handle, @x18i64, &Sessionld, 4i64, (char *)&Csrsslen + 4) »= @// PROCESS_SESSION_INFORMATION
39 &8 ISessionId)

48

41 csrssPid = ReturnFirstArg(i);

42 B

43 ZwClose(Handle);

44 }

45 }

46 }

47

43 ObfDereferenceObject(currentProcess);

49 ¥

58| }

51| return csrssPid;

52[}

Let's take a look at what's happening here. This function has a for loop from 0 to 0x10000,
incrementing by 4, and retrieves the object of the process behind the current index (if there is
one). If the index does match a process, the function checks if the name of the process is

csrss.exe . If the process is named csrss.exe , the final check is that the session ID of
the process is 0. Come on guys, there is literally documented API to enumerate processes
from kernel... what's the point of bruteforcing?

Bruteforcing Offsets

EPROCESS ImageFileName Offset

21/28

1| intes4 GetImageNameOffset()

o[t

3| unsigned int i; // [rsp+28h] [rbp-18h]

4| unsigned int MaxCount; // [rsp+24h] [rbp-14h]

5| PEPROCESS SystemProcess; // [rsp+28h] [rbp-18h]
B

7| SystemProcess = IoGetCurrentProcess();

8| MaxCount = strlen{"System"};

9 for (1 =8; 1 < exleed; +1i)

1@ {

11 if (!strnicmp(“System™, (const char *)}SystemProcess 4+ i, MaxCount))
12 7

13 ImageMameOffset = i}

14 return (unsigned int)ImageNameOffset;

15 }

16| }

17| return (unsigned int)ImageNameOffset;

18}

When I first saw this code, I wasn't sure what I was looking at. The function takes the current

process, which happens to be the System process since this is called in a System thread, then

it searches for the string "System" in the first 0x1000 bytes. What's happening is... Trend

Micro is bruteforcing the ImageFileName member of the EPROCESS structure by looking

for the known name of the System process inside of its EPROCESS structure. If you wanted

the ImageFileName of a process,just use zwQueryInformationProcess with the
ProcessImageFileName class...

EPROCESS Peb Offset

1| inte4 _ fastcall GetProcessPebOffset(___inte4 csrssPid, _QWORD *pebOffset)
2[f

3| unsigned int i; // [rsp+28h] [rbp-68h] MAPDST

4| PEPROCESS csrssProcess; f/ [rsp+38h] [rbp-58h]

5| PWOID csrssProcessPeb; Jf/ [rsp+dBh] [rbp-48h]

6| TmProcessInfo csrssInfo; // [rsp+48h] [rbp-48h]

7

g i =@;

9| GenerateTmProcessInfo(&csrssInfo, csrssPid);

18| if (pebOffset)

11 *pebOffset = Bied;

12| if { {unsigned int)}IsCsrssProcessValid({&csrssInfo) }// checks if process object is not NULL
13| {

14 csrssProcess = @GetProcessObject({&csrssInfo);

15 csrssProcessPeb = GetProcessPeb{&csrssInfo);

16 for (1 =8; 1 < Bx2808; 1 += 8)

17

18 if (*(PVOID *}((char *)csrssProcess + 1) == csrssProcessPeb)
19 7

28 if (pebOffset)

21 *pebOffset = csrssProcess;

22 break;

23 }

24 1

25 }

26| CleanTmProcessInfo(&csrssInfo);

27| return ij

28[}

22/28

In this function, Trend Micro uses the PID of the csrss process to brute force the Peb

member of the EPROCESS structure. The function retrieves the EPROCESS object of the
csrss process by using PsLookupProcessByProcessId and it retrieves the
PebBaseAddress by using zwQueryInformationProcess . Using those pointers, it tries

every offset from 0 to 0x2000 that matches the known Peb pointer. What's the point of

finding the offset of the Peb member when you can just use
ZwQueryInformationProcess , as you already do...

