Inside the Windows Cache Manager

[linkedin.com/pulse/inside-windows-cache-manager-artem-baranov

Artem Baranov

Fidle

Artem Baranov

Security Researcher at Kaspersky

Published Sep 5, 2022

+ Follow
Introduction

The cache is an integral part of the operating system and its hybrid kernel. Roughly speaking,
it's just a virtual memory region in the kernel address space, on which the Cache Manager
maps file data to provide quick access to them in the future. This access is frequently used by
the File System Driver (FSD) or the Windows Memory Manager (VMM). Instead of reading
file data from disk every time a user or system needs to access to it, the OS kernel calls the
Cache Manager in an attempt to get this data from memory. In turn, the Cache Manager is a

1/13

https://www.linkedin.com/pulse/inside-windows-cache-manager-artem-baranov
https://ru.linkedin.com/in/artem-baranov-86163135?trk=pulse-article_main-author-card
https://www.linkedin.com/signup/cold-join?session_redirect=https%3A%2F%2Fwww%2Elinkedin%2Ecom%2Fpulse%2Finside-windows-cache-manager-artem-baranov&trk=pulse-article_main-author-card__cta-button

set of function in the kernel executable file ntoskrnl.exe, which starts with a prefix Cc. These
functions are private, so to get to their names, you need to configure the symbol server
settings in WinDbg or IDA.

Learning the Windows Cache Manager is quite a difficult task for beginners. This Windows
kernel subsystem is closely related to the VMM, so if you don't have enough knowledge in it,
try to understand the basic concepts without going into complicated technical aspects. In
addition, you should have some knowledge in the field of file system drivers (FSD), because
they are the most frequent clients of the Cache Manager. It's worth to note that the cache
concept exists only at the level of file system, lower drivers on the device stack like the
volume manager, partition manager, disk driver, and disk port driver don't use it.

This blog post is dedicated to the technical aspects of the Windows Cache Manager and
designed for the skilled Windows Internals readers. If you lack knowledge on this topic, read
the corresponding chapter in the Windows Internals book and then get back to this post. I
would say that this blog post is some kind of technical addition to the chapter about the cache
in the book (or I hope it claims..).

Let's take a look at some terms for newbie.

Working Set (WS) - the set of pages in the user mode or kernel mode address space that
are currently resident in physical memory. The kernel mode working set called System
Working Set.

PTE (Page Table Entry) - a structure that is used by the CPU and VMM to translate virtual
addresses to physical ones.

Proto-PTE (Prototype PTE, PPTE) - a special type of so called Software PTE that is used
only by the VMM (not CPU) to work with section objects (memory-mapped files) and serves
as an intermediate level for the translation mapped section pages to the real hardware PTE.
PPTE is a key structure for understanding the section objects.

Segment Control Area (or just Control Area, CA) - a structure that contains
information required for performing I/O operations with file data in or from the mapped file.
It's stored in the non-paged pool. With the help of CA the VMM can address the same file as
binary and as executable.

The basic concepts

The memory region in the kernel mode address space occupied by the cache starts with the
value of the VMM variable MmSystemCacheStart and ends with the value of
MmSystemCacheEnd. Thus, if X - is a pointer to the memory region that belongs to the

2/13

cache, then MmSystemCacheStart<=X<=MmSystemCacheEnd. File data in this region are
mapped into slots, 256MB blocks of data. The cache has two features, which are a
consequence of the fact that the VMM is responsible for its internal implementation.

e The section objects maintained by the VMM are used to map file data into slots. Thus,
the VMM is responsible for paging file data.

e The cache is a part of the system working set. This means that its pages can be
unloaded to the page file.

These features emphasize the fact that the Cache Manager doesn't know for sure whether the
file data is in physical memory or not. Undocumented structure called Virtual Address
Control Block (VACB) is used to describe the cache slots, which are reserved in the paged
pool. The control blocks are addressed from CcVacbs variable. Each of these blocks controls a
specific slot. The variable CcNumberVacbs stores the number of slots.

