
1/71

Windows Authentication - Credential Providers - Part 2
dennisbabkin.com/blog

[]

Intro

In the first part of this series I've shown some basic concepts of creating a credential provider
in Windows, things like what credential provider is, what components make it up, and which
COM interfaces it relies on. All of that stuff will be required to follow on in this blog post. So
please be sure to read that first.

To recap it very briefly, a credential provider's purpose is to collect credentials needed to log
in users to their Windows accounts. And, under the hood, a credential provider is just a
collection of COM objects that are invoked by a host caller (in many cases a LogonUI
process) that perform a certain task.

Thus, what helped me to grasp how to code my own credential provider was to understand
its life cycle. Or, in other words, what callbacks come when and what they do. And this is
what I will dedicate this part of the series for.

So without further adieu, let's start from the very beginning of the credential provider's life.

Table Of Contents

For an easier navigation here's the table of contents:

https://dennisbabkin.com/blog/?t=sequence-of-calls-to-credential-provider-in-windows
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows
https://en.wikipedia.org/wiki/Component_Object_Model

2/71

Nomenclature

Registration

Debugging & Testing

Uninstalling

 De-registration

De-registration "The Hard Way"

DLL Exports

Initialization

Filter::UpdateRemoteCredential

Filter::Filter

Provider::SetUsageScenario

Provider::SetSerialization

Provider::SetUserArray

Filter::Filter (PLAP)

Provider::Advise

User Interface Initialization

Provider::GetCredentialCount

Provider::GetCredentialAt

Provider::GetFieldDescriptorCount

Provider::GetFieldDescriptorAt

User Interface Callbacks

Credential::GetStringValue

Credential::GetFieldState

Credential::GetFieldOptions

Credential::GetBitmapBufferValue

Credential::GetBitmapValue

Credential::GetCheckboxValue

3/71

Credential::GetComboBoxValueCount

Credential::GetComboBoxValueAt

Credential::GetSubmitButtonValue

Post Initialization

Credential::GetUserSid

Credential::Advise

User Interaction & State Changes

Credential::SetSelected

Credential::SetDeselected

Provider::SetDisplayState

Credential::SetStringValue

Credential::SetCheckboxValue

Credential::SetComboBoxSelectedValue

Credential::CommandLinkClicked

Submit Button Sequence

Credential::Connect

Credential::Disconnect

Credential::GetSerialization

Credential::ReportResult

Uninitialization

Credential::UnAdvise

Provider::UnAdvise

Wrapping An Existing Credential Provider

Specifics Of A Remote Desktop Connection

Conclusion

Nomenclature

4/71

To simplify the contents of this post let me come up with the following naming convention:

MyFactory will be the name for my factory class.
MyFilter will be my filter class.
MyProvider will be my provider class.
MyCredential will be my credential class.

I already described what each of those classes does in part 1 of this series. So click the links
above to read about each class.

Additionally, I showed what "tiles" and "UI fields" are in a credential provider.

Registration

As most of the COM things, a credential provider needs to register itself in the system
registry. It has a few other places to do so than just your run-of-the-mill COM component.

The credential provider needs to register its filter and provider classes in the following keys,
respectively:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\Credentia
l Provider Filters

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\Credentia
l Providers

For that create two unique CLSIDs. You can do it using Microsoft's "Create GUID" tool in
Visual Studio.

For the purpose of this demo I will be using the following CLSIDs. But don't borrow
mine. If you do that you will create a naming conflict:

{855E2A67-A476-4664-8581-01BEC33975BF} for MyFilter class.
{855E2A67-A476-4664-8581-01BEC33975BC} for MyProvider class.

I separated them just by the last hex digit for readability.

The format to register MyFilter class is as follows:

Regedit[Copy]

https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#components_factory
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#filter_class
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#provider_class
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#credential_class
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#credential_class
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#credential_class
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#filter_class
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#provider_class

5/71

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\Credenti
al Provider Filters\{855E2A67-A476-4664-8581-01BEC33975BF}]

@="MyCredentialProvider Filter"

[HKEY_CLASSES_ROOT\CLSID\{855E2A67-A476-4664-8581-01BEC33975BF}]

@="MyCredentialProvider Filter"

[HKEY_CLASSES_ROOT\CLSID\{855E2A67-A476-4664-8581-01BEC33975BF}\InprocServer32]

@="path\\to\\MyCredentialProvider.dll"

"ThreadingModel"="Apartment"

The default string value for each key does not matter, except for the InprocServer32 key. It
must contain the path to your credential provider DLL.

Even though it is possible to specify only a DLL file name in the InprocServer32 key,
for security purposes, I would strongly advise to use the absolute file path to prevent
any ambiguity.

IMPORTANT: Make sure to place your credential provider DLL somewhere in a write-
protected folder, where only administrators have the write access to it! Otherwise you
will be creating a security loophole.
A good location would be the %ProgramW6432% system directory under your company
name. For instance:

"C:\Program Files\My Company\Credential Provider\MyCredentialProvider.dll"

Because you may be testing your credential provider in a virtual machine (VM), with
the debugger build configuration, make sure that its DLLs can be loaded in that OS.
You can use my WinAPI Search tool to determine if all of its dependent modules are
present in that OS. Otherwise your credential provider won't load and you won't see
much when you attempt to test it.

Then the format to register MyProvider class is as follows:

Regedit[Copy]

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\Credenti
al Providers\{855E2A67-A476-4664-8581-01BEC33975BC}]

@="MyProvider Password MFA"

[HKEY_CLASSES_ROOT\CLSID\{855E2A67-A476-4664-8581-01BEC33975BC}]

@="MyProvider Password MFA"

[HKEY_CLASSES_ROOT\CLSID\{855E2A67-A476-4664-8581-01BEC33975BC}\InprocServer32]

@="path\\to\\MyCredentialProvider.dll"

"ThreadingModel"="Apartment"

https://dennisbabkin.com/winapisearch/

6/71

Although you can technically separate your filter and provider classes into different
modules (DLLs), it is highly impractical, and most credential providers don't do that.

The names for the keys should describe what your provider does. In my case I'm writing a
generic password provider with a secondary authentication, or MFA.

After you set those registry keys, the credential provider will be good to go. No reboot is
necessary. All you need to test it, among other things, is to lock the workstation, or to log out
the user. If everything goes well, you should see your credential provider in action.

Keep in mind that a registered credential provider could be immediately used not only
during a login process, but also from the Windows Explorer for some UAC prompts,
and from other apps that may require Windows user account verification.

Having said that, I need to warn you that it is very easy to mess up your operating system
with a faulty credential provider!

Debugging & Testing

It should probably go without saying that you should not install and test your credential
provider on the same system that you are developing it on, or on any production or important
PC that you don't want to lose access to.

By its nature a credential provider loads before you can log in to your system, and thus
if you mess something up, you are risking to bork that computer!
Because of that, always test your credential provider in a virtual machine!

Although for the most hardcore developers, it is possible to debug a credential provider on
the same system, installing it in a VM greatly simplifies things. So don't be a masochist.

Debugging a credential provider is an entire subject of its own, thus I will leave it for a future
blog post.

Let me briefly mention that the best way to see what is happening in a credential
provider is to use diagnostic logging (into a text file). And as debugging itself is
concerned, you can use Visual Studio Remote Debugger to attach to the host process,
or LogonUI.exe for the login screen.

For now though let me review how you can uninstall your credential provider, an easy way,
and a hard way, if you happened to have skipped this chapter before you installed it.

Uninstalling

Let's first review an easy uninstallation, if you have access to any of the user accounts on the
PC where the credential provider is installed.

https://en.wikipedia.org/wiki/Multi-factor_authentication
https://en.wikipedia.org/wiki/File_Explorer
https://en.wikipedia.org/wiki/User_Account_Control
https://learn.microsoft.com/en-us/visualstudio/debugger/remote-debugging?view=vs-2022

7/71

De-registration

Simply remove the registry keys for the filter class:

I'm using my own CLSIDs for the filter and provider classes. You obviously need to
substitute those GUIDs with your own.

Regedit[Copy]

[-
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\Credentia
l Provider Filters\{855E2A67-A476-4664-8581-01BEC33975BF}]

[-HKEY_CLASSES_ROOT\CLSID\{855E2A67-A476-4664-8581-01BEC33975BF}]

And for the provider class:

Regedit[Copy]

[-
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\Credentia
l Providers\{855E2A67-A476-4664-8581-01BEC33975BC}]

[-HKEY_CLASSES_ROOT\CLSID\{855E2A67-A476-4664-8581-01BEC33975BC}]

And that is pretty much it. Your credential provider will not be loaded anymore. No reboot is
necessary.

De-registration "The Hard Way"

But, if you don't have access to a user account on the PC where you installed your credential
provider, you will need to uninstall it the hard way.

The easy-hard-way is to create a snapshot in a VM before you install it. And then
simply revert the snapshot if something goes wrong. You will lose all your diagnostic
logs and other data that way, but at least it is fast.

But if you didn't make a snapshot to revert to, or if you're testing it on a physical PC, follow
these steps to remove your credential provider:

1. Press and hold the power button to initiate a hard reset. In a VM, there should be a
menu option for that.

8/71

2. While the OS is rebooting, initiate a hard reset once again. This should put it into a
recovery mode the next time it boots.

If the recovery mode doesn't come up, you may want to repeat the hard reset for
a few times. Or, alternatively, you can press and hold the F9 (or, on some
systems the F12) keyboard key during the initial boot sequence to initiate it
manually.

3. When you enter the recovery mode in Windows, select "Troubleshoot", then "Advanced
Options" and "Command Prompt".

You may need to provide your administrator password at that stage.

4. When the command prompt opens up, use the following commands to switch to the
directory where you installed the credential provider and then remove its DLL:
Admininstrator Command Prompt[Copy]

C:

cd "path\to"

del /f MyCredentialProvider.dll

In the example above, I'm assuming that you installed your credential provider on drive
C:, where the path\to is the directory where you placed it in, and
MyCredentialProvider.dll is the file name for the credential provider DLL.

5. Reboot the system.
6. You should not see your credential provider anymore and should be able to log in.

Be careful next time and please heed my advice that I gave above!

DLL Exports

Your credential provider DLL must have the following exported functions to be able to load as
a COM component:

C++[Copy]

extern "C" __declspec(dllexport) HRESULT STDAPICALLTYPE DllGetClassObject(REFCLSID
rclsid, REFIID riid, void** ppv);

extern "C" __declspec(dllexport) HRESULT STDAPICALLTYPE DllCanUnloadNow();

The DllCanUnloadNow function must implement module-wide reference counting, and return
S_OK when the count reaches 0, and S_FALSE otherwise. This is your DLL's way of saying
that no internal class is active in it.

https://support.microsoft.com/en-us/windows/recovery-options-in-windows-31ce2444-7de3-818c-d626-e3b5a3024da5
https://learn.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-dllcanunloadnow

9/71

And the DllGetClassObject function is where your credential provider begins its life cycle.

Initialization

Once registered your credential provider will go through the following stages when a host
process tries to load it:

1. From within the DllGetClassObject call you need to check the rclsid parameter, that
was passed into it, to be one of your CLSIDs that you registered MyFilter class and
MyProvider class with. And if so, create an instance of MyFactory class for each of
those CLSIDs, and invoke its QueryInterface method with the riid and ppv
parameters that were passed in the DllGetClassObject call.

2. The IClassFactory will then invoke the CreateInstance method of your MyFactory
class with the riid set to ICredentialProvider. In turn your MyFactory class should
create an instance of your MyProvider class, and later call its IUknown's
QueryInterface with the riid and ppv that were passed into the CreateInstance call.

https://learn.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-dllgetclassobject
https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-queryinterface(refiid_void)
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovider
https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-queryinterface(refiid_void)

10/71

3. Your MyProvider class will then begin receiving its own calls to its QueryInterface
method. The most obvious are requests for the ICredentialProvider interface riid.
That is where it needs to return the pointer to its inherited ICredentialProvider
interface.

