
1/10

$~ lloydlabs August 2, 2022

Inside Windows Defender System Guard Runtime Monitor
blog.syscall.party/2022/08/02/inside-windows-defender-system-guard-runtime-monitor.html

Aug 2, 2022

What is System Guard Runtime Monitor? (SGRM)

System Guard Runtime Monitor (SGRM) is a component of Windows Defender (WD), that was

introduced in the Windows 10 1709 update and has been present since as a key component to ensure

system integrity.

Another name for this component is Octagon, which is assumed to be an internal project name for

Microsoft, where System Guard Runtime Monitor is used as the public name for marketing Windows

Defender. For SGRM to work, a device must have Virtual Secure Mode enabled on their system, as the

protection makes use of Virtual Trust Levels to minimize the attack surface on the core attestation Lua

engine. Microsoft, in this 2018 blog, describe SGRM as "If important security features should
fail, users should be aware. Windows Defender System Guard runtime attestation, a new

Windows platform security technology, fills this need" . Simply put, SGRM is an anti-

tampering mechanism for your modern Windows device.

In this post, I'll go into the details behind how SGRM works, the Lua component, integrity checks

performed, the RPC service, and more from a brief reverse engineering standpoint of this WD

component.

Components

We'll quickly take a look at some of the components of SGRM, to provide some context before going

through the details of each individual component.

Component Usage

SgrmBroker.exe Provides a client API, exposing assists to the SGRM runtime when doing assertions.

Sgrm.sys The agent driver, exposes functionality for use within the assertion assists wrappers
used by SgrmBroker.

SgrmEnclave.dll Lua assertion engine, also called the enclave controller shim, contains the Lua
runtime, SgrmEnclave_secure.dll runs in VTL-1, or another mode of operation. Talks
to SgrmBroker.exe via the API.

SgrmLpac.exe A local RPC service, which exposes a method to send an HTTP POST request to a
specified endpoint

SgrmAgent.sys

Driver Boot

https://blog.syscall.party/2022/08/02/inside-windows-defender-system-guard-runtime-monitor.html
https://www.microsoft.com/security/blog/2018/04/19/introducing-windows-defender-system-guard-runtime-attestation/

2/10

The agent driver, %WINDIR%\System32\drivers\SgrmAgent.sys , provides kernel-level assists to the

SgrmBroker assist engine, which runs in user-mode.

Upon driver boot new secure device is created under \\Device\\MSSGRMAGENTSYS , with a symbolic link

pointing to this device under \\??\\MSSGRMAGENTSYS . An Event Tracing (Etw) provider is registered

under Microsoft.Windows.Oct.Driver . The provider receives violations for checks the driver

implements are sent to throughout the execution.

After this has completed, the driver requests a kernel extension host from ntoskrnl, using the (mostly

undocumented) API ExRegisterHost , under PspOctExtensionHost , from

PspOctExtensionInterface . The registering of this host provides straight up, direct kernel access to

certain functions, almost as if the agent code was running within ntoskrnl itself. A table of extension

functions is initialized with a pool tag of 0x2000D :

.data:00000001C00088A8 g_ExtensionFunctions dq 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0

.data:00000001C00088A8 ; DATA XREF:
OctpInitialize:loc_1C000B25D↓o

.data:00000001C00088A8 ; OctpInitialize+26E↓w ...

Initialization

To initialize the driver, an IOCTL 0x9C402480 must be sent to the driver. This then calls the internal

function OctpHandleInitRequest .

The driver has several checks in place to ensure the integrity of the user-mode caller:

The device is bound to the SgrmBroker (OctBroker) service SID upon creation with

WdmlibIoCreateDeviceSecure

"D:P(A;;GRGWGX;;;S-1-5-80-3706850399-3459138796-2835936764-562029542-

397710147)

Within the dispatch routine, the driver can only be initialized once, resulting only in a single handle

at a time effectively being open

Only Windows TCB signed processes (not to be confused with Thread Control Block) can open a

HANDLE (Windows Defender runs as a Protected Process Light (PPL) under the anti-malware

context, the trust level would not suffice)

For example, below, if the driver has already been initialized in OctpHandleInitRequest , the driver

will write an event to the abovementioned Etw provider and deny access.