ETHREAD StartAddress Offset

if (*(_QwoRD *}({(char *)currentThread + (unsigned int)}ThreadstartAddressoffset) != KnownStartAddress)
for (7 =8;] < 8x1888;] += 8)
if (*(_OQWORD *)(({char *)currentThread + j} == KnownStartAddress)

Thread5tartAddress0offset = J;
if { DebuglLogInstance)

if (CheckMicroScanTag(DebuglogInstance) & @x18)
CDebuglogEx: :Write(
(CDebuglogEx *)DebuglogInstance,
"UtileetThreadStartAddressOffset(): _ethread.StartAddress=&#x",

i)
b
return;

b
b
}

L ld Ld L R ORI R RS R ORI R R R R

L I I R o I B e I N I I I T A L =]

b

Here Trend Micro uses the current system thread with a known start address to brute force
the StartAddress member of the ETHREAD structure. Another case where finding the raw
offset is unnecessary. There is a semi-documented class of zZwQueryInformationThread
called ThreadQuerySetwin32StartAddress which gives you the start address of a thread.

Unoptimized Garbage

When I initially decompiled this function, I thought IDA Pro might be simplifying a memset
operation, because all this function was doing was setting all of the TrueApi structure
members to zero. I decided to take a peek at the assembly to confirm I wasn't missing
something...

23/28

=
e Co T R o IRV) B S R 6 S

L L gl ld L B B B R R R R R R R R EEEEEE
LS B o I o R e K R N s ¥ o R O = LN s VR ¥ QN WY o Iy S

TrueApl *_ fastcall InitTrueApi(TrueApi *al)

1
al-»Initialized = 8;
al-»ZwluerysystemInformation = @ie4;
al-*IwCreatefFile = @ig4d;
al-»unkl = @ig4d;
al-»ZwQueryDirectoryFile = @iegd;
al->»IwClose = Bi6d;
al->ZwlpenDirectory0bjectWrapper = @i64;
al->ZwlueryDirectoryObject = ©i64;
al-*ZwbDuplicateObject = 8i64;
al-»*unk3 = @ig4d;
al->ZwOpenkey = @ie4;
al->ZwEnumeratekey = ©i6d;
al-rIwEnumerateValuekKey = @ied;
al-»IwCreatekey = 8iegd;
al->ZwlueryValuekey = 8i64;
al->Fwluerykey = @i6d;
al->Fwheleteley = Bi64d;
al-*»IwTerminateProcess = @ig4;
al->ZwOpenProcess = @ied;
al->ZwsetValueKey = #ied;
al-»ZwDeleteValuekey = Big4;
al-*IwCreatesection = @i6d;
al->ZwQueryInformationFile = @i64;
al-»ZwSetInformationFile = 81i64;
al->FwMapViewdfSection = @i64;
al->ZwlnmapViewdfSection = @isd;
al-s*IwReadFile = @ig4;
al-»IwkWriteFile = @i6d;
al-rZwQuerySecurityObject = @ieg4;
al-runkd4 = 8ig4d;
al-runks = 8i64;
al->FwSetSecurityObject = @i6d;
return al;