To simplify dealing with pointers to inherited interfaces use the QITABENT and
QITABENTMULTI macros in the QITAB struct and the QISearch function. (Check the
description for the QISearch function for details.)

Additionally, the QueryInterface method for MyProvider class may receive requests
for the IAutoLogonProvider interface at this early stage. It is an undocumented
interface, that is declared as such:

C++[Copy]

MIDL_INTERFACE("8A4E89FE-C09D-475E-88CB-F8F11E047C50")

IAutoLogonProvider : public IUnknown

{

virtual HRESULT STDMETHODCALLTYPE SetAutoLogonManager(IAutoLogonManager
*) = 0;

};

The only method that is available in it deals with IAutoLogonManager, that seems to be
declared as such (it is also undocumented):

C++[Copy]

struct IAutoLogonManager : public IUnknown

{

virtual HRESULT STDMETHODCALLTYPE IgnoreAutoLogonMode() = 0;

virtual BOOL STDMETHODCALLTYPE IsAutoLogonMode() = 0;

virtual BOOL STDMETHODCALLTYPE IsSingleUserNoPasswordAutoLogonMode() =

0;
virtual BOOL STDMETHODCALLTYPE IsAutoLogonNotSingleUserNoPasswordMode()

= 0;

virtual BOOL STDMETHODCALLTYPE IsSystemAutoLogon() = 0;

virtual HRESULT STDMETHODCALLTYPE UpdateAutoLogonDefaultSID() = 0;

virtual HRESULT STDMETHODCALLTYPE ResetAutoLogonSetting() = 0;

virtual HRESULT STDMETHODCALLTYPE ClearSystemAutoLogonSetting() = 0;

virtual HRESULT STDMETHODCALLTYPE GetAutoLogonCredential(_Out_ PWSTR*,

Out PWSTR*, _Out_ PWSTR*) = 0;

virtual BOOL STDMETHODCALLTYPE IsSingleUser() = 0;

virtual HRESULT STDMETHODCALLTYPE

GetSerializedAutoLogonCredential(ICredProviderCredentialSerialization * *) = 0;

};

Without having done too much reverse engineering of the IAutoLogonProvider
interface, I would surmise to say that it deals with automatic logins that credential
providers support.

https://learn.microsoft.com/en-us/windows/win32/api/shlwapi/ns-shlwapi-qitab
https://learn.microsoft.com/en-us/windows/win32/api/shlwapi/nf-shlwapi-qisearch

11/71

4. After that your MyFactory class will receive another call to its CreateInstance method
with riid for the ICredentialProviderFilter interface. As before, it needs to create
an instance of your MyFilter class and invoke the QueryInterface on the IUnknow
that it inherited from, with the riid and ppv that it received in the CreateInstance call.

Filter::UpdateRemoteCredential

5. This callback will take place if the system receives a remote desktop connection (RDP)
request. Otherwise you won't see this callback.

The purpose of this callback is to select the correct provider to redirect the serialized
login data to. In case of the RDP connection such data comes from a remote computer.

Note that this request arrives to the credential provider after the RDP client on the
remote machine supplies the correct user credentials. Or, in other words, the received
serialized data should contain valid credentials for one of the local users in the system
where the credential provider is running.

I will give an overview of an RDP connection later.

The job of this callback is to substitute the provider (defined by its CLSID in the
clsidCredentialProvider parameter) that it received in the pcpcsIn parameter on the
input, with the provider CLSID that the received serialized data must be redirected to.
This is done in the pcpcsOut parameter.

Later on, the provider class that was specified in the pcpcsOut parameter, will receive
the same serialized data in its SetSerialization callback for the actual processing.

Make sure to treat provided serialized binary login data in the pcpcsIn parameter
as if it came from an untrusted source!

This method should return S_OK if it could substitute the provider, to proceed with the
login data received. Otherwise it should return an error code.

If this callback returns a failure error code, the remote user will be presented with a
remote credential provider on their screen. After that, they will have to re-login using
the remote credential provider.

To determine if computer is currently receiving an RDP connection use the
SM_REMOTESESSION flag, with some additional checks, that are explained here.

Filter::Filter

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialproviderfilter
https://en.wikipedia.org/wiki/Remote_Desktop_Protocol
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialproviderfilter-updateremotecredential
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialproviderfilter-updateremotecredential
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialproviderfilter-updateremotecredential
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialproviderfilter-updateremotecredential
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getsystemmetrics
https://learn.microsoft.com/en-us/windows/win32/termserv/detecting-the-terminal-services-environment

12/71

6. Your MyFilter class will receive a call to its Filter method with the details of the
usage scenario for your credential provider, and with the list of all available providers in
the system.

This is usually where you need to decide if you want to support such scenario in your
credential provider. And if so, your job is to deny any providers that you do not want to
support by setting the BOOL values in the rgbAllow array to FALSE. Otherwise, just
leave them unchanged.

I already showed the list of providers that my credential provider's filter received
on Windows 10. This list may be obviously different on some other OS.

You usually make your decision based on where your provider was called from. That
will be supplied to you in the cpus parameter.

For instance, if my MFA provider does not support CPUS_CHANGE_PASSWORD,
CPUS_CREDUI or CPUS_PLAP usage scenarios, I should return E_NOTIMPL for them from
my Filter callback. This will begin the process of unloading of my credential provider
from the host process.

Otherwise, when you're done with your filtering logic, return S_OK from the Filter
method if you want to continue loading your credential provider for that usage scenario.

Note that if you do not return S_OK from the Filter method, your credential
provider will receive only calls to the following methods before it is unloaded:
Provider::SetUsageScenario, Provider::UnAdvise.
Also note that in this case
it will not receive a previously matching call to Provider::Advise.

Provider::SetUsageScenario

7. Your MyProvider class will receive this callback with details of the usage scenario,
similar to what your Filter::Filter had received earlier. And thus your response to
this callback should be coordinated with the Filter::Filter callback.

This callback basically tells MyProvider class how your credential provider is loaded:
whether it's a login screen, an unlocking of the workstation, a change-of-password
screen, a call from the CredUIPromptForWindowsCredentials function, etc.

Return S_OK for success, or E_NOTIMPL if you don't want to support such usage
scenario.

Provider::SetSerialization

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialproviderfilter-filter
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/ne-credentialprovider-credential_provider_usage_scenario
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialproviderfilter-filter
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#filter_class
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialproviderfilter-filter
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/ne-credentialprovider-credential_provider_usage_scenario
https://learn.microsoft.com/en-us/windows/win32/api/wincred/nf-wincred-creduipromptforwindowscredentialsw

13/71

8. This callback lets your MyProvider class process the serialized input that was received
from outside. Such input is usually received from a remote computer via the remote
desktop connection (RDP) request, or as a result of a call to the
CredUIPromptForWindowsCredentials function by some other process (such as the
Windows Explorer, when displaying some forms of the UAC prompt, etc.)

Make sure to treat provided serialized binary login data in the pcpcs parameter
as if it came from an untrusted source!

Your MyProvider class may not receive this callback in other cases. Otherwise, it
will follow the UpdateRemoteCredential callback in your MyFilter class.

The job of this method is to process serialized data that it received in the pcpcs
parameter, and to fill in the UI fields in the appropriate credential. It may also determine
if the supplied login info is enough to warrant an automatic login. If so, it may later
proceed with the submit sequence at the later callbacks.

The implementation in the default password credential provider in Windows
performs an in-place decoding of received input parameters using an internal
KerbInteractiveUnlockLogonUnpackInPlace function. You can find it in the
official Microsoft sample.
After that, if it succeeds at decoding the input credentials, it later initiates an
autologon in the GetCredentialCount callback.

But, if provided serialized data is not enough, or if there's an error during de-
serialization, this callback may return E_UNEXPECTED. In that case, the (remote) user
requesting the login will be asked to re-enter their credentials.

The format of the serialized binary data received in the input parameter depends on the
provider. For system providers you can use the CredUnPackAuthenticationBufferW
API to decode it.

Thus, you can apply the following logic to try to de-serialize the data received:

C++[Copy]

https://en.wikipedia.org/wiki/Remote_Desktop_Protocol
https://learn.microsoft.com/en-us/windows/win32/api/wincred/nf-wincred-creduipromptforwindowscredentialsw
https://en.wikipedia.org/wiki/File_Explorer
https://en.wikipedia.org/wiki/User_Account_Control
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovider-setserialization
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovider-setserialization
https://github.com/microsoft/Windows-classic-samples/blob/ac06e54a15e9a62443e400fffff190fb978ea586/Samples/CredentialProvider/cpp/helpers.cpp#L517C34-L517C34
https://learn.microsoft.com/en-us/windows/win32/api/wincred/nf-wincred-credunpackauthenticationbufferw

14/71

#include <tchar.h>

#include <wincred.h>

#pragma comment(lib, "Credui.lib")

BOOL DeserializeRemoteProviderLoginData(

__in const CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION* pcpcs)

{

BOOL bRes = FALSE;

int nOSError = 0;

if(pcpcs &&

	 pcpcs->rgbSerialization)

{

	 DWORD dwchSzUser = 0;

	 DWORD dwchSzPwd = 0;

	 DWORD dwFlags = CRED_PACK_PROTECTED_CREDENTIALS;

	 BOOL bB = CredUnPackAuthenticationBufferW(dwFlags,

	 	 pcpcs->rgbSerialization,

	 	 pcpcs->cbSerialization,

	 	 NULL, &dwchSzUser,

	 	 NULL, NULL,

	 	 NULL, &dwchSzPwd);

	 nOSError = GetLastError();

	 if(!bB &&

	 	 nOSError == ERROR_INVALID_PARAMETER)

	 {

	 	 //Try an old method w/o password encryption

	 	 dwFlags = 0;

	 	 bB = CredUnPackAuthenticationBufferW(dwFlags,

	 	 	 pcpcs->rgbSerialization,

	 	 	 pcpcs->cbSerialization,

	 	 	 NULL, &dwchSzUser,

	 	 	 NULL, NULL,

	 	 	 NULL, &dwchSzPwd);

	 	 nOSError = GetLastError();

	 }

	 if(!bB &&

	 	 nOSError == ERROR_INSUFFICIENT_BUFFER)

	 {

	 	 WCHAR* pUsr = new (std::nothrow) WCHAR[dwchSzUser];

	 	 if(pUsr)

	 	 {

	 	 	 WCHAR* pPwd = new (std::nothrow)

WCHAR[dwchSzPwd];

	 	 	 if(pPwd)

	 	 	 {

15/71

	 	 	 	
if(CredUnPackAuthenticationBufferW(dwFlags,

	 	 	 	 	 pcpcs->rgbSerialization,

	 	 	 	 	 pcpcs->cbSerialization,

	 	 	 	 	 pUsr, &dwchSzUser,

	 	 	 	 	 NULL, NULL,

	 	 	 	 	 pPwd, &dwchSzPwd))

	 	 	 	 {

	 	 	 	 	 bRes = TRUE;

	 	 	 	 	 nOSError = 0;

	 	 	 	 	 wprintf(L"User: %s\n", pUsr);

	 	 	 	 	 //DO NOT output, log, or store
the password!!!

	 	 	 	 	 wprintf(L"Password: %s\n",

	 	 	 	 	 	 pPwd && pPwd[0] ?