The cache — MmSystemCacheStart
VACB array - CcVacbhs
VACBO File mapping 0
VACB 1 - File mapping 1
VACB?2 File mapping 2
VACB3 File mapping 3
VACBn File mappingn

VACB has the following format.

typedef struct VACB

{
PVOID Baselddress; //pointer to the slot
PSHARED CACHE MAFP SharedCacheMap; //pointer to the shared cache map
union

{

o 1 T O Y S P I o

LARGE INTEGER FileOffset; //file offset
USHORT ActiveCount; //reference count to the image
! } Overlay;
10 LIST ENTRY LruList; //VACB are linked in the list using this field
11 } VACE;

There are two VACBs lists.

3/13

e (CcVacbFreeList. It's a list of free VACBs, i e those VACBs that are ready for use.

e CcVacbLru. A list of all other structures. A VACB has free status if its .ActiveCount field
is zero. When reused, the slot address is re-mapped. The following WinDbg command
confirms these facts.

r eax=0; !list "-t ntdll!_LIST_ENTRY.Flink -x \"r eax=@eax+1;? @eax;? @$extret-10; dt
nt!_VACB @$extret-10\" nt!CcVacbFreeList "

We can use it to print free VACBs and their numbers, for example.

Evaluate expression: 1714 = 000006eb2

2 Evaluate expression: -—-2120921208 = B81554f38
3 +0x000 BaseRddress : (null)
- +0x004 SharedCacheMap : {(null)
5 +0xz008 Overlay : _ unnamed
(= +0x010 LruList : LIST ENTRY [0x81954fb0 - 0xB81954f£80]
2 Evaluate expression: 1715 = 000006b3
Evaluate expression: —-21205%21184 = 815954fa0
10 +0x000 Basehddress : (null}
11 +0x004 SharedCacheMap : (null}
12 102008 Owverlay : _ unnamed
13 +0x010 LruList : LIST ENTRY [0x81954fc8 - 0xB1954f£858]
14

Next from the first - 0x81954fbo=81954fao + 10.
We can do the same for the remaining (CcVacbLru).

r eax=0; !list "-t ntdll!_LIST_ENTRY.Flink -x \"r eax=@eax+1;? @eax;? @$extret-10; dt
nt!_VACB @$extret-10\" nt!CcVacbLru"

Evaluate expression: 330 = 0000014a

2 Ewvaluate expression: -2120%61816 = 8194ble8

3 +0x000 BaseAddress : O0xce000000

- +0x004 SharedCacheMap : 0xB17f6l1a0 SHARFED CACHE MAFP

= +0x008 Overlay : _ unnamed

6 +0x010 LruList : LIST ENTRY [0xB819491d8 - 0x81949178]
8 Ewvaluate expression: 331 = 0000014b

9 Evaluate expression: -2120969784 = 819491c8

10 +0x2000 BaseAddress : O0xc2040000

11 +0x004 SharedCacheMap : 0xB818c7b08 SHARED CACHE MAP

12 +0x008 Owverlay : _ unnamed

13 402010 LrulList : LIST ENTRY [0xB8194ad38 - 0xz8194b0f8]
14

Most of these structures have initialized shared maps and are mapped to the cache. If sum up
the last VACB numbers from both lists, u get something like this.

14b+6b3 = 7fe

4/13

dd CcNumberVacbs 11
8055f670 000007fe

The virtual address of a specific slot will refer to the PTE pointing to the PPTE, the latter is
linked to the subsection that describes the file (usually there's a one subsection that linked to
the shared map and maps the file as binary, look at MmMap ViewInSystemCache). You can
learn more about PPTEs from my blog post here.

