DPWs are the new DPCs : Deferred Procedure Waits in Windows 10 21H1

A&V windows-internals.com/dpws-are-the-new-dpcs-deferred-procedure-waits-in-windows-10-21h1

By Yarden Shafir

With the Windows 21H1 (Iron/“Fe”) feature complete deadline looming, the last few Dev Channel builds have had
some very interesting changes and additions, which will probably require a few separate blog posts to cover fully. One
of those was in a surprising part of the code — object wait dispatching.

The new build introduced a few new functions:

e KeRegisteroObjectDpc (despite the name, it’s an internal non-exported function)
® ExQueueDpcEventWait

e ExCancelDpcEventWait

e ExCreateDpcEvent

e ExDeleteDpcEvent

All those functions are part of a new and interesting functionality — the ability to wait on an (event) object and to
execute a DPC when it becomes signaled. Until now, if a driver wanted to wait on an object it had to do so
synchronously — the current thread would be put in a wait state until the object that is waited on was signaled, or the
wait timed out (or an APC executed, if the wait was alertable). User mode applications typically perform waits in the
same manner, however, since Windows 8, they’ve also have had the ability to perform asynchronous waits through
the Thread Pool API. This new functionality associates an I/O Completion Port with a “Wait Packet”, obviating the
need to have a waiting thread.

The change in 21H1 , through the addition of these APIs, marks a major change for kernel-mode waits by introducing
kernel-mode asynchronous waits: a driver can now supply a DPC that will be executed when the event object that is
waited on is signaled all while continuing its execution in the meantime.

The Mechanism

To use this new capability, a driver must first initialize a so-called “DPC Event”. To initialize this structure we have
the new API ExCreateDpcEvent :

NTSTATUS

ExCreateDpcEvent (
Outptr PVOID *DpcEvent,
Outptr PKEVENT *Event,
In PKDPC Dpc

)i

Internally, this allocates a new undocumented structure that I chose to call DPC_WAIT_EVENT :

typedef struct _DPC_WAIT_EVENT

{
KWAIT_BLOCK WaitBlock;

PKDPC Dpc;
PKEVENT Event;
} DPC_WAIT_EVENT, *PDPC_WAIT_EVENT;

This API receives a DPC that the caller must have previously initialized with KeInitializeDpc (you can guess who
spent a day debugging things by forgetting to do this), and in turn creates an event object and allocates a

DPC_WAIT EVENT structure that is returned to the caller, filling in a pointer to the caller’s DPC , the newly allocated
event, and setting the wait block state to wWaitBlockInactive .

Then, the driver needs to call the new ExQueueDpcEventWait function, passing in the structure:

1/10

https://windows-internals.com/dpws-are-the-new-dpcs-deferred-procedure-waits-in-windows-10-21h1/

BOOLEAN

ExQueueDpcEventwWait (
In PDPC_WAIT_EVENT DpcEvent,
In BOOLEAN QueueIfSignaled

)

{
if (DpcEvent->WaitBlock.BlockState != WaitBlockInactive)
{
RtlFailFast (FAST_FAIL_INVALID_ARG);
}
return KeRegisterObjectDpc(DpcEvent->Event,
DpcEvent->Dpc,
&DpcEvent->WaitBlock,
QueueIfSignaled);
}

As can be seen, this function is very simple — it unpacks the structure and sends the contents to the internal
KeRegisterObjectDpc :

BOOLEAN
KeRegisterObjectDpc (
In PVOID Object,
In PRKDPC Dpc,
In PKWAIT_BLOCK WaitBlock,
In BOOLEAN QueueIfSignaled

)

You might wonder, like me — doesn’t the “ e ”in “ Ke ” stand for “exported”? Was I lied to the whole time? Is this a
mistake? Was this a last minute change? Does MS not have any design or code review? I'm as confused as you are.

But before talking about KeRegisterObjectDpc , we need to investigate another small detail. To enable this
functionality, the KWAIT_BLOCK structure can now store a KDPC to queue, and the WAIT_TYPE enumeration has a
new WaitDpc option:

typedef struct _KWAIT_BLOCK

{
LIST_ENTRY WaitListEntry;
UCHAR WaitType;
volatile UCHAR BlockState;
USHORT WaitKey;

#if defined(_WIN64)
LONG SparelLong;

#endif
union {
struct KTHREAD* Thread;
struct KQUEUE* NotificationQueue;
struct KDPC* Dpc;
1

