
1/6

View all posts by Pavel Yosifovich November 9, 2024

Structured Storage and Compound Files
scorpiosoftware.net/2024/11/09/structured-storage-and-compound-files

Structured Storage is a Windows technology that abstracts the notions of files and directories
behind COM interfaces – mainly IStorage and IStream. Its primary intent is to provide a way
to have a file system hierarchy within a single physical file.

Structured Storage has been around for many years, where its most famous usage was in
Microsoft Office files (*.doc, *.ppt, *.xls, etc.) – before Office moved to the extended file
formats (*.docx, *.pptx, etc.). Of course, the old formats are still very much supported.

The Structured Storage interfaces (IStorage representing a directory, and IStream
representing a file) are just that – interfaces. To actually use them, some implementation
must be available. Windows provided an implementation of Structured Storage called
Compound Files. These terms are sometime used interchangeably, but the distinction is
important: Compound Files is just one implementation of Structured Storage – there could be
others. Compound Files does not implement everything that could be implemented based on
the defined Structured Storage interfaces, but it implements a lot, definitely enough to make
it useful.

You can download an old tool (but still works well) called SSView, which can be used to
graphically view the contents of physical files that were created by using the Compound File
implementation. Here is a screenshot of SSView, looking at some DOC file:

https://scorpiosoftware.net/2024/11/09/structured-storage-and-compound-files/
https://learn.microsoft.com/en-us/windows/win32/stg/structured-storage-start-page
https://learn.microsoft.com/en-us/windows/win32/api/objidl/nn-objidl-istorage
https://learn.microsoft.com/en-us/windows/win32/api/objidl/nn-objidl-istream
https://learn.microsoft.com/en-us/windows/win32/stg/compound-files

2/6

Here is a more interesting example – information persisted using Sysinternals Autoruns tool
(discussed later):

https://learn.microsoft.com/en-us/sysinternals/downloads/autoruns

3/6

A more interesting hierarchy is clearly visible – although it’s all in a single file!

The Main Interfaces

The IStorage interface represents a “directory”, that can contain other directories and “files”,
represented as IStream interface implementations. To get started a physical file can be
created with StgCreateStorageEx or an existing file opened with StgOpenStorageEx. Both
return an IStorage pointer on success. From there, methods on IStorage can be called to
create or open other directories (storages) and/or files (streams).

The most useful methods on IStorage are CreateStorage, CreateStream, OpenStorage and
OpenStream. Enumeration of storages/streams is possible with EnumElements. Here is an
example for opening a compound file for read access (filename is from a command line
argument):

https://learn.microsoft.com/en-us/windows/win32/api/coml2api/nf-coml2api-stgcreatestorageex
https://learn.microsoft.com/en-us/windows/win32/api/coml2api/nf-coml2api-stgopenstorageex

4/6

CComPtr<IStorage> spStg;
auto hr = ::StgOpenStorageEx(argv[1], STGM_READ | STGM_SHARE_EXCLUSIVE,
STGFMT_STORAGE, 0, nullptr, nullptr, __uuidof(IStorage),
reinterpret_cast<void**>(&spStg));
if (FAILED(hr)) {
printf("Failed to open file (0x%X)\n", hr);
return hr;
}

The following demonstrates enumerating the hierarchy of a given storage, recursively:

void EnumItems(IStorage* stg, int indent = 0) {
CComPtr<IEnumSTATSTG> spEnum;
stg->EnumElements(0, nullptr, 0, &spEnum);
if (spEnum == nullptr)
return;
STATSTG stat;
while (S_OK == spEnum->Next(1, &stat, nullptr)) {
if (indent)
printf(std::string(indent, ' ').c_str());
printf("%ws", stat.pwcsName);
if (stat.type == STGTY_STORAGE) {
printf(" [DIR]\n");
CComPtr<IStorage> spSubStg;
stg->OpenStorage(stat.pwcsName, nullptr,
STGM_READ | STGM_SHARE_EXCLUSIVE, 0, 0, &spSubStg);
if (spSubStg)
EnumItems(spSubStg, indent + 1);
}
else
printf(" (%u bytes)\n", stat.cbSize.LowPart);
::CoTaskMemFree(stat.pwcsName);
}
}

Each item has a name, but streams (“files”) can have data. The cbSize member of STATSTG
returns that size. A stream is just an abstraction over a bunch of bytes. To actually read/write
from/to a stream, it needs to be opened with IStorage::OpenStream before accessing the
data with IStream::Read, IStream::Write and similar methods.