The cached file is described by two important structures called a shared cache map and a
private cache map. Unlike the shared cache map, the private cache map isn't so interesting
for exploring, because it's used for so-called intelligence ahead-read. Let's take a look at the
shared cache map. It represents a structure that the Cache Manager maintains for caching a
specific file. As in the case of control areas, which are unique for disk files (one is used to map
the file as binary and another one to map it as an executable), the shared cache maps are
unique as well and are addressed with SECTION_OBJECT_POINTERS structure, the latter
is held by the FSD in the FCB structure of a specific file. Thus the Cache Manager knows what
exactly slot describes a specific file via VACB, which stores a pointer to the shared cache map.

typedef struct SECTION OBJECT POINTERS

}SECTION OBJECT POINTERS, *PSECTION OBJECT POINTERS;

2 {

3 VOID* DataSectionObject;

4 VOID* SharedCacheMap; //pointer to the shared map
5 VOID* ImageSectionObject;

The cache manager can find this structure for each opened FileObject, because it points to
SECTION_OBJECT_POINTERS (FileObject->SectionObjectPointer). The shared cache map
is described by the following structure.

5/13

https://artemonsecurity.blogspot.com/2018/10/what-is-proto-pte-and-how-windows-vmm.html?m=1

typedef struct SHARED CACHE MAP
{

S [A Y S W T o T

/*0x008%/ union _LARGE INTEGER FileSize;
S*0x018%/ union LARGE INTEGER SectionSize;
S*0x020%/ union _LARGE INTEGER ValidDataLength;
9 S*0x030*/ struct VACB* InitialVacbs([4]; //VACB index array
10 /*0x040*/ struct _VACB** Vacbs; // refers to the previous field if file size <= 1IMB
11 /*0x044*/ struct FILE OBJECT* FileObject; //the first file cobject linked to a shared map
12 /*0x048*/ struct VACB* ActiveVacb;
13 /*0x04c*/ VOID* NeedToZero;
14 ..
15 /*0x058*/ ULONG32 ActiveVacbSpinLock;
16 /*0x05C*/ ULONG32 VacbActiveCount;
17 /*0x060*/ ULONG32 DirtyPages;
18 /*0x064*/ struct LIST ENTRY SharedCacheMapLinks;
1% /*0x06C*/ ULONG32 Flags;
21 /*0x074*/ struct MBCB* Mbch;
22N D =0T78*x / VOID* Section; //section cbject to map a file
24 /*0x090*/ struct CACHE MANAGER CALLBACKS* Callbacks;
26 /*0x098%*/ struct _LIST ENTRY Privatelist;
S*0x0B4*/ struct _VACB* NeedToZeroVach;
0 /*0x0DB*/ struct _PRIVATE CACHE MAP PrivateCacheMap; //describes a private map

}SHARED CACHE MAP, *PSHRRED CACHE MAP;

[l

The Cache Manager can find out quickly which of the specific files are already mapped (i e
have used slots), the shared cache map points to the VACB index array. The first element of
the array points to the first 256KB of the file, the second to the next 256KB and so on. In case
if the file has size not more than 1MB, i e can fit in four slots, the array InitialVacbs from the
shared cache map acts as an index array, otherwise the array is allocated from the paged
pool. In any case, the pointer to it is stored in the Vacbs field. All shared cache maps linked
into a list with the head in PrivateList (&SharedCacheMap->PrivateList, &PrivateCacheMap-
>PrivateLinks). Moreover, all shared cache maps are also linked into lists with
SharedCacheMapLinks. There's a special function of the Cache Manager
CcInitializeCacheMap, which is called by the FSD, and is responsible for initializing a shared
cache map (if it hasn't been created yet), creating a section object and creating a private
cache map.

VOID CcInitializeCacheMap (__in PFILE_OBJECT FileObject, ___in PCC_FILE_SIZES
FileSizes, _in BOOLEAN PinAccess, _in PCACHE _MANAGER CALLBACKS Callbacks,
__in PVOID LazyWriteContext)

This function is responsible for.

* It creates and initializes the shared cache map if it doesn't exist yet (FileObject-
>SectionObjectPointer->SharedCacheMap is zeroed), SharedCacheMap->FileObject is
initialized by the first file object for which the map is created.

It creates the section object with MmCreateSection. Further, this section will be used to
map file data into cache slots.

6/13

e Creates a VACB index array with CcCreateVacbArray. This function initializes fields
.Vacbs and .SectionSize.

If the FSD needs to read data from the cache, it calls CcCopyRead.