PVOID Object;
PVOID SparePtr;
} KWAIT_BLOCK, *PKWAIT_BLOCK, *PRKWAIT_BLOCK;

typedef enum _WAIT_TYPE
{
waitAll,
waitAny,
WaitNotification,

2/10

WaitDequeue,
WaitDpc,
} WAIT_TYPE;

Now we can look at KeRegisterObjectDpc , which is pretty simple and does the following:

1. Initializes the wait block
1. Sets the BlockState fieldto wWaitBlockActive ,
2. Sets the waitType fieldto waitDpc
3. Sets the Dpc field to point to the received DPC
4. Sets the Object field to the received object.
2. Raises the IRQL to DISPATCH_LEVEL
3. Acquires the lock for the object, found in its DISPATCHER_HEADER .
4. If the object is not signaled — inserts the wait block into the wait list for the object and releases the lock, then
lowers the IRQL
5. Otherwise, if the object is signaled:
1. Satisfies the wait for the object, resetting the signal state as required for the object
2. If the QueueIfSignaled parameter was set, goes to step 3
3. Otherwise,
1.Sets BlockState to WaitBlockInactive
2. Queues the DPC

Releases the lock and calls KiExitDispatcher (which will lower the IRQL and make the DPC execute
immediately).

Then the function returns. If the object was not signaled, the driver execution will continue and when the object gets
signaled, the DPC will be executed. If the object is already signaled, the DPC will be executed immediately (unless
the QueueIfSignaled parameter was setto TRUE)

If the wait is no longer needed, the driver should call ExCancelDpcEventWait to remove the wait block from the
wait queue. And when the event is not needed it should call ExDeleteDpcEvent to dereference the event and free
the opaque DPC_WAIT_EVENT structure.

Meanwhile, the various internal dispatcher functions that take care of signaling an object have been extended to
handle the waitDpc case — instead of unwaiting the thread (WwaitAny / waitAll), or waking up a queue waiter
(waitNotification), acallto KeInsertQueueDpc isnow done forthe waitDpc case (since wait satisfaction is
done at DISPATCH_LEVEL ,the DPC will then immediately execute once KiExitDispatcher is called by one of
these functions).

The Limitations

You might have noticed that while the functionality in KeRegisterObjectDpc is generic, all these structures and
exported functions only support an event object. Furthermore, when looking inside ExCreateDpcEvent , we can see
that it only creates an event object:

status = ObCreateObject(KernelMode,
ExEventObjectType,
NULL,
KernelMode,
NULL,
sizeof (KEVENT),
0,
0,
&event);

3/10

But as KeRegisterObjectDpc suggests, an event is not the only object that can be asynchronously waited on. The
usage of KiwaitSatisfyOther suggests that any generic dispatcher object, except for mutexes, which need to
handle ownership rules, can be used. Since a driver might need to wait on a process, a thread, a semaphore, or any
other object — why are we only allowed to wait on an event here?

The answer in this case is probably that this was not designed to be a generic feature available to all drivers. So far, I
could only see one Windows component calling these new functions — Vvid.sys (the Hyper-V Virtualization
Infrastructure Driver) Digging deeper, it looks like it is using this new capability to implement the new

WHvCreateTrigger API added to the documented Hyper-V Platform APIin winHvPlatform.h . “Triggers” are a
new exposed 21H1 functionality to send virtual interrupts to a Hyper-V Partition. The importance of Microsoft’s
Azure/Hyper-V platform play is clearly evident here — low level changes to the kernel dispatcher, for the first time in a
decade, simply to optimize the performance of virtual machine-related APIs.

As such, since it is only designed to support this one specific case, this feature is built to only wait on an event object.
But even with that in mind, the design is a bit funny — ExCreateDpcEvent will create an event object and return it to
the caller, which then has to re-open it with 0bOpenObjectByPointer to use it in any way, since most wait-related
APIs require a HANDLE (as does exposing the object to user-mode, as Vid.sys intends to do). And we can see
vid.sys doing exactly that:

ExInitializeRundownProtection(&vidStruct->ex_rundown_ ref58);
KeInitializeDpc(&vidStruct->Dpc, VidTriggerpDpcRoutine, vidStruct);
status = ExCreateDpcEvent(
&vidStruct->WaitStruct,
&event,
&vidStruct->Dpc);
if (status >= 0)
{
status = ObOpenObjectByPointer(
event,
9,
NULL,
EVENT_MODIFY STATE,
ExEventObjectType,
NULL,
&Handle);
if (status >= 0)

Why not simply expose KeRegisterObjectDpc and let it receive an object pointer that will be waited on, since this
function doesn’t care about the object type? Why do we even need a new structure to manage this information? I don’t
know. The current implementation doesn’t seem like the most logical one, and it limits the feature significantly, but it
is the Microsoft way.