// Global g_initialized flag check ≠ 0

if (_InterlockedCompareExchange(&g_initialized, 1, 0) == 1)

{

 EtwWriteTransfer(1, g_SgrmDescriptor, {"OctpHandleInitRequest", "SGRM device was already
initialized!"}, ...);

}

Agent Mailbox

As previously mentioned, the driver exposes functionality to SgrmBroker . The IOCTL 0x9C402484 is

used to dispatch to the specified function within the driver mailbox.

https://medium.com/yarden-shafir/yes-more-callbacks-the-kernel-extension-mechanism-c7300119a37a

3/10

struct _SGRM_MAILBOX_REQ {

 UINT8 u8Index;

 DWORD dwArgNumb;

 [function arguments]

} *PSGRM_MAILBOX_REQ, SGRM_MAILBOX_REQ;

The list of driver assist functions can be observed in the table below.

The specific mailbox value is passed in a struct, to SgrmAgent.sys's OctpMailboxDispatcher . Below, is

an excerpt of the function targets that can be accessed by the user-mode agent for utility:

Idx Mailbox Target Description

0x1 OctpHandleMapVirtualAddress Map a specified virtual address (including kernel mode)

0x2 OctpHandleUnmapVirtualAddress Unmap a specified virtual address

0x13 OctpHandleGetThreadContext Get the context of specified thread

0x15 OctpHandleGetMsrValue Read the value of a specified MSR

0x12 OctpHandleGetMemoryRegionInfo Get the information of a specified memory region

0xD OctpHandleFreezeThread Freeze a specified thread

0xE OctpHandleThawThread Similar to freeze thread

0xF OctpHandleCopyMemory Copy memory (including physical), destination, source,
and size.

0x10 OctpHandleMapFile Map a specified file

0x11 OctpHandleUnmapFile Unmap a specified file

0xC OctpHandleGetStructureOffsetSize Get the offset of a specified structure, e.g. EPROCESS

Along with providing these utilities, the agent provides access to these objects to the broker through the

mailbox for runtime inspection via the engine on demand:

EPROCESS

ETHREAD

DRIVER_OBJECT

TOKEN

SgrmBroker.exe

Service Start

SgrmBroker.exe is one of the user-mode components of the System Guard Runtime Monitor, and runs

as a service named OctBroker (or, SgrmBroker). The service is started as a delayed service for

performance reasons, and has a trigger to spawn the client API service upon boot. The process runs as a

signed Windows Trusted Computing Base (TCB) PPL.

When the service starts, the following is applied to the process, for performance and security:

4/10

Set the current thread priority to THREAD_MODE_BACKGROUND_BEGIN

Set the PROCESS_INFORMATION_CLASS of the current process to ProcessEnableLogging

Enable ASLR using ProcessASLRPolicy

Enable handle checking using ProcessStrictHandleCheckPolicy

Set the heap to terminate upon corruption using HeapEnableTerminationOnCorruption

The broker then does some core initialization for general functionality, such as setting up an Etw handler.

The LAPC component (SgrmLpac.exe) is programmatically spawned within the initialization function,

all within the LpacHost.exe class. A job is created for it through CreateJobObjectA , and the handle

of the LpacHost.exe process is bound to it. This class provides the functionality to spawn, terminate,

and use the HTTP POST RPC endpoint. After the RPC server has spawned, if the process is terminated,

LpacHost::LpacTerminatedCallback is called which closes all of the RPC connections. The details of

this component are examined in the SgrmLpac section of this blog post.

Once the core initialization has completed, a path to %WINDIR%\System32\Sgrm is constructed. To

ensure the integrity of this directory, an event is created DirectoryWatcher class to watch for

tampering efforts that may take place to the files in this directory. A thread is then spawned in the

background to watch the directory under DirectoryWatcher::StartWatch . If one of the watched files

is altered, an Etw write event is triggered. The files in this directory are detailed below:

File Usage

SgrmAssertions.bin Compiled Lua script, with Microsoft-defined header, which contains the
assertions

SgrmAssertions.cat Certificate used to verify the assertions that the engine makes, to ensure they
are legitimate

Then, the RPC client API is initialized as a local service (ncalrpc) within OctagonRpcInitialize .

initialization

The broker attempts to open a handle to the agent driver - \\\\.\\MSSGRMAGENTSYS . If it is not

successful, possibly indicating a malicious handle to the driver, an Etw event is triggered. If this is

successful, the initialization IOCTL is sent (0x9C402480) via to the fast I/O control port in the driver. If

the driver has already been initialized, as discussed in the previous section, this will fail.