L"provided" : L"empty");

	 	 	 	 }

	 	 	 	 else

	 	 	 	 	 nOSError = GetLastError();

	 	 	 	 //Securely erase the password

	 	 	 	 SecureZeroMemory(pPwd, dwchSzPwd);

	 	 	 	 delete[] pPwd;

	 	 	 	 pPwd = NULL;

	 	 	 }

	 	 	 else

	 	 	 	 nOSError = ERROR_OUTOFMEMORY;

	 	 	 delete[] pUsr;

	 	 	 pUsr = NULL;

	 	 }

	 	 else

	 	 	 nOSError = ERROR_OUTOFMEMORY;

	 }

}

else

	 nOSError = ERROR_EMPTY;

SetLastError(nOSError);

return bRes;

}

Provider::SetUserArray

16/71

9. This callback is invoked with the list of currently available users for the login. A usual
implementation is to cache provided user data for future reference.

This callback will not be available if you're using an older (version 1) provider
class.

Keep in mind that in some situations a host process may request to display a so-called
"Other User" tile. Unlike regular tiles, such a tile gives user an option to enter their user
name and password:

"Other User" tile on Windows 10.

In this case, the user array provided in the users parameter will not include any
information about the "Other User" tile. You can deduce its presence by calling the
GetAccountOptions method and by examining its
credentialProviderAccountOptions parameter as such:

C++[Copy]

https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#provider_class
https://dbimgs.s3-us-west-2.amazonaws.com/sqnc-f-clls-t-crdntl-prvdr-n-wndws-sub01.png
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidersetuserarray-setuserarray
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovideruserarray-getaccountoptions
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/ne-credentialprovider-credential_provider_account_options

17/71

HRESULT STDMETHODCALLTYPE MyProvider::SetUserArray(

In ICredentialProviderUserArray* users)

{

//Determine if we need to display the "Other user" tile

enum class OTHER_USER_TILE

{

	 NotNeeded,

	 Needed,

	 NeededMicrosoftAccount,

};

OTHER_USER_TILE other_user = OTHER_USER_TILE::NotNeeded;

CREDENTIAL_PROVIDER_ACCOUNT_OPTIONS cpao;

if(SUCCEEDED(users->GetAccountOptions(&cpao)))

{

	 if(cpao & CPAO_EMPTY_LOCAL)

	 {

	 	 if(cpao & CPAO_EMPTY_CONNECTED)

	 	 {

	 	 	 //"Microsoft account" is when you sign in using

your email address or phone number.

	 	 	 other_user =

OTHER_USER_TILE::NeededMicrosoftAccount;

	 	 }

	 	 else

	 	 {

	 	 	 //Regular "Other user" tile

	 	 	 other_user = OTHER_USER_TILE::Needed;

	 	 }

	 }

}

//Do other work ...

}	 	

You can obtain the following information for the available users: user name (eg: Admin),
user's display name (or the name, that could be added after a user account was
created, eg: Admin Account), "qualified user name" (eg: DESKTOP-14CH5ES\Admin),
"logon status string" (eg: Locked), user's primary SID (eg: S-1-5-21-2104516720-
2747548040-1419514401-1001) and "provider ID" (or special GUID for online Microsoft
user accounts) using the GetStringValue function.

Filter::Filter (PLAP)

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovideruser-getstringvalue

18/71

10. This optional callback in your MyFilter class may be invoked if the system needs to
support pre-logon authentication for a credential provider, or PLAP.

An example of such scenario would be the need for the 802.1x authentication to
establish a network connection.

In this case the cpus parameter will be set to CPUS_PLAP.

The processing of this filter method should be similar to what I already described, with
the exception that if you return E_NOTIMPL from this method, your credential provider
will not be unloaded. It will tell the host process that it does not support the PLAP
features.

Provider::Advise

11. This callback is invoked to ask your MyProvider class if it wants to use certain events
(through the ICredentialProviderEvents interface). For instance, if you need to
refresh (or redraw) the tiles in your credential provider, you can do so by calling the
CredentialsChanged function. But for that you need to retain a copy of the
ICredentialProviderEvents interface in your Advise callback.

To retain a copy of the interface simply increment the reference count by using its
AddRef method. In that case though, remember to dereference it in the
corresponding UnAdvise callback by calling its Release method.

If you do not need this callback, simply return E_NOTIMPL from it.

User Interface Initialization

The following sequence of callbacks will be sent to your credential provider to initialize the
user interface (UI) components:

From a perspective of a UI developer, the way credential provider's UI is structured
may appear odd. It works by the host process asking for UI elements and by your
MyProvider (or MyCredential) classes responding. There's not always a freedom for
the latter classes to simply draw their UI elements at some arbitrary location or of an
arbitrary size, nor to resize, move or to recreate themselves.

Provider::GetCredentialCount

https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/credentials-processes-in-windows-authentication
https://en.wikipedia.org/wiki/IEEE_802.1X
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialproviderfilter-filter
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialproviderevents
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialproviderevents-credentialschanged
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovider-advise
https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-addref
https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-release

19/71

1. This method is called to let your provider specify how many tiles it wants to show and
whether or not it wants
to use the autologon feature.

Note that the number of tiles may not always match the number of users, since
some providers may not support all user accounts.

Set the number of tiles that you want to display in the pdwCount parameter. This
number must also include the "Other User" tile, if the host process requested it in the
SetUserArray callback.

Note that once you specify the number of tiles in this callback you will not be able
to add or remove them.

In case your provider wants to initiate the autologon, it needs to set the pdwDefault
parameter to the index of the tile that it wants to use for it, and the
pbAutoLogonWithDefault parameter to point to a TRUE value. Additionally, it needs to
fill out the UI fields for the default tile in your MyCredential class.

The autologon is a feature of the credential provider, that instructs it to try to
perform user login automatically, or without waiting for a user to type in their login
credentials.
The autologon may be used during an RDP login, or for an automatic logon that
could be set up via the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon system registry key.

Note that the autologon is not guaranteed to succeed, and it may be aborted if
the automatically provided user credentials are not validated. In that case the
credential provider should behave as if the autologon was not initiated.

If autologon is not needed, set the credential index pointed by pdwDefault to
CREDENTIAL_PROVIDER_NO_DEFAULT, or -1.

Provider::GetCredentialAt

2. This method is called to retrieve a pointer to an instance of your MyCredential class
for each tile by its index, supplied in the dwIndex parameter. Tile indexes go
sequentially from 0 to the number of tiles (minus one) specified in the
GetCredentialCount callback.

Remember that a "tile" is a visual representation of a "credential" class.

The usual implementation of this callback is to create an instance of your
MyCredential class for each invocation of this callback and to pass it back to the host
process in the ppcpc parameter.

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovider-getcredentialcount
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovider-getcredentialcount
https://en.wikipedia.org/wiki/Remote_Desktop_Protocol
https://learn.microsoft.com/en-us/troubleshoot/windows-server/user-profiles-and-logon/turn-on-automatic-logon
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovider-getcredentialcount
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovider-getcredentialat
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#credential_class
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#credential_class
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovider-getcredentialat

20/71

Provider::GetFieldDescriptorCount

3. Is called to retrieve the number of UI fields that will be ever needed for the usage
scenario for all tiles in your MyProvider class. Set the pdwCount parameter to the
overall number of UI fields.

Remember that UI fields are controls on the screen that a user interacts with to
provide the login credentials. These could be text input fields, buttons,
checkboxes, etc.

Once UI fields are created you will not be able to add or remove them. There are
some limited forms of modifications that UI fields allow, like changing their text, or
hiding/showing them.

The usual implementation of this callback is to create a large array of UI fields and set
them as hidden in the following GetFieldState callbacks. After that the logic in your
credential provider can show or hide UI fields in response to other callbacks, such as
when tiles become selected or deselected.

Provider::GetFieldDescriptorAt

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovider-getfielddescriptorcount
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#credential_class

21/71

4. This callback is invoked for each UI field to request its order on the screen, unique ID,
text and its type, i.e. whether it's a text, input/password box, checkbox, etc. The
number of UI fields is defined by a previous call to the GetFieldDescriptorCount
method.

Every invocation of this callback has a zero-based index of the UI field, provided in the
dwIndex parameter. The job of this method is to fill out the
CREDENTIAL_PROVIDER_FIELD_DESCRIPTOR struct and to return it in the ppcpfd
parameter.

You will need to allocate the memory for the CREDENTIAL_PROVIDER_FIELD_DESCRIPTOR
struct using the CoTaskMemAlloc function, as well as to allocate strings in it using the
SHStrDupW API, similar to the following code snippet:

C++[Copy]

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovider-getfielddescriptorat
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/ns-credentialprovider-credential_provider_field_descriptor
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovider-getfielddescriptorat
https://learn.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-cotaskmemalloc
https://learn.microsoft.com/en-us/windows/win32/api/shlwapi/nf-shlwapi-shstrdupw

22/71

HRESULT STDMETHODCALLTYPE MyProvider::GetFieldDescriptorAt(__in DWORD dwIndex,

__deref_out CREDENTIAL_PROVIDER_FIELD_DESCRIPTOR** ppcpfd)

{

HRESULT hr;

CREDENTIAL_PROVIDER_FIELD_DESCRIPTOR *pD =

(CREDENTIAL_PROVIDER_FIELD_DESCRIPTOR*)

	 CoTaskMemAlloc(sizeof(CREDENTIAL_PROVIDER_FIELD_DESCRIPTOR));

if(pD)

{

	 hr = SHStrDupW(source_cred_fields[dwIndex].label, &pD-

>pszLabel);

	 if(SUCCEEDED(hr))

	 {

	 	 pD->dwFieldID = source_cred_fields[dwIndex].dwID;

	 	 pD->cpft = source_cred_fields[dwIndex].type;

	 	 pD->guidFieldType = source_cred_fields[dwIndex].guid;

	 	 //Free old memory (if it's there, in case of a
"wrapper")

	 	 if(*ppcpfd)

	 	 {

	 	 	 CoTaskMemFree(*ppcpfd);
	 	 }

	 	 *ppcpfd = pD;

	 }

	 else

	 {

	 	 //Failed to alloc

	 	 CoTaskMemFree(pD);

	 }

}

else

	 hr = E_OUTOFMEMORY;

//Do other work ...

}

Where:

C++[Copy]

23/71

const struct

{

 DWORD dwID;

 CREDENTIAL_PROVIDER_FIELD_TYPE type;

 LPCWSTR label;

 GUID guid;

}

source_cred_fields[] =

{

 { 0, CPFT_LARGE_TEXT, L"Large text", {}, },

 { 1, CPFT_EDIT_TEXT, L"User name", CPFG_LOGON_USERNAME, },

 { 2, CPFT_PASSWORD_TEXT, L"Password field", CPFG_LOGON_PASSWORD, },

//...

};

Most UI field types are self-explanatory, but some require clarification:

First off, the guidFieldType member of the
CREDENTIAL_PROVIDER_FIELD_DESCRIPTOR struct is an extension of the UI field
type. It allows you to specify an extra meaning for that field. You can use your
own unique GUID for that, or use Microsoft-defined ones, like
CPFG_LOGON_USERNAME or CPFG_LOGON_PASSWORD in the code example above. In
case of the latter ones, they add special properties to the field, that could be
recognized by the host process.
CPFT_COMMAND_LINK is a clickable text (or a link) that you can respond to in your
CommandLinkClicked callback. It can also be transformed into a button.
CPFT_TILE_IMAGE field type with the CPFG_CREDENTIAL_PROVIDER_LOGO extension
is a special field that displays your provider's logo. You can see UI images of this
type when you click the "Sign in options" link:

"Sign in options" with three UI images on Windows 11.