b

24/28

Ltext:@002000150026004 mov [rsptarg_2], rcx
.text:@088008130026009 mov rax, [rsptarg_@]
.text: BEEEGE213802600E mov byte ptr [rax], @
.text:2002088180026011 mov rax, [rsptarg_2]
.text:0000008150026016 mowv gword ptr [rax+g8], @
.text:088000015002681E mov rax, [rsp+arg_@]
.text:eaeee08150026823 mov gword ptr [rax+l8h], @
text:eee0008150026828 mov rax, [rsptarg_@]
.text:@002000150026030 mov gword ptr [rax+18h], @
.text:0008008180026038 mov rax, [rsptarg_@]
.text:B082088180026030 mov gword ptr [rax+28h], @
.text:BE220221830026845 mov rax, [rsptarg_2]
.text: 00000081 50026844 mowv gword ptr [rax+28h], @
.text:0800008150026852 mov rax, [rsp+arg_@]
.text:eeeeeaal50026857 mov gword ptr [rax+3eh], @
text:eee000815002685F mov rax, [rsptarg_@]
.text:2002000150026064 mov gword ptr [rax+38h], @
.text: 2088008130026060C mov rax, [rsptarg_@]
.text:B082068180026071 mov gword ptr [rax+4eh], @
.text:BE020201830026879 mov rax, [rsptarg_2]
.text:068000015002687E mowv gword ptr [rax+48h], @
.text:0800008150026886 mov rax, [rsp+arg_@]
.text:ea80e08150026858 mov gword ptr [rax+seh], @
text:eeeee08150026893 mov rax, [rsptarg_@]
.text:@0000001500260958 mov gword ptr [rax+58h], @
.text:0008008150026040 mov rax, [rsptarg_@]
.text: BAEEGE21380268A5 mov gword ptr [rax+6eh], @
.text:BE220881800260AD mov rax, [rsptarg_2]
.text:0000008150026862 mowv gword ptr [rax+es8h], @
.text:0800008150026884 mov rax, [rsp+arg_@]
.text:ea800081500268EF mov gword ptr [rax+7e8h], @
text:eeeeeealE00268C7 mov rax, [rsptarg_@]
Ltext:@0080001300268CC mov gword ptr [rax+78h], @
.text:00086008150026004 mov rax, [rsptarg_@]
.text:BE82628188026800 mov gword ptr [rax+3eh], @
.text:B0020881800260E4 mov rax, [rsptarg_2]
.text:06800001500268E9 mowv gword ptr [rax+88h], @
.text:08000081500268F4 mov rax, [rsp+arg_@]
.text:eae0e081500268F9 mov gword ptr [rax+9eh], @
text:eeeeeealE00826104 mov rax, [rsptarg_@]
.text:p000000130026109 mov gword ptr [rax+98h], @
.text:00806008180026114 mov rax, [rsptarg_@]
.text:BEEE622188826119 mov gword ptr [rax+@4Ash], @
.text:00000081500826124 mow rax, [rsptarg_e]

Yikes... looks like someone turned off optimizations.

Cheating Microsoft's WHQL Certification

So far we've covered methods to read and write arbitrary kernel memory, but there is one
step missing to install our own rootkit. Although you could execute kernel shellcode with just
a read/write primitive, I generally like finding the path of least resistance. Since this is a
third-party driver, chances are, there is some NonPagedPool memory allocated which we
can use to host and execute our malicious shellcode.

25/28

Let's take a look at how Trend Micro allocates memory. Early in the entrypoint of the driver,
Trend Micro checks if the machine is a "supported system" by checking the major version,
minor version, and the build number of the operating system. Trend Micro does this because
they hardcode several offsets which can change between builds.

Fortunately, the PoolType global variable which is used to allocate non-paged memory is
set to 0 (NonPagedPool) by default. I noticed that although this value was o0 initially, the
variable was still in the .data section, meaning it could be changed. When I looked at what
wrote to the variable, I saw that the same function responsible for checking the operating
system's version also set this PoolType variable in certain cases.

83| if (versionInfo.dwMajorVersion »>= 18 && MysteriousCheck())

84| {

85 PoolType = 512; /{ NonPagedPoolNx
86 MemoryPriority |= @x48600088u;

87 }

From a brief glance, it looked like if our operating system is Windows 10 or a newer version,
the driver prefers to use NonPagedPoolNx . Good from a security standpoint, but bad for us.
This is used for all non-paged allocations, meaning we would have to find a spare

ExAllocatePoolwithTag that had a hardcoded NonPagedPool argument otherwise we
couldn't use the driver's allocated memory on Windows 10. But, it's not that straightforward.
What about MysteriousCheck() ,the second requirement for this if statement?