The number of bytes returned from the DeviceIoControl call must be >= 0x11D , if not, a

ValidateResponseSize Etw event is triggered. A structure is populated with information from the

OctpGetNtosInfo within the driver. The OctpGetNtosInfo queries the

SystemModuleInformationEx class by calling ZwQuerySystemInformation to populate the

undocumented RTL_PROCESS_MODULE_INFORMATION_EX structure, only certain applicable members are

used in the resultant buffer.

5/10

// Credit: ProcessHacker

typedef struct _RTL_PROCESS_MODULE_INFORMATION_EX

{

 USHORT NextOffset;

 struct _RTL_PROCESS_MODULE_INFORMATION

 {

 HANDLE Section;

 PVOID MappedBase;

 PVOID ImageBase;

 ULONG ImageSize;

 ULONG Flags;

 USHORT LoadOrderIndex;

 USHORT InitOrderIndex;

 USHORT LoadCount;

 USHORT OffsetToFileName;

 UCHAR FullPathName[256];

 } BaseInfo;

 ULONG ImageChecksum;

 ULONG TimeDateStamp;

 PVOID DefaultBase;

} RTL_PROCESS_MODULE_INFORMATION_EX, *PRTL_PROCESS_MODULE_INFORMATION_EX;

Virtual Secure Mode Enclave Host Controller

The broker has a helper class named EnclaveControllerVsm in which SgrmEnclave_secure.dll

resides. SgrmEnclave_secure.dll is the assertion engine, with the Lua engine embedded. Upon

initialization, EnclaveControllerVsm checks if the enclave ENCLAVE_TYPE_VBS is supported by the

processor. If supported, a enclave is then created, and the assertion engine is loaded into it. The details of

the assertion engine can be found in the SgrmEnclave_secure.dll section of this blog post.

The secure enclave is then initialized, and a pointer to EngHostAttest is resolved from the global array

of function names (g_engHostFunctionMappings), and called.

The shim DLL (SgrmEnclave.dll) is also initialized within EnclaveControllerShim ,

EnclaveControllerShim . EngHostAttest is then resolved and called from the same function table.

This does not run in an VSM enclave.

Modes Of Operationi

VTL-1 is not always avaliable on a machine, for example an older system may not support Virtual Secure

Mode or have a TPM chip. Below are the modes in which the enclave can run in when verifying the result

of an attestation.

Mode Description

1 Virtualization Based Security (VBS) + Dynamic
Root of Trust for Measurement (DTRM)

Keys used to verify attestation placed in the TPM's
PCR registers, allocated within $pcr17-23.

2 VBS Keys used to verify attestation use host keys

3 None No attestation, no keys used - not supported by
the host

Assists

6/10

The broker provides a number of assists which the assertion engine requires, as it is simply a Lua script.

The assists are needed for the script to interact with the system to make the assertions based of certain

system information. These assists are stored and initialized at runtime, and passed to the assertion engine

upon startup. They are stored in a table named g_BrokerAssistCallbackTbl of type

BROKER_CALLBACK_TABLE , and use the following format.

struct _BROKER_CALLBACK_TABLE g_BrokerAssistCallbackTbl

?g_BrokerAssistCallbackTbl@@3U_BROKER_CALLBACK_TABLE@@A dq offset ?

dq offset ?Broker_CancelTimer@Assists@@SAPEAXPEAX@Z ; Assists::Broker_CancelTimer(void *)

dq offset ?Broker_CloseHandle@Assists@@SAPEAXPEAX@Z ; Assists::Broker_CloseHandle(void *)

dq offset ?Broker_CreateEvent@Assists@@SAPEAXPEAX@Z ; Assists::Broker_CreateEvent(void *)

Some assists are simply user-mode calls, such as registry reads, and some require using the

SgrmAgent.sys driver for extended functionality.

Assists which require the usage of the agent driver are prefixed with Assists::Agent_ , an excerpt of

these mapped to the internal agent functions are below.

Broker Assist Function Driver Mailbox Function

Assists::Agent_ReadMsr OctpHandleGetMsrValue

Assists::Agent_ThawThread OctpHandleThawThread

Assists::Agent_UnmapFile OctpHandleUnmapFile

Assists::Agent_MapVirtualAddress OctpHandleMapVirtualAddress

As mentioned, some of the assists that can be done in user-mode, and don't require use of the driver.