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/ne-credentialprovider-credential_provider_field_type
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/ns-credentialprovider-credential_provider_field_descriptor
https://dbimgs.s3-us-west-2.amazonaws.com/sqnc-f-clls-t-crdntl-prvdr-n-wndws-sub02.png

24/71

CPFT_SMALL_TEXT field type with the CPFG_CREDENTIAL_PROVIDER_LABEL
extension is another special field that contains an accessibility user prompt for the
provider logo that I showed above. You can see such prompt if you hover the
mouse pointer over one of the UI images for a provider in the "Sign in options"
section.

To let you better visualize what UI fields are available for a credential, let's assume that
you specified the following fields in your GetFieldDescriptorAt callback in this
particular order:

ID Type Text guidFieldType

1 CPFT_SMALL_TEXT "Small text"

2 CPFT_LARGE_TEXT "Large Text"

3 CPFT_EDIT_TEXT "Edit field - User
name"

CPFG_LOGON_USERNAME

4 CPFT_EDIT_TEXT "Edit field"

5 CPFT_PASSWORD_TEXT "Password Field
1"

CPFG_LOGON_PASSWORD

6 CPFT_PASSWORD_TEXT "Password Field
2"

7 CPFT_COMBOBOX "Combo field"

8 CPFT_CHECKBOX "Checkbox 1"

9 CPFT_COMMAND_LINK "Command link"

10 CPFT_TILE_IMAGE "Tile image 1"

11 CPFT_TILE_IMAGE "Provider logo" CPFG_CREDENTIAL_PROVIDER_LOGO

12 CPFT_SMALL_TEXT "Provider label" CPFG_CREDENTIAL_PROVIDER_LABEL

13 CPFT_SUBMIT_BUTTON "Submit Btn"

These UI fields can be rendered as follows, marked with their IDs, in the login
credential provider:

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/ne-credentialprovider-credential_provider_field_type
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/ns-credentialprovider-credential_provider_field_descriptor

25/71

https://dbimgs.s3-us-west-2.amazonaws.com/sqnc-f-clls-t-crdntl-prvdr-n-wndws-sub03.png

26/71

UI fields in the login screen on Windows 11.

There are multiple restrictions that apply to UI fields:

The order at which you specify UI fields matter. The first fields will appear on top.
Note that hidden UI fields do not take any space on the screen.
You cannot specify the position of a UI field on the screen. You can only specify
its order.
All UI fields will be spaced vertically by their order. With the exception of the
"submit" button, UI fields cannot be placed horizontally next to each other.
You cannot specify the size, or style of a UI field.
On Windows 10 and later OS, the login screen (or LogonUI.exe host process) will
always display a user account image on top, followed by the user account name
in the selected tile. You cannot disable, alter, or style it from your credential
provider.
CPFT_LARGE_TEXT field type seems to be ignored by LogonUI.exe host process
on Windows 10 and later OS. It is always rendered as the CPFT_SMALL_TEXT type.
CPFG_LOGON_USERNAME and CPFG_LOGON_PASSWORD are special extension GUIDs
for the CPFT_EDIT_TEXT field type that hint to the host process which fields
contain login credentials for the "submit" button.
CPFT_TILE_IMAGE field type may contain any arbitrary bitmap and a label under it.
Your MyCredential class can specify it in the GetBitmapValue callback.

Note that the size of such image is defined by the host process and cannot
be changed from the credential provider.

CPFT_TILE_IMAGE field type was used to display a user account image if you used
an older V1 credential provider. The credential provider derived from the V1
provider class could specify its own bitmap for it. The newer provider class does
not support this functionality and the user account bitmap is rendered by the host
process (i.e. LogonUI.exe).
CPFT_TILE_IMAGE field type with the CPFG_CREDENTIAL_PROVIDER_LOGO extension
GUID allows to specify an arbitrary bitmap to be used for your MyProvider class.
It is usually created with the CPFS_DISPLAY_IN_DESELECTED_TILE attribute for a
credential. With that setup, it will be displayed by default in the "Sign in options"
section, as I showed above.

https://dbimgs.s3-us-west-2.amazonaws.com/sqnc-f-clls-t-crdntl-prvdr-n-wndws-sub03.png
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#provider_class

27/71

CPFT_SMALL_TEXT field type with the CPFG_CREDENTIAL_PROVIDER_LABEL
extension GUID allows to specify an accessibility label for the bitmap image for
your MyProvider class. It should be also created with the
CPFS_DISPLAY_IN_DESELECTED_TILE attribute.
CPFT_SUBMIT_BUTTON is a special field type for the "submit" button. It has a few
unique properties. There can be only one submit button. Although there could be
no submit buttons, like for the NgcPinProvider. Additionally, Microsoft
recommends attaching your submit button to another control, usually to a
password field. You can do so by responding to the GetSubmitButtonValue
callback in your MyCredential class. After that, the "submit" button will appear on
the side of that UI field, as I showed in the screenshot above (item with ID=13).

In case you do not want to attach your submit button to any fields, create it
with the CPFG_STANDALONE_SUBMIT_BUTTON extended guidFieldType:
C++[Copy]

// {0b7b0ad8-cc36-4d59-802b-82f714fa7022}

DEFINE_GUID(CPFG_STANDALONE_SUBMIT_BUTTON, 0x0b7b0ad8, 0xcc36,
0x4d59, 0x80, 0x2b, 0x82, 0xf7, 0x14, 0xfa, 0x70, 0x22);

And return its own field index in the GetSubmitButtonValue callback. In
that case the credential provider will display it as such:

Standalone "submit" button in the login screen on Windows 10.

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/ns-credentialprovider-credential_provider_field_descriptor
https://dbimgs.s3-us-west-2.amazonaws.com/sqnc-f-clls-t-crdntl-prvdr-n-wndws-sub04.png

28/71

To create a button, that is not a "submit" one, use the CPFT_COMMAND_LINK field
type with the CPFG_STYLE_LINK_AS_BUTTON extended GUID:
C++[Copy]

// {088fa508-94a6-4430-a4cb-6fc6e3c0b9e2}

DEFINE_GUID(CPFG_STYLE_LINK_AS_BUTTON, 0x088fa508, 0x94a6, 0x4430, 0xa4,
0xcb, 0x6f, 0xc6, 0xe3, 0xc0, 0xb9, 0xe2);

This will turn the command link from my screenshot above (with the ID=9) into a
button:

Command link button in the login screen on Windows 10.

You can then interact with it in the same way as you would with the command
link, namely, you would generally process CommandLinkClicked callbacks when it
is clicked.

https://dbimgs.s3-us-west-2.amazonaws.com/sqnc-f-clls-t-crdntl-prvdr-n-wndws-sub07.png

29/71

Note that the amount of vertical space available for your UI fields is quite limited,
and if you go over it, the LogonUI.exe will hide your lower fields and display an
ugly vertical scrollbar to reach them:

Vertical scrollbar in the login screen on Windows 10.

There's no documented way to know the amount of available vertical space, and
whether or not the scrollbar is shown.

https://dbimgs.s3-us-west-2.amazonaws.com/sqnc-f-clls-t-crdntl-prvdr-n-wndws-sub05.png

30/71

A CPFT_COMBOBOX field type displays a dropdown box where a user can select
from the list of options. You will need to specify the number of items in that list in
the GetComboBoxValueCount callback, and then provide text for each of those
options in the GetComboBoxValueAt callback for your MyCredential class:

Open combo box in the login screen on Windows 11.

Note that unlike desktop UI combo boxes, the one available for credential
providers does not allow edited input, or specifying a list containing
anything other than text.

User Interface Callbacks

The following callbacks may be dispatched to your MyCredential class, based on the UI
fields that you specified for it:

Credential::GetStringValue

https://dbimgs.s3-us-west-2.amazonaws.com/sqnc-f-clls-t-crdntl-prvdr-n-wndws-sub06.png

31/71

1. Is called to retrieve text for a UI field by its dwFieldID. The UI field ID comes from what
you specified in the GetFieldDescriptorAt callback.

Keep in mind that you need to return a requested string using the SHStrDupW function,
as such:

C++[Copy]

HRESULT STDMETHODCALLTYPE MyCredential::GetStringValue(

__in DWORD dwFieldID,

__deref_out PWSTR* ppwsz)

{

HRESULT hr;

if(dwFieldID == FIELD_ID_PWD_PROMPT)

{

	 const WCHAR* pstrTxt = L"Please enter password";

	 hr = SHStrDupW(pstrTxt, ppwsz);

}

else

{

	 hr = E_NOTIMPL;

}

//Do other work ...

}

Credential::GetFieldState

2. Is called to retrieve UI field state by its dwFieldID, such as focused, disabled, hidden,
etc. The UI field ID comes from what you specified in the GetFieldDescriptorAt
callback.

The UI field state should be returned in the pcpfs parameter, while additional state
flags, in the pcpfis parameter.

This callback is where you would display or hide certain UI fields, based on some
specific criteria.

Credential::GetFieldOptions

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getstringvalue
https://learn.microsoft.com/en-us/windows/win32/api/shlwapi/nf-shlwapi-shstrdupw
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getfieldstate
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/ne-credentialprovider-credential_provider_field_state
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getfieldstate
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/ne-credentialprovider-credential_provider_field_interactive_state
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getfieldstate

32/71

3. Is called to ask for options for the UI field by its fieldID. The UI field ID comes from
what you specified in the GetFieldDescriptorAt callback.

You will receive this callback if you derived your MyCredential class from
ICredentialProviderCredentialWithFieldOptions interface.

This callback lets you specify some additional options for the UI field, such as the
button to briefly reveal the password, or to limit input to an email or to numbers only, or
to specify which on-screen keyboard to show:

"Reveal password" button in the login screen on Windows 10.

These are handy UI enhancements for your credential provider. So don't ignore them.

Credential::GetBitmapBufferValue

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredentialwithfieldoptions-getfieldoptions
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredentialwithfieldoptions
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/ne-credentialprovider-credential_provider_credential_field_options
https://dbimgs.s3-us-west-2.amazonaws.com/sqnc-f-clls-t-crdntl-prvdr-n-wndws-sub08.png

33/71

4. Allows to specify a bitmap image for the UI fields of the CPFT_TILE_IMAGE type using
raw pixels. The UI field is identified by its ID, that was specified in the
GetFieldDescriptorAt callback.

This callback in not officially documented.

Your MyCredential class must be derived from
ICredentialProviderCredential3 or later to receive this callback.

The pixel data must be supplied in the BITMAPINFO struct and allocated using the
CoTaskMemAlloc function.