If I had to guess, I would expect to see this feature changing in the future to support more object types as Microsoft
internally finds more uses for asynchronous waits in the kernel. I will not be surprised to see an
ExQueueDpcEventWaitEx function added soon... and perhaps documenting this API to 3™ parties.

But not all is lost. If you're willing to bend the rules a little and upset a few people in the OSR forums, you can wait on
any non-mutex (dispatcher) object you want, simply by replacing the pointer inside the DPC_WAIT EVENT structure
that is returned back to you. Neither ExQueueDpcEventWait or KeRegisterObjectDpc care about which type of
object is being passed in, as long as it’s a legitimate dispatcher object. I'm sure there’s an NT_ASSERT in the checked
build, but it’s not like those still exist.

4/10

https://windows-internals.com/wp-content/uploads/2020/11/vid_event_initialize.png

The risk here (as OSR people will gladly tell you) is that the new structure is undocumented and might change with no
warning, as are the functions handling it. So, replacing the pointer and hoping that the offset hasn’t changed and that
the functions will not be affected by this change is a risky choice that is not recommended in a production
environment. Now that I've said it, I have no doubt we will see crash dumps caused by AV products attempting to do
exactly that, poorly.

PoC

To demonstrate how this mechanism works and how it can be used for objects other than events I wrote a small driver
that registers a DPC that waits for a process to terminate.

On DriverEntry , this driver initializes a push lock that will be used later. It also registers a process creation
callback:

NTSTATUS

DriverEntry (
In PDRIVER_OBJECT DriverObject,
In PUNICODE_STRING RegistryPath

)

DriverObject->DriverUnload = DriverUnload;
ExInitializePushLock(&g_WaitLock);
return PsSetCreateProcessNotifyRoutineEx(&CreateProcessNotifyRoutineEx, FALSE);

}

Whenever our CreateProcessNotifyRoutineEx callback is called, it checks if the new process name ends with

«

cmd.exe”:

VOID
CreateProcessNotifyRoutineEx (
In PEPROCESS Process,
In HANDLE ProcessId,
In PPS_CREATE_NOTIFY_INFO CreateInfo

)

{
NTSTATUS status;
DECLARE_CONST_UNICODE_STRING(cmdString, L"cmd.exe");
UNREFERENCED_PARAMETER(ProcessId);
//
// If process name is cmd.exe, create a dpc
// that will wait for the process to terminate
//
if ((!CreateInfo) ||
('RtlSuffixUnicodeString(&cmdString, CreateInfo->ImageFileName, FALSE)))
{
return;
}
}

If the process is cmd.exe, we will create a DPC_WAIT_EVENT structure that will wait for the process to be signaled,
which happens when the process terminates. For the purpose of this PoC I wanted to keep things simple and avoid
having to keep track of multiple wait blocks. So only the first cmd.exe process will be waited on and the rest will be
ignored.

5/10

First, we need to declare some global variables for the important structures, as well as the lock that we initialized on
DriverEntry and the DPC routine that will be called when the process terminates:

static KDEFERRED_ROUTINE DpcRoutine;
PDPC_WAIT_EVENT g_DpcWait;
EX_PUSH_LOCK g_WaitLock;

KDPC g_Dpc;

PKEVENT g_Event;

static

void

DpcRoutine (
In PKDPC Dpc,
In PVOID DeferredContext,
In PVOID SystemArgumentl,
In PVOID SystemArgument2

)

{
DbgPrintEx(DPFLTR_IHVDRIVER_ID,
DPFLTR_ERROR_LEVEL,
"Process terminated\n");
}

Then, back in our process creation callback, we will initialize the DPC object and allocate a DPC_WAIT_EVENT
structure using KeInitializeDpc and ExCreateDpcEvent .To avoid a race we will use our lock.

void
CreateProcessNotifyRoutineEx (

{
ExAcquirePushLockExclusive (&g_WaitLock);
if (g_DpcWait == nullptr)
{
KeInitializeDpc(&g_Dpc, DpcRoutine, &g_Dpc);
status = ExCreateDpcEvent(&g_DpcwWait, &g_Event, &g_Dpc);
if (!NT_SUCCESS(status))
{
DbgPrintEx(DPFLTR_IHVDRIVER_ID,
DPFLTR_ERROR_LEVEL,
"ExCreateDpcEvent failed with status: 0x%x\n",
status);
ExReleasePushLockExclusive(&g_WaitLock);
return;
}
}
ExReleasePushLockExclusive(&g_WaitLock);
}