These are appended with Assists::Broker_ . For example, the assist for a Sleep is as trivial as it

sounds:

void Assists::Broker_Sleep(DWORD *dwSleepMs)

{

 Sleep(*dwSleepMs);

 return 0;

}

SgrmEnclave_secure.dll

The engine relies on the broker to load the Lua script from disk, meaning the DLL which is within the

Secure Enclave does perform any file I/O for security reasons - and is instead wrapped through an assist

as previously covered. All of the assits within the function are called through a wrapper class,

subsequently named AssistWrapper .

The script which is loaded must have a "metadata" header with a specific format. Luckily for our reverse

engineering efforts, the source code contains debug strings with the original struct field names. Below is

the structure, along with the constraints that must be passed.

7/10

typedef struct _LUA_FILE_HEADER {

 BYTE TLVEmpty[6]; // [1, 0, 0, 0, 0]

 UINT16 Version; // header->Version == LUA_FILE_HEADER_FORMAT_VERSION

 UINT32 SVN;

 UINT16 MajorScriptVersion; // header->MajorScriptVersion > MAJOR_SCRIPT_VERSION

 UINT16 MinorScriptVersion; // header->MinorScriptVersion > MINOR_SCRIPT_VERSION

 UINT16 MajorEngineVersion; // header->MajorEngineVersion == MAJOR_ENGINE_VERSION

 UINT16 MinorEngineVersion; // header->MinorEngineVersion == MINOR_ENGINE_VERSION

} *PLUA_FILE_HEADER, LUA_FILE_HEADER;

The size of the Lua script which is loaded is also checked, it must be greater than the size of the structure.

If any of these checks fail, a EnforceLuaScriptMetadata Etw event is triggered.

Followed by this header is compiled Lua code.

typedef struct _LUA_FILE {

 LUA_FILE_HEADER lfhMetadata;

 BYTE bCompiled[];

} *LUA_FILE, LUA_FILE;

The Lua engine lives inside the SgrmEnclave_secure.dll DLL and is initialized within the

EngInitialize function. A global lock is issued to ensure the engine doesn't run twice, and a new heap

is created for use by the runtime. For unsafe calls inside the engine. e.g. raw function pointers to

NATIVE_* functions, a special wrapper function EngpDispatchLuaPcallUnsafe is used.

The state of the memory region used by the Lua runtime within the secure enclave is saved, any calls must

pass a MemoryUtil::IsBufferOutsideEngine check - which verifies the memory is within the bounds

of MemoryUtil::EngineStart and MemoryUtil::EngineEnd . This utility is used to ensure mapped

files, etc, aren't living outside the enclave region.

Lua Assertions

This is basically the core of SGRM, the assertion engine - where all of the magic is done. All of the

assertions are within Lua, and contained within the compiled script which format is described in the

previous section. When the script needs to use functionality, the functions are prefixed with NATIVE_* ,

for example, NATIVE_GetProcessById - which calls into the function within the assist wrapper in

SgrmEnclave_secure.dll .

The fully decompiled script can be found in my GitHub repository for this research here. For example,

below we can see the reconstructed script reading the MSR C0010015 for AMD processors.

if not msrTable then

 msrTable = {}

 msrTable.CPUVendorId = "AuthenticAMD"

 msrTable.CPUFamily = L14_2

 msrTable.Msr_C0010015 = L18_2
 msrTable = L1_2.rn_b151

 msrTable(L18_2, L19_2, L20_2)

end

There are several global variables initialized within the script, some from assists when bootstrapping,

such as GLOBAL_KERNEL_IMAGE_SIZE :

https://github.com/LloydLabs/sgrm-research

8/10

GLOBAL_FRAMEWORK_ACCOUNTING GLOBAL_PROFILEENABLED GLOBAL_ASSERTION_TABLE

GLOBAL_BOOTID GLOBAL_INITIALIZATION_FINISHED GLOBAL_PAGESIZE

GLOBAL_KERNEL_IMAGE_BASE GLOBAL_KERNEL_IMAGE_SIZE GLOBAL_SCRIPT_ID

The list of assertions can be read within the script; however this list is incomplete as the decompiled code

is hard to read. The following list of drivers are checked to not be loaded, likely the top malicious drivers

in their opinion as there are many more on their driver blocklist.