Here's an example how you can specify an icon for your provider in the "Sign in
options" area:

C++[Copy]

https://learn.microsoft.com/en-us/windows/win32/api/wingdi/ns-wingdi-bitmapinfo
https://learn.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-cotaskmemalloc

34/71

HRESULT STDMETHODCALLTYPE MyCredential::GetBitmapBufferValue(

__in DWORD fieldID,

 __out DWORD* pImageBufferSize, __out BYTE** ppImageBuffer)

{

HRESULT hr = E_NOTIMPL;

 if(fieldID == FIELD_ID_PROVIDER_IMAGE)

 {

 //Let's use the system error icon for our test

 HICON hIcon = LoadIcon(NULL, IDI_ERROR);

 if(hIcon)

 {

 ICONINFOEX ix = {};

 ix.cbSize = sizeof(ix);

 if(GetIconInfoExW(hIcon, &ix))

 {

 HBITMAP hBmp = ix.hbmColor;

 BITMAP bm = {};

 if(GetObjectW(hBmp, sizeof(BITMAP), &bm))

 {

 HDC hDC = GetDC(NULL);

 if(hDC)

 {

 WORD wBitCount = 32;

 DWORD dwBmpSize = ((bm.bmWidth * wBitCount + 31) / 32) *
4 * bm.bmHeight;

 DWORD dwcbFullSize = sizeof(BITMAPINFOHEADER) +
dwBmpSize;

 BYTE* lpbitmap = (BYTE*)CoTaskMemAlloc(dwcbFullSize);

 if(lpbitmap)

 {

 memset(lpbitmap, 0, dwcbFullSize);

 BITMAPINFO* pBMI = (BITMAPINFO*)lpbitmap;

 pBMI->bmiHeader.biSize = sizeof(BITMAPINFOHEADER);

 pBMI->bmiHeader.biWidth = bm.bmWidth;

 pBMI->bmiHeader.biHeight = bm.bmHeight;

 pBMI->bmiHeader.biPlanes = 1;

 pBMI->bmiHeader.biBitCount = wBitCount;

 pBMI->bmiHeader.biCompression = BI_RGB;

 //Retrieve bitmap bits

 if(GetDIBits(hDC, hBmp, 0,

 (UINT)bm.bmHeight,

 pBMI->bmiColors,

 pBMI, DIB_RGB_COLORS))

 {

 //Pass our memory array to the host process

 *pImageBufferSize = dwcbFullSize;

35/71

 *ppImageBuffer = lpbitmap;

 lpbitmap = NULL;

 hr = S_OK;

 }

 else

 {

 //Failed - free memory

 CoTaskMemFree(lpbitmap);

 lpbitmap = NULL;

 }

 }

	 	 	 	 	 //Remember to free the DC

 ReleaseDC(NULL, hDC);

 }

 }

 //Free icon resources

 DeleteObject(ix.hbmColor);

 DeleteObject(ix.hbmMask);

 }

 }

 }

//Do other work ...

}

This should result in the following image:

Custom icon in the "Sign in options" area in the login screen on Windows 10.

Note that alternatively you can return a failure error code from the
GetBitmapBufferValue callback to use an older, but documented
GetBitmapValue callback instead.

https://dbimgs.s3-us-west-2.amazonaws.com/sqnc-f-clls-t-crdntl-prvdr-n-wndws-sub09.png

36/71

Credential::GetBitmapValue

37/71

5. Is called to retrieve a bitmap for the UI field of the CPFT_TILE_IMAGE type. The UI field
is identified by its ID in the dwFieldID parameter, that was specified in the
GetFieldDescriptorAt callback.

Even though this callback is invoked in all cases for the UI fields of the
CPFT_TILE_IMAGE type, the provided bitmap will be used only if the previous
GetBitmapBufferValue callback returned a failure code, or was not
implemented.

The bitmap must be returned in the phbmp parameter. Here's an example:

C++[Copy]

HRESULT STDMETHODCALLTYPE MyCredential::GetBitmapValue(

__in DWORD dwFieldID,

__out HBITMAP* phbmp)

{

HRESULT hr = E_NOTIMPL;

 if(dwFieldID == FIELD_ID_PROVIDER_IMAGE)

 {

 //Let's use the system warning icon for our test

 	 HICON hIcon = LoadIcon(NULL, IDI_WARNING);

 	 if(hIcon)

 	 {

 	 	 ICONINFOEX ix = {};

 	 	 ix.cbSize = sizeof(ix);

 	 	 if(GetIconInfoExW(hIcon, &ix))

 	 	 {

	 	 	 //Return the color bitmap

 	 	 	 *phbmp = ix.hbmColor;

	 	 	 //Remember to free the mask bitmap

	 	 	 DeleteObject(ix.hbmMask);

 hr = S_OK;

 	 	 }

 	 }

 }

//Do other work ...

}

This will result in a warning icon being displayed as your provider image, similar to
what I showed above.

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getbitmapvalue
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getbitmapvalue

38/71

Unfortunately there's no documented way of knowing which background color to
use for the image.
For instance, for the provider icons in the "Sign in options" area, Microsoft
themselves aren't using any specific system color. They use a prepared bitmap
that already comes with a background color. In other words, they don't use
transparency.

You can find this bitmap as the RT_BITMAP resource in the system credential
providers. For instance, for the PasswordCredentialProvider provider, the
bitmap is in the credprovs.dll module in the System32 folder. On my Windows
10 that DLL has only one bitmap resource of the size 72x72 pixels with the ID of
13500, as I showed here.

Thus, if you want to know the background color, you can load the bitmap that
Microsoft used with the LoadBitmapW function from the appropriate module. (Say,
for credprovs.dll there's only one bitmap resource in it.) And then extract the
pixel color from it at each corner. This can be a hack to give you the background
color that Microsoft uses:

C++[Copy]

https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#provider_class
https://learn.microsoft.com/en-us/windows/win32/menurc/resource-types
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#provs_w10
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-loadbitmapw
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#provs_w10

39/71

BOOL GetProviderBitmapBkgndColor(__out COLORREF* pclrBkgnd)

{

BOOL bRes = FALSE;

COLORREF clrBkgnd = {};

HMODULE hMod = LoadLibraryExW(L"credprovs.dll",

	 NULL,

	 LOAD_LIBRARY_AS_IMAGE_RESOURCE |

LOAD_LIBRARY_SEARCH_SYSTEM32);

if(hMod)

{

	 HBITMAP hBmp = LoadBitmap(hMod, MAKEINTRESOURCE(13500));

	 if(hBmp)

	 {

	 	 //Get bitmap size

	 	 BITMAP bm = {};

	 	 if(GetObject(hBmp, sizeof(bm), &bm))

	 	 {

	 	 	 HDC hDC = CreateCompatibleDC(NULL);

	 	 	 if(hDC)

	 	 	 {

	 	 	 	 HGDIOBJ hOldBmp = SelectObject(hDC,

hBmp);

	 	 	 	 #define PX_OFFSET 3

	 	 	 	 if(bm.bmWidth > (PX_OFFSET * 2) &&

	 	 	 	 	 bm.bmHeight > (PX_OFFSET *

2))

	 	 	 	 {

	 	 	 	 	 //Sanity check: Get color

from all 4 corners at a certain offset,

	 	 	 	 	 // in case

there's a border

	 	 	 	 	 COLORREF clrTL =

GetPixel(hDC, PX_OFFSET, PX_OFFSET);

	 	 	 	 	 COLORREF clrTR =

GetPixel(hDC, bm.bmWidth - PX_OFFSET - 1, PX_OFFSET);

	 	 	 	 	 COLORREF clrBL =

GetPixel(hDC, PX_OFFSET, bm.bmHeight - PX_OFFSET - 1);

	 	 	 	 	 COLORREF clrBR =

GetPixel(hDC, bm.bmWidth - PX_OFFSET - 1, bm.bmHeight - PX_OFFSET - 1);

	 	 	 	 	 //All 4 colors must be the
same to use them

	 	 	 	 	 if(clrTL == clrTR &&

	 	 	 	 	 	 clrTR == clrBL &&

	 	 	 	 	 	 clrBL == clrBR)

	 	 	 	 	 {

	 	 	 	 	 	 //Can use it

	 	 	 	 	 	 clrBkgnd = clrTL;

40/71

	 	 	 	 	 	 bRes = TRUE;

	 	 	 	 	 }

	 	 	 	 }

	 	 	 	 SelectObject(hDC, hOldBmp);

	 	 	 	 DeleteDC(hDC);

	 	 	 }

	 	 }

	 	 DeleteObject(hBmp);

	 }

	 FreeLibrary(hMod);

}

if(pclrBkgnd)

	 *pclrBkgnd = clrBkgnd;

return bRes;

}

On my Windows 10 and 11, that background color was #474747.

Credential::GetCheckboxValue

6. Is called to retrieve whether the UI field of the CPFT_CHECKBOX type is checked or not,
as well as to get the label for the checkbox itself. The UI field is identified by its ID in
the dwFieldID parameter, that was specified in the GetFieldDescriptorAt callback.

Return the checkbox state in the pbChecked parameter, and the label text in ppszLabel.

Keep in mind that the text label must be allocated with the SHStrDupW function,
similar to what I showed here.

Credential::GetComboBoxValueCount

7. Is called to get the number of items to display in the list for the UI field of the
CPFT_COMBOBOX type. The UI field is identified by its ID in the dwFieldID parameter, that
was specified in the GetFieldDescriptorAt callback.

Specify the count of items in the pcItems parameter, and the index of the selected item
in pdwSelectedItem.

Credential::GetComboBoxValueAt

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getcheckboxvalue
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getcheckboxvalue
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getcheckboxvalue
https://learn.microsoft.com/en-us/windows/win32/api/shlwapi/nf-shlwapi-shstrdupw
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getcomboboxvaluecount
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getcomboboxvaluecount
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getcomboboxvaluecount

41/71

8. Is called to retrieve the text label for each item in the list for the UI field of the
CPFT_COMBOBOX type. This callback is invoked after GetComboBoxValueCount. The UI
field is identified by its ID in the dwFieldID parameter, that was specified in the
GetFieldDescriptorAt callback.

The list item is identified by its index in the dwItem parameter. The job of this callback is
to return the text for the list item in the ppszItem parameter.

Make sure to allocate the text label with the SHStrDupW function, similar to what I
showed here.

Credential::GetSubmitButtonValue

9. Is called to ask which UI field should have the "submit" button attached to.

A "submit" button is the button that initiates the user login process.

The dwFieldID parameter will contain the ID of the "submit" button in question.

Provide the ID of another UI field that you want to attach the "submit" button to. (Field
IDs are assigned during the GetFieldDescriptorAt callback.)

If you do not provide a valid ID, the "submit" button will be attached to the first
visible UI field, which will look somewhat ugly. Additionally, Microsoft advises not
to attach the "submit" button to static text controls or images.
You can create a standalone "submit" button (without attaching it to anything) by
following this advice.

Post Initialization

The following callbacks are called among the last ones in the initialization sequence for your
credential provider:

Credential::GetUserSid

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getcomboboxvalueat
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getcomboboxvalueat
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getcomboboxvalueat
https://learn.microsoft.com/en-us/windows/win32/api/shlwapi/nf-shlwapi-shstrdupw
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getsubmitbuttonvalue

42/71

1. This callback is sent to your MyCredential class to retrieve the user SID that is
associated with the tile. You can cache the user SID from the earlier SetUserArray
callback to your MyProvider class.

You will receive this callback only if you implement the
ICredentialProviderCredential2 interface.

Provide the requested user SID in the sid parameter. Keep in mind that it has to be
passed as a string, and allocated with the SHStrDupW function, similar to what I showed
here.

You can convert user SID from the binary form to a string using the
ConvertSidToStringSid function.

In case of the "Other User" tile, return its user SID as a NULL. Additionally, return
S_FALSE from the GetUserSid callback.

Credential::Advise

https://learn.microsoft.com/en-us/windows/win32/secauthz/sid-components
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredential2
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential2-getusersid
https://learn.microsoft.com/en-us/windows/win32/api/shlwapi/nf-shlwapi-shstrdupw
https://learn.microsoft.com/en-us/windows/win32/api/sddl/nf-sddl-convertstringsidtosidw

43/71

2. Is called to let your MyCredential class(-es) to get pointers to the
ICredentialProviderCredentialEvents, or later interface. It is provided to it in the
pcpce parameter. Make sure to AddRef it and then Release it in the matching UnAdvise
callback.

The ICredentialProviderCredentialEvents interface can be used for multiple
purposes, mostly to interact with the host process UI:

One of its most often used functions is to request an update for the UI fields in
your MyCredential class.
Because unlike traditional UI, you cannot have handles to the UI fields displayed
by the host process to update them on-demand. The only way for you to update
them is by responding to callbacks. Thus you need a way to request those
callbacks from the host process.