BOOLEAN
CcCopyRead (
_ in PFILE_OBJECT FileObject, //file object that was initialized using CcInitializeCacheMap
_ in PLARGE INTEGER FileOffset, //file data offset
in ULONG Length, //size of read data
in BOOLEAN Wait, //if true, than the caller is ok with paging, otherwise file data should be already be in the cache
out_becount (Length) PVOID Buffer, //copy buffer
out PIO STATUS_BLOCR IoStatus

[TAR =R, T ISR S

Internally, the Cache Manager maps parts of file data with help of CcGetVirtualAddress, this
function returns the base address of the data in memory. The function operates only with one
VACB and one slot.

PVOID
CcGetVirtualAddress (
IN PSEHARED CACHE MAP SharedCacheMap, //ptr to a shared map
IN LARGE_ INTEGER FileOffset, //file offset for mapping
OUT PVACB *Vacb, //returns a pointer to VACB that will be used for describing 256KB slot mapping
IN OUT PULONG ReceivedLength //the number of adjacent bytes from the returned address
)

=1 & o W o=

The Cache Manager uses the following function to map file data.

PVACB CcGetVacbMiss (IN PSHARED CACHE_MAP SharedCacheMap, IN
LARGE_INTEGER FileOffset, IN OUT PKLOCK_QUEUE_HANDLE LockHandle, IN
LOGICAL HasBcebListHeads)

The function searches for a VACB to map file data into cache slots and maps it using
MmMapViewInSystemCache (the value for the file mapping is taken from &Vacb-
>BaseAddress).

The following WinDbg script explores the cache.

7/13

1 .expr /s masm;
2 .for(r eax=0; Reax < pol (CcNumberVacbs); r eax=feax+l)
3
4 r ecx—pol (CcVacbs) + @eax * 0xl18;
5 r ebx=poil (@ecx + 4):;
6 .printf "Vachk #3%d Ox%p -> 0x%p\n", Beax, @ecx, poi(Becx);
7 Lif(Gebx 1= 0)
8 {
g r ebx = poi(@ecbx + 0x44);
10 .if(Rebx != 0)
11 {
12 r ebx = R@ebx + 0x30;
13 .1if(poi (Bebx+0x4) != 0)
14 {
15 .printf "\tFile: 0Ox%p\n\tOffset: O0x%p\n%msul\n\n", Eebx-0x30, poi(fecx+8)&ffff0000, Rebx
16 }
17 .else
18 {
19 }
20 }
21 .else
22 {
23 }
24 }
25 .else
26 {
27 }
28)

Take a look at some printed data from my system.

Vach #282 0x8194aa70 —-> 0xd20c0000
File: 0x818=d338
Offset: 0x00ac0000

\SMft

[Y S W T e T

Therefore, the $Mft file is cached at oxdgocooo00 with an offset 0xo0aco000 from its
beginning. Take a look at it.

8/13

=1 @ N ok D BS

o

a8

[y
0

[y
o

o o T 4 Y S W T % T P LY

wooo

[V P T 1% T P T W T o T o o T R G T o T

o= Lo B

Ipte 0xd90c0000
VA d%0c0000

PDE at c0300D20 PTE at C03€4300
contains 01D559%63 contains 0123ECB0
pfn 1455 —G—DA——EWEV not valid

Proto: FFFFEFFFFE148FBOO

This PTE refers to the PPTE at E148FB0O0. Calculate its address manually.
0x123EC80 = 100100011131101 1 O O 1000000 O

|

| ->PPTE
Index=100100011111011000000=123EC0 << Z2=48FB00; MmPagedPoolStart = =1000000;
48FB00+ 1000000 = =148FBOC.

dd 148FBO0 11
e148fb00 B87944cde

PPTE is
0x87%44cde = 1 00001111001010001001 1 00110 1011 O
| |->PTE refers to a subsection
| ->describes mapped file
Calculate the address of the subsection.
Index = 000011110010100010011011 = F2859B << 3 = 7944D8; MmNonPagedPoolStart = 81181000;
7944D8 + 81181000 = 819154D8 - the address of the section.