Driver Description

\Device\mimidrv Mimikatz credential dumping utility driver

\Device\HackSysExtremeVulnerableDriver An intentionally vulnerable open-source driver
developed by HackSys

\Device\Htsysm72FB A Capcom driver, which was commonly used by
adversaries to achieve code execution in kernel
mode

The tampering of critical system processes is also tracked within the Lua script, the following tokens are

verified against these processes:

Process Token

SgrmBroker.exe PsProtectedSignerWinTcb

MsMpEng.exe PsProtectedSignerAntimalware

crss.exe PsProtectedSignerWinTcb

MsMpEngCP.exe PsProtectedSignerAntimalware

MsSense.exe PsProtectedSignerWindows

For firmware integrity, the MSRs of these CPU manufacturers are checked:

Manufacturer MSR

AMD C0010015

Intel C80

The integrity of several critical, and also Microsoft anti-malware, system drivers are checked:

Driver Description

\Driver\mssecflt Microsoft Security Events Component Minifilter

\Driver\WdFilter Microsoft Defender Antivirus Mini-Filter Driver

\Driver\SgrmAgent System Guard Runtime Monitor Agent Driver, our favourite!

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/microsoft-recommended-driver-block-rules

9/10

By using the DRIVER_OBJECT returned by assist functions, the following routines within the driver are

checked. A state at first run is saved, and any changes trigger an assertion failure:

DriverObject->FastIoDispatch

DriverObject->MajorFunction

DriverObject->DriverStartIo

DriverObject->DriverUnload

DriverObject->DriverStart

DriverObject->DriverSize

DriverObject->DriverName

Length and Buffer are both checked in this UNICODE_STRING structure.

The list EPROCESS structures is tracked, along with mitigations, the token, and protection level. I'm not

currently sure if this is for all processes or just specific ones, as the decompiled output is very mangled.

The following process mitigations are checked:

AuditDisableDynamicCode

AuditDisallowWin32kSystemCalls

AuditNonSystemFontLoading

AuditFilteredWin32kAPIs

AuditProhibitLowILImageMap

AuditBlockNonMicrosoftBinaries

AuditBlockNonMicrosoftBinariesAllowStore

AuditLoaderIntegrityContinuity

The following token attributes are checked:

Token->IntegrityLevelIndex

Token->UserAndGroups

Token->Lowbox

Token->IntegrityLevel

Token->TokenSource->SourceName

SID->SubAuthorityCount

SID->SubAuthority

The token of the current System.exe process is checked and put into a struct within the script -

L6_2.SystemToken . The tokens on the system are then enumerated to make sure it's not been stolen.

SgrmLpac.exe

If the assertion engine detects a violation, the SgrmLapc RPC service is used to send an HTTP POST

request to sgrm.microsoft.com/v1.0/Attestation under the user-agent SgrmBroker . A value

atp_onboarded is included in the requests, if the registry key

SOFTWARE\Microsoft\Windows\CurrentVersion\Sgrm -> Region is present, this value is sent to the

server along with details of the system tampering violation. The region is then used to construct the

specific SGRM host, e.g. europe.sgrm.microsoft.com , or unitedkingdom.sgrm.microsoft.com .

10/10

The RPC endpoint can be called by anyone under the IID a13a9961-953f-4157-8a29-e65e29be510d ,

and makes use of the common Wininet!Http* family of APIs for the requests. The endpoint has a

prototype of (the unknown values don't matter when being called, they can be anything):

int s_HttpPost(

 __int64 unk_0,

 PWCHAR pswzServerName,

 PWCHAR *pswcObjectName,

 INTERNET_PORT ipInternetPort,

 PWORD lpHeaders,

 PVOID lpOptional,

 DWORD dwOptionalLength,

 _QWORD *unk_1,

 _DWORD *unk_2

);

The RPC call functions end up calling an internal function within the RPC server named appropriately

HttpClient::Post . James Forshaw's WindowsRpcClients here implements this nicely for us.

Conclusion

SGRM is a cool bit of kit, with an interesting architecture. It appears as though the project has gone

unmaintaned since 2019, although still running on (just about) all modern devices using Windows

Defender. Even though it may be unmaintained, or abandoned, there is still a wealth of potential for

checks that could be implemented. The use of Lua allows (or would allow) Microsoft to quickly push new

assertions to endpoints, hopefully we can see new updates soon.

Thanks to Alex Ionsecu for his initial research on SGRM, along with helping with queries I had. Along

with friends who proof-read this blog (@Myrtus0x00, @herrcore, @smelly__vx, @fwosar, @su_charlie,

@hela_luc, @d4n_tweets).

This research was done in personal research time at my own liberty, and does not reflect the opinion of

my employer.

https://github.com/tyranid/WindowsRpcClients/blob/master/Win10_1809/sgrmlpac.exe/a13a9961-953f-4157-8a29-e65e29be510d_1.0.cs