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredentialevents
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-advise
https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-addref
https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-release
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredentialevents#methods

44/71

The only viable way to display your own custom UI from a credential provider, is
to request the HWND handle for the host process window. This can be done via a
call to the OnCreatingWindow function. After that use returned window handle as
a parent for your own window(s).

One very important thing to remember, if you decide to show your own
custom UI, is that the thread that the MyCredential::Advise callback is
invoked from, as well as any other callbacks that you may receive in your
MyCredential and MyProvider classes, may not be the UI thread that the
HWND window returned by the OnCreatingWindow call is running in.
Thus, if you attempt to create a window from a different thread than the
parent window, this may result in some very unexpected behavior and UI
artifacts that are hard to diagnose and debug.

As a workaround, make sure to subclass the window procedure for the
window returned by OnCreatingWindow. Then send yourself some custom
message to that window (say, using the WM_NULL message with a special
wParam or lParam), intercept it in your subclassed WndProc, and create your
UI from that thread. Also make sure to remove your subclass from the
UnAdvise callback for your MyCredential class.

Note that you cannot use the SetWindowSubclass function for subclassing
because you'll be doing it for a window in another thread.

Alternatively, you may use the WH_CALLWNDPROC window hook to achieve the
same effect.

When designing your custom UI keep in mind that the login screen's credential
provider can time-out and be unloaded at any time. If you parent all your UI from
the window, returned by OnCreatingWindow, and don't display any blocking UI
from your own windows, the host process (LogonUI.exe) will be able to close
your UI gracefully when it decides to unload your provider. Doing it otherwise may
lead to unexpected crashes.

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredentialevents-oncreatingwindow
https://learn.microsoft.com/en-us/windows/win32/controls/subclassing-overview#subclassing-controls-prior-to-comctl32dll-version-6
https://learn.microsoft.com/en-us/windows/win32/winmsg/window-procedures
https://learn.microsoft.com/en-us/windows/win32/winmsg/wm-null
https://learn.microsoft.com/en-us/windows/win32/api/commctrl/nf-commctrl-setwindowsubclass
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setwindowshookexw
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredentialevents-oncreatingwindow

45/71

You may request pointers to the following newer interfaces, by QueryInterface-
ing them from ICredentialProviderCredentialEvents:

ICredentialProviderCredentialEvents2 that can be used to set on-
demand some additional UI options like I showed above.
ICredentialProviderCredentialEvents3 is an undocumented interface
that adds the following method:
C++[Copy]

MIDL_INTERFACE("2D8DEEB8-1322-4973-8DF9-B282F2468290")

ICredentialProviderCredentialEvents3 : public
ICredentialProviderCredentialEvents2

{

virtual HRESULT STDMETHODCALLTYPE SetFieldBitmapBuffer(__in
ICredentialProviderCredential * pcpc,

	 __in DWORD fieldID,

	 __in DWORD imageBufferSize,

	 __in BYTE const* pImageBuffer);

};	

Without going into too much reverse engineering, you can probably deduce
what SetFieldBitmapBuffer method does to your MyCredential class,
remembering the GetBitmapBufferValue method.

ICredentialProviderCredentialEvents4 is another undocumented
interface that adds the following methods:
C++[Copy]

MIDL_INTERFACE("DF50EA86-B7A9-4485-8F04-930A49686E5B")

ICredentialProviderCredentialEvents4 : public
ICredentialProviderCredentialEvents3

{

virtual HRESULT STDMETHODCALLTYPE RequestSerialization();

virtual HRESULT STDMETHODCALLTYPE RequestSelection();

};	

The RequestSerialization method is designed to request serialization, or
"submit" button action on demand.

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredentialevents2
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredentialevents2-setfieldoptions

46/71

ICredentialProviderCredentialEvents5 is one more undocumented
interface that adds the following methods:
C++[Copy]

MIDL_INTERFACE("c4a56475-d6f5-43e3-80ae-1aa99833cc05")

ICredentialProviderCredentialEvents5 : public
ICredentialProviderCredentialEvents4

{

virtual HRESULT STDMETHODCALLTYPE SetTextFieldMaxLength(

	 In ICredentialProviderCredential * pcpc, _In_ DWORD

dwFieldID, _In_ DWORD MaxLength) = 0;

virtual HRESULT STDMETHODCALLTYPE SetAccessibilityTextForField(

In ICredentialProviderCredential *pcpc, _In_ DWORD

dwFieldID, _In_ PCWSTR pcszText) = 0;

virtual HRESULT STDMETHODCALLTYPE SetRawAccessibilityViewForField(

In ICredentialProviderCredential *pcpc, _In_ DWORD

dwFieldID, _In_ BOOL bRaw) = 0;

virtual HRESULT STDMETHODCALLTYPE RequestWebDialogVisibilityChange(

In ICredentialProviderCredential *pcpc, _In_ BOOL bVisible)

= 0;

};

User Interaction & State Changes

The following callbacks may be invoked as a result of user interactions and state changes in
the host process:

Credential::SetSelected

47/71

1. This callback is invoked when a tile is selected, either by a user, or automatically when
your credential provider is loading.

Only a single tile can be selected at a time.

This callback must set the pbAutoLogon parameter to TRUE if your MyCredential class
wants to initiate an autologon for this user. This setting should be coordinated with a
previous GetCredentialCount callback. The autologon will initiate an automatic
"submit" button action.

There's no need to show or hide UI fields in response to this callback. You can set that
up in the GetFieldState callback using the CPFS_DISPLAY_IN_SELECTED_TILE state
flag.

Note that the fact that a tile has become selected, sadly, does not mean that it is
visible. It may be obscured by what is known as a "curtain", or a screen that
obscures all tiles and UI fields until the user clicks on it.
You can use an undocumented SetDisplayState callback to determine when the
"curtain" has been lifted.

Although not specifically documented, your MyProvider class (that created the
MyCredential class, that in turn is associated with the tile) also becomes an active
provider when the tile is selected.

Credential::SetDeselected

2. Is called when a tile is deselected by a user. This callback is often followed by the
SetSelected callback for the tile that was selected.

Microsoft advises that a deselected tile should securely clear all sensitive
information from memory of your MyCredential class, such as passwords, PINs
and encryption keys.

Microsoft has shown a good example in their official GitHub repo how you can
safely scrub from memory all sensitive user data (such as plain-text passwords,
PINs, keys, etc.) that could've been collected in your MyCredential class while it
was selected.

Provider::SetDisplayState

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-setselected
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/ne-credentialprovider-credential_provider_field_state
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-setdeselected
https://github.com/microsoft/Windows-classic-samples/blob/ac06e54a15e9a62443e400fffff190fb978ea586/Samples/CredentialProvider/cpp/CSampleCredential.cpp#L210

48/71

3. Is invoked to notify your MyProvider class about some external event.

This callback in undocumented. So use it at your own risk.

To receive this event, your MyProvider class must be derived from the
ICredentialProviderWithDisplayState interface:
C++[Copy]

MIDL_INTERFACE("A09BCC29-D779-4513-BB59-B4DB5D82D2B6")

ICredentialProviderWithDisplayState : public IUnknown

{

virtual HRESULT STDMETHODCALLTYPE SetDisplayState(__in
CREDENTIAL_PROVIDER_DISPLAY_STATE_FLAGS Flags) = 0;

};

Your provider does not have to be active to receive this notification.

The Flags parameter receives a bitwise combination of flags that denote various types
of notifications. I showed their meanings in the comments to the
CREDENTIAL_PROVIDER_DISPLAY_STATE_FLAGS struct. Some of those flags are not well
studied, but some can be explained:

CPDSF_CURTAIN (or 0x4) - is set when the "curtain" has been pulled down, or
when it hides user tiles and corresponding UI fields.
CPDSF_PROVIDER_VISIBLE (or 0x80) - is set when your MyProvider class is
visible.

To detect if a selected tile is visible to the user, check for the
CPDSF_PROVIDER_VISIBLE flag to be on, and for the CPDSF_CURTAIN flag to
be off.

CPDSF_SHUTDOWN_STARTED (or 0x1000) - is set when the system initiated a reboot
or shutdown. As a response to this notification you may hide any custom UI that
your credential provider might have shown.

Credential::SetStringValue

https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#ICredentialProviderWithDisplayState
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#cpdsf

49/71

4. This callback is invoked every time a UI field that contains text is changed by the user.
If it's a field with the CPFT_EDIT_TEXT or CPFT_PASSWORD_TEXT types, and the user
types into it, this callback will be invoked for every single character that the user typed.

The dwFieldID parameter will contain the UI field ID that was changed, and the psz
parameter will point to the new text as a null-terminated string. The UI field ID comes
from what you specified in the GetFieldDescriptorAt callback.

Use some internal variables in your MyCredential class to remember what the user
types into text and password fields. You will need that later during "submit" button
sequence.

Be careful not to log what the user types into the credential provider, as it may
contain very sensitive information, such as plain-text passwords, PINs, etc.

Unlike a regular edit box, there's no way to restrict through this callback what the user
types into a text-based UI field.

Credential::SetCheckboxValue

5. It is called every time the user toggles the checkmark in the checkbox UI field. Such
field has the CPFT_CHECKBOX type. The dwFieldID parameter will denote the UI field
that was changed, and the bChecked will contain the new value of the checkmark. The
UI field ID comes from what you specified in the GetFieldDescriptorAt callback.

This callback is also invoked if you call
ICredentialProviderCredentialEvents::SetFieldCheckbox function on the UI field.

Use some internal variables in your MyCredential class to remember user selection.
You will need it later during "submit" button sequence.

Credential::SetComboBoxSelectedValue

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-setstringvalue
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-setstringvalue
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-setcheckboxvalue
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-setcheckboxvalue
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredentialevents-setfieldcheckbox

50/71

6. Is called every time the user changes selected item in the combo-box for the UI field
with the CPFT_COMBOBOX type. The dwFieldID parameter will have the ID of the UI field
that was changed. The UI field ID comes from what you specified in the
GetFieldDescriptorAt callback.

The dwSelectedItem parameter will contain the index of the list item in the combo box
that was selected.

This callback is also invoked if you call
ICredentialProviderCredentialEvents::SetFieldComboBoxSelectedItem function
on the UI field.

Use some internal variables in your MyCredential class to remember user selection.
You will need it later during "submit" button sequence.

Credential::CommandLinkClicked

7. Is called when a UI field with the CPFT_COMMAND_LINK type was clicked by the user. The
dwFieldID parameter will denote the UI field that was clicked. The UI field ID comes
from what you specified in the GetFieldDescriptorAt callback.

Use some internal variables in your MyCredential class to remember user selection.
You will need it later during "submit" button sequence.

Submit Button Sequence

When the user clicks "submit" button, or if such action is initiated automatically, this will
involve the following sequence of callbacks:

Credential::Connect

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-setcomboboxselectedvalue
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-setcomboboxselectedvalue
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredentialevents-setfieldcomboboxselecteditem
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-commandlinkclicked

51/71

Is invoked immediately after "submit" button click, either manually by the user, or as a
result of autologon.

This method is invoked only if you implemented the
IConnectableCredentialProviderCredential interface in your MyCredential
class.
The original purpose of this callback is to allow implementation of a slower pre-
logon authentication before performing an actual authentication of a Windows
user. An example of such requirement could be the 802.1x network that requires
authentication before a Windows client computer can connect to a domain
controller to authenticate Windows users.

So in a sense, such Pre-Logon-Access Provider (or PLAP), also known as the
SSO provider, acts as the first authenticator in the chain of two authentications
needed to login a user.

And since the network authentication can be a slow process, the Connect method
was designed with two features: 1) The "Cancel" button to abort it, and 2) the
status message to inform the user of the progress.

The benefit of this callback is that you can reuse its "cancel" button and status text
features for your own purposes.