19| RtlInitUnicodeString(

28 &DestinationString,

21 L"\\Registry\\WMachine’\\SYSTEM\\CurrentControlSet\\Control\\Session Manager\\Memory Management");
22| ObjectAttributes.Length = 48;

23 RootDirectory = @iG4;

24 s Attributes = 784;

25 s.0bjectMame = &DestinationString;

26 J tt z.SecurityDescriptor = Bie4;

27| ObjectAttributes.SecurityQualityOfservice = 8i64;

28| status = ZwOpenKey(&KeyHandle, lu, &0bjectAttributes);

29| if { KeyHandle && status >= @)

el

31 ResultLength = @3

32 RtlInitUnicodeString(&valueName, L"VerifyDriverLewvel"};

33 status = ZwQueryValueKey(KeyHandle, &vValueName, KeyValueFullInformation, @i64, @, &Resultlength);
55 if (status »= @)

56 1

57 if (KeyvalueInformation->Type == 4)} // REG_DWORD

8 {

59 valueptr = (int *}{{char *)}KeyValueInformation + KeyValueInformation-:DataOffset);
68 value = *valueptr;

&1 1

62 if (value & 8x20000808)

B3 result = 1;

What MysteriousCheck() was doing was checking if Microsoft's Driver Verifier was
enabled... Instead of just using NonPagedPoolNx on Windows 8 or higher, Trend Micro
placed an explicit check to only use secure memory allocations if they're being
watched. Why is this not just an example of bad code? Trend Micro's driver is WHQL
certified:

26/28

https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/driver-verifier
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/whql-release-signature

General Digtal Signatures | Securty Detalls Previous Versions General | Advanced
Signature list = Digital Signature Information
This digital signature is QK.
Mame of signer: Digest algarithm Timestamp
Trend Micro, Inc. shal Tuesday, April 24, 20...)))
Signer information
Microsoft Windo .. sha?b6 Thursday, May 3, 201 .
Trend Micro, Inc. sha2b6 Tuesday, April 24, 20... Mame: |Micrusuft Windows Hardware Compatibility Publis
E-mail: Mot available
Details Signing time: |Thursday, May 3, 2018 7:19:30 AM
View Certificate
Countersignatures
Mame of signer: E-mail address: Timestamp
Microsoft Time-5... Mot available Thursday, May 3, 20...
Details
QK
QK Cancel Apply

Passing Driver Verifier has been a long-time requirement of obtaining WHQL certification.
On Windows 10, Driver Verifier enforces that drivers do not allocate executable memory.
Instead of complying with this requirement designed to secure Windows users, Trend
Micro decided to ignore their user's security and designed their driver to cheat
any testing or debugging environment which would catch such violations.

Honestly, I'm dumbfounded. I don't understand why Trend Micro would go out of their way
to cheat in these tests. Trend Micro could have just left the Windows 10 check, why would
you even bother creating an explicit check for Driver Verifier? The only working theory I have
is that for some reason most of their driver is not compatible with NonPagedPoolNx and
that only their entrypoint is compatible, otherwise there really isn't a point.

Delivering on my promise

As I promised, you can use Trend Micro's driver to install your own rootkit. Here is what you
need to do:

1. Find any NonPagedPool allocation by the driver. As long as you don't have Driver
Verifier running, you can use any of the non-paged allocations that have their pointers
stored in the .data section. Preferably, pick an allocation that isn't used often.

2. Write your kernel shellcode anywhere in the memory allocation using the arbitrary
kernel write primitive in TMXMSCheckSystemObjectByName2 .

3. Execute your shellcode by registering an unload routine (directly in .data) or using
the several other execution methods present in the 90004027h dispatch table.

27/28

It's really as simple as that.

Conclusion

I reverse a lot of drivers and you do typically see some pretty dumb stuff, but I was shocked
at many of the findings in this article coming from a company such as Trend Micro. Most of
the driver feels like proof-of-concept garbage that is held together by duct tape.

Although Trend Micro has taken basic precautionary measures such as restricting who can
talk to their driver, a significant amount of the code inside of the IOCTL handlers includes
very risky DKOM. Also, I'm not sure how certain practices such as bruteforcing anything
would get through adequate code review processes. For example, the Bruteforcing Processes
code doesn't make sense, are Trend Micro developers not aware of enumerating processes via

zwQuerySystemInformation ? What about disabling optimizations? Anti-virus already gets
flak for slowing down client machines, why would you intentionally make your driver slower?
To add insult to injury, this driver is used in several Trend Micro products, not just their
rootkit remover. All I know going forward is that I won't be a Trend Micro customer anytime
soon.

28/28