dt _subsection 819154D3
nt! SUBSECTION

+0x000 ControlArea : O0x819154a8 CONTROL ARER
+0x004 u : _ unnamed

+0x008 StartingSector = 0

+0x00c NumberOfFullSectors : 0x1000

+0x010 SubsectionBase : Oxeld4B8d000 MMETE

+0x014 UnusedPtes =0

+0x018 PtesInSubsection : 0x1000

+0x01lc NextSubsection : 0281913660 SUBSECTION

9/13

[% I ¥ ¥
O o0

-1

lca 0x819154a8

nt! SECTION OBJECT
+0x014 Segment :

0xel3d66c8 SEGMENT OBJECT

//segment for mapping a file as binary

ControlBRrea @ 8515154a8
4r Segment el3dé6c8 Flink 00000000 Blink 00000000
41 Section Ref 1 Pfn Ref 2b& Mapped Views 3c
2 User ERef 0 WaitForDel 0 Flush Count 1]
3 File Object £818ed338 ModWriteCount 0 System Views 3c
44
5 Flags (8088) NoModifiedWriting File WasPurged
47 File: \SMft
4% The segment looks like.
50 dt SEGMENT =l3deéch
31 nt! SEGMENT
52 +0x000 ControlArea 0x819154a8 CONTROL AREA
53 +0x004 TotalNumberOfPtes 0x1b00
4 +0x008 NonExtendedPtes 0x1000
55 +0x00c WritableUserReferences : 0
56 +0x010 SizeOfSegment 0x1b00000
57 +0x018 SegmentPteTemplate _MMETE
58 +0x01c NumberOfCommittedPages : 0
59 +0x020 ExtendInfo (null}
&L +0x024 SystemImageBase (null)
6l +0x028 BasedAddress (null})
62 +0x02c ul ___unnamed
63 +0x030 u2 ___unnamed
64 +0x034 PrototypePte 0x€61564d43 MMPTE
&5 +0x038 ThePtes [1] MMPTE
&7 Retrive these walue using the shared cache map.
€% dt wvacb SharedCacheMap 0x8184aa70
70 nt! VACB
71 +0x004 SharedCachsMap 0x818c7b08 _SHARED CACHE MAP
73 Selective output of the structure.
74
75 dt _SHARED CACHE MAP 0x818c7b08
76 nt! SHARED CACHE MAP
77 +0x008 FileSize : _LARGE_INTEGER 0x1ae8000
78 +0x010 BchList : _LIST ENTRY [0x81913a60 - 0x819138b8]
79 +0x018 SectionSize : _LARGE_INTEGER 0x1b00000
80 +0x044 FileObject : 0x818ed338 FILE OBJECT //matches the address specified in
81 //the control area (!ca output).
a2 +0x078 Section : Oxel3dee9%8 //corresponding section
84 dt _SECTION OBJECT Segment 0xel3de6638

Let's ask the question how does the kernel maps sections into the cache. The answer is
located in the MmMapViewInSystemCache function. Before analyzing it, point out some

facts.

10/13

e The cache PTEs start from address that stores in MmSystemCachePteBase (usually it
matches the address of the beginning of the page table, 0xC0000000).

e Free cache slots are linked to MMPTE_ LIST list to provide quick access to them (see
WRK for more info about this structure). The pointer to the head of the list is stored in
MmFirstFreeSystemCache. The field .NextEntry in MMPTE_ LIST stores a value that
points to the next field (next block of PTEs). This value is relative to
MmSystemCachePteBase. The MilnitializeSystemCache function is responsible for
initializing of the PTEs cache list. The PTEs for the cache are reserved by adjacent

blocks, i e to cover 256KB, the block is included 64 PTEs, see MilnitializeSystemCache.

MmMapViewInSystemCache maps only one cache slot, i e CapturedViewSize argument can
contain a value-size of no more than 256KB. Below you can see is a pseudocode for the
typical behavior of MmMapViewInSystemCache. Take a look at the comments, they explain
the operations to be performed.