For instance, if you want to code a two-step login process, where you require a regular
Windows user authentication, followed by an authentication using that user's
smartphone, you can use the Connect method to implement it, as such:

First we check the user credentials in the Connect callback and ensure that such
user can login. In this case we will break Microsoft mantra and perform user
authentication in our credential provider, say, by using the LsaLogonUser function.
If the user login fails, we remember such state and return that error from the
GetSerialization callback, which will abort the login.

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-iconnectablecredentialprovidercredential
https://en.wikipedia.org/wiki/IEEE_802.1X
https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/credentials-processes-in-windows-authentication#BKMK_CrentialInputForUserLogon
https://learn.microsoft.com/en-us/windows/win32/api/ntsecapi/nf-ntsecapi-lsalogonuser

52/71

But if the user login was successful, we serialize it (as we would do in the
GetSerialization callback, and remember it for that callback at a later iteration.)
After that we perform our secondary authentication with the user's smartphone.
This can be done using something similar to the following pseudo-code:

C++[Copy]

53/71

HRESULT STDMETHODCALLTYPE MyCredential::Connect(_In_
IQueryContinueWithStatus* pqcws)

{

HRESULT hr;

//Checked user credentials with LsaLogonUser and received a valid

user token.

//Thus we know that the user login info is valid.

//...

//After that, performed needed serialization of the user login info
and remembered it in some class variable...

//...

//Now ask the user to perform secondary authentication

 DWORD dwmsTimeout = 15 * 1000; 	 	 	 	 	
//15 sec timeout

//Class variable that stores the result of the secondary
authentication

 _hrConnect = E_FAIL;

//Display message for the user

 pqcws->SetStatusMessage(L"Please authenticate with your
smartphone...");

//Go into a waiting loop

 for(DWORD dwmsIniTicks = GetTickCount();;)

 {

 //Ask our web server when the smartphone authentication is received

 HRESULT hrServerResult;

 if(PollRemoteServerAuthForResult(&hrServerResult))
 {

 //Received a result from our web server

 pqcws->SetStatusMessage(L"Smartphone authentication finished");

	 	 _hrConnect = SUCCEEDED(hrServerResult) ?
hrServerResult : E_UNEXPECTED;

 hr = S_OK;

 break;

 }

 //Simulate a short delay

 Sleep(500);

 //See if user wants to cancel

 hr = pqcws->QueryContinue();

 if(hr == E_ABORT)

 {

 //User aborted

 pqcws->SetStatusMessage(L"User aborted");

54/71

 _hrConnect = hr;

 break;

 }

 else if(hr != S_OK)

 {

 //Some other error

 pqcws->SetStatusMessage(L"Error authenticating");

 _hrConnect = FAILED(hr) ? hr : E_UNEXPECTED;

 break;

 }

 //Check for timeout

 if(GetTickCount() - dwmsIniTicks >= dwmsTimeout)

 {

 //Timed out

 pqcws->SetStatusMessage(L"Timed out");

 hr = _hrConnect = RPC_E_TIMEOUT;

 break;

 }

 }

//Do other work ...

}

After the user clicks "submit" the code snippet above will display the following
message:

55/71

Custom "Please authenticate with your smartphone" message in the login screen
on Windows 10.

If our secondary authentication fails (for whatever reason) we remember the error
code and check it again in the GetSerialization callback and return failure
there, which will abort the login.

https://dbimgs.s3-us-west-2.amazonaws.com/sqnc-f-clls-t-crdntl-prvdr-n-wndws-sub10.png

56/71

But if our secondary authentication succeeds, we also pass it to our
GetSerialization callback, which retrieves our previously saved serialized user
login data, and returns it to the host process, which proceeds with the user login.
This could be visualized with the following pseudo-code:

C++[Copy]

57/71

HRESULT STDMETHODCALLTYPE MyCredential::GetSerialization(

__out CREDENTIAL_PROVIDER_GET_SERIALIZATION_RESPONSE* pcpgsr,

 __out CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION* pcpcs,

 __deref_out_opt PWSTR* ppwszOptionalStatusText,

 __out CREDENTIAL_PROVIDER_STATUS_ICON* pcpsiOptionalStatusIcon)

{

 HRESULT hr = E_UNEXPECTED;

 //Did we succeed during the "Connect" stage?

 if(SUCCEEDED(_hrConnect))

 {

	 //Copy our previously serialized user login credentials in
the Connect() callback

	 //into the 'pcpcs' parameter using the CoTaskMemAlloc()
function.

	 //...

	 //If success so far

	 *pcpgsr = CPGSR_RETURN_CREDENTIAL_FINISHED;

	 *ppwszOptionalStatusText = NULL;

	 *pcpsiOptionalStatusIcon = CPSI_NONE;

	 hr = S_OK;

}

else

{

 //Failed during "Connect" stage

 *pcpgsr = CPGSR_NO_CREDENTIAL_FINISHED;

 *pcpcs = {};

	 //Pick the error message to display to the user

 std::wstring strError;

 if(_hrConnect == E_ABORT)

 {

 strError = L"User aborted smartphone authentication";

 }

 else if(_hrConnect == RPC_E_TIMEOUT)

 {

 strError = L"Timed out waiting for the user to authenticate
with the smartphone";

 }

 else

 {

 //Some other error

 WCHAR buff[128] = {};

 StringCchPrintf(buff, _countof(buff), L"Error (0x%08X)
authenticating with the user's smartphone", _hrConnect);

 strError = buff;

 }

 SHStrDupW(strError.c_str(), ppwszOptionalStatusText);

 *pcpsiOptionalStatusIcon = _hrConnect != E_ABORT ? CPSI_ERROR :

58/71

CPSI_WARNING;

 //Pass success

 hr = S_OK;

}

return hr;

}

Note that in this case we will be technically calling LsaLogonUser function
twice, but that is a small price to pay for an added feature of the MFA login.

If the user clicks the "cancel" button to abort secondary authentication, the code
above will display the following message:

Custom "User aborted smartphone authentication" message in the login screen
on Windows 10.

Note that the HRESULT status code returned from the Connect callback tells the host
process whether or not to display the "Disconnect" button, that I will describe next.

Credential::Disconnect

https://learn.microsoft.com/en-us/windows/win32/api/ntsecapi/nf-ntsecapi-lsalogonuser
https://en.wikipedia.org/wiki/Multi-factor_authentication
https://dbimgs.s3-us-west-2.amazonaws.com/sqnc-f-clls-t-crdntl-prvdr-n-wndws-sub11.png

59/71

This callback complements the Connect method. It is called when the user clicks the
"Disconnect" button in the credential provider's UI:

"Disconnect" button in the bottom right corner of the login screen on Windows 10.

Such button will appear after Connect method returns a successful result code, such as
S_OK. It will not be displayed if Connect returns an error.

You can use the above-mentioned feature of the "Disconnect" button not to
display it.

Note that the "Disconnect" button will disappear from the UI after user clicks it.

The intended purpose of this callback is to disconnect any pre-logon network
connection that was established in the Connect method earlier.

This method is invoked only if you implemented the
IConnectableCredentialProviderCredential interface in your MyCredential
class.

In case you are reusing the Connect method for your own purposes, not related to pre-
logon network authentication, you will still need to implement this method, but you can
safely ignore it by simply returning S_OK.

Credential::GetSerialization

https://dbimgs.s3-us-west-2.amazonaws.com/sqnc-f-clls-t-crdntl-prvdr-n-wndws-sub12.png
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-iconnectablecredentialprovidercredential-disconnect
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-iconnectablecredentialprovidercredential

60/71

In case Connect method is implemented in your MyCredential class, this callback is
invoked right after it. Otherwise, GetSerialization will be the first callback to be
invoked after the user clicks "submit" button, or if such action is initiated after
autologon.

The job of this method is to serialize user-provided login credentials from the UI fields
in the selected tile, and to pass the result to the host process.

Serialization, in this sense, is the process of converting user login credentials into
a binary byte array. This way such data can be passed between processes.

The way credential provider's UI is structured is somewhat different from a
traditional UI programming design. In a traditional app, you would ask a UI
control to give you its text or some other selection in it. In a credential provider
though there's no such mechanism.
To receive what the user had specified in the UI fields you will need to save it in
the internal variables in your MyCredential class while the user interacts with the
UI fields. You can do so by intercepting callbacks such as SetStringValue,
SetCheckboxValue, SetComboBoxSelectedValue, CommandLinkClicked, etc.

I already showed above how you can incorporate the Connect method for the two-step
MFA authentication. For now I'll assume only single-step logins.

There are several ways how you can process this callback. One, you can evaluate
user-provided credentials for immediate errors. Say, if the user did not provide their
name for the "Other User" tile, or if the PIN for your PIN-provider is empty, etc. In that
case you can immediately return an error without doing any serialization:

C++[Copy]

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getserialization
https://en.wikipedia.org/wiki/Multi-factor_authentication

61/71

HRESULT STDMETHODCALLTYPE MyCredential::GetSerialization(

__out CREDENTIAL_PROVIDER_GET_SERIALIZATION_RESPONSE* pcpgsr,

__out CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION* pcpcs,

__deref_out_opt PWSTR* ppwszOptionalStatusText,
__out CREDENTIAL_PROVIDER_STATUS_ICON* pcpsiOptionalStatusIcon)

{

HRESULT hr = E_UNEXPECTED;

//Quickly evaluate user-provided credentials

//...

if(bBadLoginCredentials)

{

	 //Fail without doing serialization

	 *pcpgsr = CPGSR_NO_CREDENTIAL_FINISHED;
	 *pcpcs = {};

	 *pcpsiOptionalStatusIcon = CPSI_ERROR;

 SHStrDupW(L"Please provide valid login credentials",

	 	 ppwszOptionalStatusText);

	 return S_OK;

}

//Do other work ...

}

But for any other case you will need to serialize the login data. Microsoft have shown
already an example how to do it for a password-provider in their official code sample.
So I won't be repeating it.

Make sure to provide a copy of the serialized login data in the pcpcs parameter
using the CoTaskMemAlloc function.

When the serialized user credentials are ready, and there was no errors in the process,
you can return success as follows:

C++[Copy]

https://github.com/microsoft/Windows-classic-samples/blob/ac06e54a15e9a62443e400fffff190fb978ea586/Samples/CredentialProvider/cpp/CSampleCredential.cpp#L502
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-getserialization
https://learn.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-cotaskmemalloc

62/71

HRESULT STDMETHODCALLTYPE MyCredential::GetSerialization(

__out CREDENTIAL_PROVIDER_GET_SERIALIZATION_RESPONSE* pcpgsr,

__out CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION* pcpcs,

__deref_out_opt PWSTR* ppwszOptionalStatusText,
__out CREDENTIAL_PROVIDER_STATUS_ICON* pcpsiOptionalStatusIcon)

{

//After serialized data was copied into 'pcpcs' with CoTaskMemAlloc

//...

//Let the host process commence with the user login

*pcpgsr = CPGSR_RETURN_CREDENTIAL_FINISHED;

*ppwszOptionalStatusText = NULL;

*pcpsiOptionalStatusIcon = CPSI_NONE;

return S_OK;

}

Note that returning success (or S_OK) alone from the GetSerialization
callback will not grant an automatic login. For that you need to provide valid user
login data in the serialized byte array. The decision to proceed with the user login
will be made by the host process, based on the user login data that you give it in
the GetSerialization callback.

Credential::ReportResult

63/71

This callback is invoked after GetSerialization with the results of the user login. The
ntsStatus and ntsSubstatus parameters will contain the status codes after calling the
LsaLogonUser function on the serialized login data that was collected in the
GetSerialization callback.