More on Streams

The IStream interface is used in various places within the Windows API, not just part of
Structured Storage. It represents an abstraction over a buffer, that in theory could be
anywhere – that’s the nice thing about an abstraction. Given an IStream pointer, you can
read, wrote, seek, copy to another stream, clone, and even commit/revert a transaction, if
supported by the implementation. Compound Files, by the way, doesn’t support transactions
on streams.

Outside of Structured Storage, streams can be obtained in several ways.

5/6

The CreateStreamOnHGlobal API creates a memory buffer over an optional HGLOBAL (can be
NULL to allocate a new one) and returns an IStream pointer to that memory buffer. This is
useful when dealing with the clipboard for example, as it requires an HGLOBAL, which may not
be convenient to work with. By getting an IStream pointer, the code can work with it (maybe
reading it from another stream, or manually populating it with data), and then calling
GetHGlobalFromStream to get the underlying HGLOBAL before passing it to the clipboard (e.g.
SetClipboardData).

A stream can also be obtained for a file directly by calling SHCreateStreamOnFile, providing
a convenient access to file data, abstracted as IStream.

Another case where IStream makes an appearance is in ActiveX controls persistence.

Yet another example of using IStream is as a way to “package” information for COM object’s
state that would allow creating a proxy to that object from a different apartment by calling
CoMarshalInterThreadInterfaceInStream (probably the longest-name COM API), that
captures the state required (as an IStream) to pass to another apartment, where the
corresponding CoGetInterfaceAndReleaseStream can be called to generate a proxy to the
original object, if needed.

Case Study: Autoruns

Back in 2021 when I was working for the Sysinternals team, one of my tasks was to
modernize Autoruns from a GUI perspective. I thought I would take this opportunity to do a
significant rewrite, so that it would be easier to maintain the tool and improve it as needed.
Fortunately, Mark Russinovich was onboard with that, although my time estimate for this
project was way off 🙂 But I digress.

One of the features of Autoruns is the ability to save the information provided by the tool so it
can be loaded later, possibly on a different machine. This is non-trivial, as some of the
information is not easy to persist, such as icons. I don’t recall if the old Autoruns persisted
them, but I definitely wanted to do so.

The old Autoruns format was sequential in nature, storing structures of data linearly in the
file. Any new properties that needed to be added would require offset changes, which forced
changing the format “version” and make the correct decisions when reading a file in an
various “old” formats.

I wanted to make persistence more flexible, so I decided to change the format completely to
be a compound file. With this scheme, adding new properties would not cause any issues –
a new stream may be added, but other streams are not disturbed. The code could just ignore
properties (could be storages and/or streams) it wasn’t aware of. This made the format
extensible by definition, immune to any offset changes, and very easy to view using tools,
like SSView. The above screenshot is from an Autoruns-persisted file.

https://learn.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-createstreamonhglobal
https://learn.microsoft.com/en-us/windows/win32/api/shlwapi/nf-shlwapi-shcreatestreamonfilea
https://learn.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-comarshalinterthreadinterfaceinstream
https://learn.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-cogetinterfaceandreleasestream
https://learn.microsoft.com/en-us/sysinternals/downloads/autoruns

6/6

Persisting icons, by the way, becomes pretty easy, because ImageList objects, used by
Autoruns to hold collection of icons can be persisted to a stream with a single function call:
ImageList_Write; very convenient!

Conclusion

The Structured Storage idea is a powerful one, and the Compound File implementation
provided by Windows is pretty good and flexible. One of the reasons Microsoft moved Office
to a new format was the need to make files smaller, so the new extended formats are ZIP
compressed. Their internal format changed as well, and is not using Compound Files for the
most part. A Structured Storage file could be compressed, saving disk space, while still
maintaining convenient access using storages and streams.

https://learn.microsoft.com/en-us/windows/win32/api/commctrl/nf-commctrl-imagelist_write