#define GetVirtualAddressByPte(PTE) ((PVOID)((ULONG)(PTE) << 10))

11/13

[T Y SO % T F% T O ' T T O % T T A% T O T i T o T e T o o T T o O e T T]

ko =

-] @ N o L B

s

=1 & N &= W ka e O

s

=1 @ N &= W e O WD

s

e o T Y S T % T S e R

s

NTSTATUS
MmMapViewInSystemCache (

IN PVOID SectionToMap, //ptr to a section

OUT PVOID *CapturedBase, //this wariable gets the base address of the mapping

IN OUT PLARGE INTEGER SectionOffset, //section offset in a file
IN OUT PULONG CapturedViewSize //gets the mapping size in bytes

)

PSECTION Section;

UINTE4 PteOffset;

UINTE4 LastPteOffset;
PMMPTE PointerPte;

PMMPTE LastPte;

PMMETE FrotoPte;

PMMETE LastProto;
PSUBSECTION Subsection;
PCONTROL ARERA ControlArea;
NTSTATUS Status;

ULONG Waited;

MMETE PteContents;

PFN NUMBER NumberOfFages;

Section = SectionToMap;

// The check verifies that the section was mapped as binary

if (Section->u.Flags.Image) {
return STATUS NOT MAPPED DATA;

ControlArea = Section->Segment—>ControlArea;

//The number of pages needed for mapping

NumberOfPages = BYTES_TO_PAGES (*CapturedViewSize);

Subsection = (PSUBSECTION) (ControlArea + 1):

//Calculate the offset to the first PPETE

PteOffset = (UINTE4) (SectionOffset->QuadPart >> PAGE_SHIFT) ;

//The offset to the last PPTE in the subsection
LastPteODffset = PteQffset + NHumberOfPages;

12/13

=1 @ b WM

[}

;
=] & N & Wk oW

8

ST O T o6 T S T N T S T S T S T O
o s s Y A W T o T S R

nsWhE o

A W W WwoWw

4

8

{

//8elect the appropriate subsection describing the range of the section that
//was requested for file mapping and fix the indexes of the initial and final
//PPTE (in the found subsection)

while (PteOffset >= (UINT64) Subsection->PtesInSubsection)
{
PteOffset —-= Subsection->PtesInSubsection;
LastPteOffset —-= Subsection->»>PtesInSubsection;
Subsection = Subsection->NextSubsection;

//Bfter that we get the following values, PteOffset - the index of the first PPTE relative
//to the appropriate subsection, LastPteOffset is the index of the last and Subsection
//points to the subsection

//Get a pointer to the first free slot
PointerPte = MmFirstFreeSystemCache;

//Remove it from the list by changing the "pointer™ to the next
MmFirstFreeSystemCache = MmSystemCachePteBase + PointerPte->u.List.NextEntry;

//Increment the number of mapped wiews for the section
ControlArea—>NumberOfMappedViews += 1;
ControlArea->NumberOfSystemCacheViews += 1;

//If needed, create more PPTEs for the section (according to this call,
//even PPTEs are creted on demand)

MiAddViewsForSection { (PMSUBSECTION)Subsection,
LastPteOffset,
0ldIrgl,
sWaited) s

//Get a wvirtual address by the first PTE (i e it's a reverse conversation from
//the PTE address to the virtual address, we need to take the PTE address and shift
//it on the left by 10). Thus we get the base address.

*CapturedBase = MiGetVirtualAddressByPte (PointerPte);

//Retrieve a pointer to the first PPTE for the required section offset
ProtoPte = &Subsection->SubsectionBase[PteOffset];

//Last PPTE
LastProto = &Subsection->SubsectionBase[Subsection->PtesInSubsection];

//The address of the last PTE cache for this mapping
LastPte = PointerPte + NumberOfPages;

//Next, starts a loop to fill cache PTEs so they point to the prototype ones.
while (PointerPte < LastPte)

//By this address to the PPTE the function returns PTE content that refers to it.
//i e we're dealing with a reverse conversion when we need to get an index for the

//reverse translation of PPTE to PTE.

PteContents.u.Long = MiProtoAddressForKernelPte (ProtoPte);
MI WRITE INVALID PTE (PointerPte, PteContents);

PointerPte 4= 1;
ProtoPte += 1;

return STATUS SUCCESS;

13/13