For details why you receive two status error codes for the login, refer to the
LsaLogonUser function documentation.

To check if the user login succeeded, it's enough to check the ntsStatus parameter to
be STATUS_SUCCESS, or 0.

If the login fails, make sure to specify the failure reason to be displayed to the user in
the ppszOptionalStatusText parameter. You can copy it there using the SHStrDupW
function, similarly to what I showed here.

In case of a successful login, there's no need to do anything else. Your credential
provider will unload shortly thereafter.

Microsoft showed how to process this callback in their GitHub sample.

Keep in mind that if the ntsStatus parameter is set to STATUS_SUCCESS, once you
return from this callback, your credential provider will begin to unload and the
user login will succeed. The ReportResult callback serves as a notification only.
It does not allow for your credential provider to stop the login.
To prevent user login use the GetSerialization callback instead.

Do not show any custom UI from this callback as the desktop may be changing from a
secure desktop to the one for the logged in user. Showing any UI at this late stage may
prevent the user from properly interacting with it due to such transition.

Uninitialization

The following callbacks are invoked when a credential or provider goes out of scope, or
when their respective classes are unloaded:

Note that your credential provider may be unloaded at any time, and not only after a
successful user login. One such reason could be an elapsed timeout.

Credential::UnAdvise

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-reportresult
https://learn.microsoft.com/en-us/windows/win32/api/ntsecapi/nf-ntsecapi-lsalogonuser
https://learn.microsoft.com/en-us/windows/win32/api/ntsecapi/nf-ntsecapi-lsalogonuser
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-reportresult
https://learn.microsoft.com/en-us/windows/win32/api/shlwapi/nf-shlwapi-shstrdupw
https://github.com/microsoft/Windows-classic-samples/blob/ac06e54a15e9a62443e400fffff190fb978ea586/Samples/CredentialProvider/cpp/CSampleCredential.cpp#L627
https://learn.microsoft.com/en-us/windows/win32/winstation/desktops
https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/user-account-control-switch-to-the-secure-desktop-when-prompting-for-elevation

64/71

This callback is invoked before your MyCredential class is torn down. This is a good
place to release all references to other interfaces that your MyCredential class was
holding and to free other resources.

Alternatively return E_NOTIMPL if you do not care about this callback.

Make sure that your code does not display any UI or blocks execution during this
callback.

Provider::UnAdvise
This callback is invoked for your MyProvider class before it is torn down, but after all
instances of your MyCredential class for it are deleted.

Keep in mind that this callback may be called out-of-order, or without invoking a
previous Advise method for your MyProvider class in case you block loading of
the said provider class in the Filter callback.

Alternatively return E_NOTIMPL if you do not care about this callback.

Make sure that your code does not display any UI or blocks execution during this
callback.

At this stage your credential provider will be invoking destructors for global classes and will
be unloaded at any moment. Do not do any heavy processing at this stage.

Wrapping An Existing Credential Provider

The technique of wrapping a credential provider, usually the system one, is available
because of the structure and operation of said credential providers that I show-cased above.

Wrapping is a handy technique to enhance an existing credential provider, similar to what
subclassing does for Win32 windows.

Note that not all system credential providers can be wrapped easily. To be able to be
wrapped a credential provider must play by the documented rules that I described in
this post.
The following system credential providers can be wrapped:
PasswordCredentialProvider, NgcPinProvider, SmartcardCredentialProvider,
WLIDCredentialProvider, OnexCredentialProvider (with additional adjustments.)

An example of the credential provider that does not play by the rules is
PicturePasswordLogonProvider.

https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovidercredential-unadvise
https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-release
https://learn.microsoft.com/en-us/windows/win32/api/credentialprovider/nf-credentialprovider-icredentialprovider-unadvise
https://learn.microsoft.com/en-us/windows/win32/controls/subclassing-overview
https://dennisbabkin.com/blog/?t=primer-on-writing-credential-provider-in-windows#provs_w10

65/71

Wrapping involves retrieving a pointer to the interface being wrapped and by invoking its
callbacks from the same methods in your own interface. With that technique you will be able
to alter the wrapped interface's input or output parameters to your liking, and thus modify the
behavior of the credential provider that you are wrapping.

Review the following pseudo-code that alters the "submit" button behavior of the wrapped
credential provider:

C++[Copy]

66/71

HRESULT STDMETHODCALLTYPE MyCredential::GetSerialization(

__out CREDENTIAL_PROVIDER_GET_SERIALIZATION_RESPONSE* pcpgsr,

 __out CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION* pcpcs,

 __deref_out_opt PWSTR* ppwszOptionalStatusText,

 __out CREDENTIAL_PROVIDER_STATUS_ICON* pcpsiOptionalStatusIcon)

{

//Let the wrapped provider do all the work

assert(_pWrappedCredential);

hr = _pWrappedCredential->GetSerialization(pcpgsr, pcpcs,

ppwszOptionalStatusText, pcpsiOptionalStatusIcon);

if(SUCCEEDED(hr))

{

	 //Quick-and-dirty way to prevent users with short passwords from

logging in

	 WCHAR buffUsr[256];

	 WCHAR buffPwd[256];

	 DWORD dwchUser = _countof(buffUsr);

	 DWORD dwchPwd = _countof(buffPwd);

	 if(CredUnPackAuthenticationBufferW(CRED_PACK_PROTECTED_CREDENTIALS,

	 	 pcpcs->rgbSerialization,

	 	 pcpcs->cbSerialization,

	 	 buffUsr, &dwchUser,

	 	 NULL, NULL,

	 	 buffPwd, &dwchPwd))

	 {

	 	 //Securely clear the password from memory

	 	 SecureZeroMemory(buffPwd, sizeof(buffPwd));

	 	 //Limit is 3 chars

	 	 if(dwchPwd - 1 <= 3)

	 	 {

	 	 	 //Block this user

	 	 	 *pcpgsr = CPGSR_NO_CREDENTIAL_FINISHED;

	 	 	 *pcpcs = {};

	 	 	 *pcpsiOptionalStatusIcon = CPSI_ERROR;

	 	 	 SHStrDupW(L"Your password is too short",

	 	 	 	 ppwszOptionalStatusText);

	 	 	 //Reset user password field

	 	 	 _pcpce-

>SetFieldString(static_cast<ICredentialProviderCredential*>(this),

	 	 	 	 PASSWORD_FIELD_ID,

	 	 	 	 L"");

	 	 	 return S_OK;

	 	 }

	 }

}

67/71

return hr;

}

In this case the _pWrappedCredential variable holds the pointer to the original wrapped
credential class.

Microsoft uses this technique as well. Internally the OnexCredentialProvider class is
implemented as a wrapper for the PasswordCredentialProvider class.

Keep in mind that credential provider wrapping carries an inherent risk of breaking
things if the underlying wrapped interfaces are changed without notice in future
versions of the OS.

Credential provider wrapping is a whole topic of its own. Thus, with enough interest I may
write a separate blog post on that subject.

Specifics Of A Remote Desktop Connection

A remote desktop connection (or RDP) is somewhat different from a regular user login. It
deserves a blog post of it's own, but until I write it, let's review it briefly here.

When a remote desktop connection is initiated you are technically dealing with two systems:
the client computer that is making an RDP connection, and the remote computer that the
user is connecting to. I'll use this nomenclature further down the description.

Let's review the sequence of events that take place during an RDP connection:

1. A user initiates an RDP connection on the client computer by providing the remote
computer's IP:

RDP connection from the client computer side running on Windows 10.

https://en.wikipedia.org/wiki/Remote_Desktop_Protocol
https://dbimgs.s3-us-west-2.amazonaws.com/sqnc-f-clls-t-crdntl-prvdr-n-wndws-sub13.png

68/71

2. If the remote computer is available, the RDP software running on the client computer
will request the user credentials for the remote computer:

RDP connection user account from the client computer side running on Windows 10.

Note that only if the user credentials match the ones on the remote computer the
RDP connection will proceed to the next step. Or, in other words, the credential
provider on the remote computer will not receive an incorrect set of login
credentials from the client computer.

3. There could be some negotiations at this stage if the remote computer has a different
user logged in at the time, than the one requested in the RDP connection. So provided
that said negotiations were resolved in favor of a remote user.

4. When the RDP connection is established, the remote computer will create two secure
desktop sessions:

One session for the RDP connection. This is the desktop that will be displayed on
the client computer that is connecting via RDP connection.
Another session for the remote computer. This is the desktop that will be
displayed on the remote computer's physical screen, usually a credential provider
itself.

The purpose of this secure desktop session is to obscure the user desktop
that is now transmitted via RDP to the client computer.

Note that both sessions will have its own instance of the credential provider running in
the remote computer. Thus, in a sense, there will be two instances of the credential
provider running at the same time.

https://dbimgs.s3-us-west-2.amazonaws.com/sqnc-f-clls-t-crdntl-prvdr-n-wndws-sub14.png
https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/user-account-control-switch-to-the-secure-desktop-when-prompting-for-elevation
https://learn.microsoft.com/en-us/windows/win32/winstation/desktops
https://learn.microsoft.com/en-us/windows/win32/winstation/desktops

69/71

5. When the RDP session is disconnected, its desktop session will be closed, and the
remote computer will have only the second session with the credential provider
running.

6. A user on the remote computer can now log in to the user desktop using its local
credential provider.

Finally, if you want to retrieve the RDP session details of a connecting client computer from
the remote computer, you can use the following technique:

C++[Copy]

70/71

//Get additional details about connecting 'client' computer during RDP session

LPTSTR ppBuffer = NULL;

DWORD dwcbBytesReturned = 0;

WTS_CLIENT_ADDRESS* pWTSCA = NULL;

if(WTSQuerySessionInformation(WTS_CURRENT_SERVER_HANDLE,

WTS_CURRENT_SESSION,

WTSClientAddress,

&ppBuffer,

&dwcbBytesReturned))

{

//Sanity check

if(dwcbBytesReturned >= sizeof(WTS_CLIENT_ADDRESS))

{

	 pWTSCA = (WTS_CLIENT_ADDRESS*)ppBuffer;

	 // Address family can be only:

	 // AF_UNSPEC = 0 (unspecified)

	 // AF_INET = 2 (internetwork: UDP, TCP, etc.)

	 // AF_IPX = AF_NS = 6 (IPX protocols: IPX, SPX, etc.)

	 // AF_NETBIOS = 17 (NetBios-style addresses)

	 //

	 int nAddrFam = pWTSCA->AddressFamily;

	 // The client local IP address is located in bytes 2, 3, 4, and 5.

	 // The other bytes are not used.

	 // If AddressFamily returns AF_UNSPEC, the first byte in Address

	 // is initialized to zero.

	 //

	 wprintf(L"AddressFamily: %d, RemoteIP: %u.%u.%u.%u\n",

	 	 nAddrFam,

	 	 pWTSCA->Address[2],

	 	 pWTSCA->Address[3],

	 	 pWTSCA->Address[4],

	 	 pWTSCA->Address[5]);

}

}

if(ppBuffer)

{

WTSFreeMemory(ppBuffer);

ppBuffer = NULL;

}

To determine if the RDP connection is on from the remote computer's side, you can use this
approach.

Conclusion

https://learn.microsoft.com/en-us/windows/win32/termserv/detecting-the-terminal-services-environment

71/71

This is probably the longest blog post that I've written to date. But I had to keep it all in one
place to allow ease of search and reference. This post though is far from being a complete
manual on writing a credential provider. But at least it has some useful notes that may come
handy to developers.

If you feel like you have something to add to my overview, please leave a comment below.

And, if your organization needs me to code a credential provider for you, or if you are
needing help with your existing credential provider project, don't hesitate to send me a
private message below. We provide consulting and development services for businesses.