ExCreateDpcEvent creates an event object and places a pointer to it in our new DPC_WAIT_EVENT structure. But
since we want to wait on a process, we need to replace that event pointer with the pointer to the EPROCESS of the
new Cmd.exe process. Then we can go on to queue our wait block for the process:

void

CreateProcessNotifyRoutineEx (
In PEPROCESS Process,

6/10

}

)

NTSTATUS status;
//

// Only wait on one process

//

ExAcquirePushLockExclusive(&g_WaitLock);
if (g_DpcWait == nullptr)

{

KeInitializeDpc(&g_Dpc,

DpcRoutine, &g_Dpc);

status = ExCreateDpcEvent(&g_DpcwWait, &g_Event, &g_Dpc);
if (!NT_SUCCESS(status))

{

DbgPrintEx(DPFLTR_IHVDRIVER_ID,
DPFLTR_ERROR_LEVEL,
"ExCreateDpcEvent failed with status: Ox%x\n",
status);

ExReleasePushLockExclusive (&g _WaitLock);

return;

}

NT_ASSERT(g_DpcWait->0bject == g_Event);

g_DpcwWait->0bject

= (PVOID)Process;

ExQueueDpcEventWait(g_DpcWait, TRUE);

}

ExReleasePushLockExclusive(&g_WaitLock);

And that’s it! When the process terminates our DPC routine will be called, and we can choose to do whatever we want
there:

|GD|GD|GD|GD|GD|GD|GD|GD|GD|GD|GD|GD|GD|GD|GD [V}
o0 |Icw Wi INOvikEwiNIPRI® HF -

kd> k

Child-spP

fffffeed 5743ebes8
fffffeed 5743eble
fffffeed 5743edoo
fffffee4 5743efbe
fffffeod 596533e0
fffffeod 59653410
fffffeod 59653520
fffffeed 59653640
fffffeed 596536b0
fffffeed 59653740
fffffeod4 59653830
fffffeod4 59653870
fffffeod 59653930
fffffeed 59653a70
0000003e 1foff718

RetAddr

fffff805 7f285ce5
fffff8es 7f284cfd
fffff805 7f422c55
fffff8e5 7f422a40
fffff805° 7f422066
fffff805 7f25¢c739
fffff805 7f2ef5e9
fffff805 7f6ce953
fffff805 7f6c2b57
fffff8es5 7f779f68
fffff8es” 7f21224d
fffff8e5 7f41febo
fffff8e5 7f42d25f
00007ffc f3cba3e4
©00PVPVO PPOPVOLL

Call Site
DpcWaitOnProcess!DpcRoutine [C:\U
nt!KiExecuteAllDpcs+@x505
nt!KiRetireDpcList+ex24d
nt!KxRetireDpcList+0x5
nt!KiDispatchInterruptContinue
nt!KiDpcInterrupt+0x326
nt!KiExitDispatcher+ex4c9
nt!KeSetProcess+0x245
nt!PspRundownSingleProcess+0x237
nt!PspExitThread+0x56b
nt!KiSchedulerApcTerminate+0x38
nt!KiDeliverApc+0x62d
nt!KiInitiateUserApc+0x70
nt!KiSystemServiceExit+ex9of
@xeeee7ffc f3cba3e4d

The only other thing we need to remember is to clean up after ourselves before unloading, by setting the pointer back
to the event (that we saved for that purpose), canceling the wait and deleting the DPC_WAIT_EVENT structure:

VOID
DriverUnload (
In PDRIVER_OBJECT DriverObject

7/10

https://windows-internals.com/wp-content/uploads/2020/11/dpc_wait_call_stack.png

UNREFERENCED_PARAMETER(DriverObject);

PsSetCreateProcessNotifyRoutineEx(&CreateProcessNotifyRoutineEx, TRUE);

//
// Change the DPC_WAIT_EVENT structure to point back to the event,
// cancel the wait and destroy the structure

//
if (g_DpcWait != nullptr)
{
g_Dpcwait->0Object = g_Event;
ExCancelDpcEventWait (g_DpcWait);
ExDeleteDpcEvent(g_DpcWait);
}
}
Forensics

Apart from the legitimate uses of asynchronous wait for drivers, this is also a new and stealthy way to wait on all
different kinds of objects without using other, more well-known ways that are easy to notice and detect, such as using
process callbacks to wait on process termination.

The main way to detect whether someone is using this technique is to inspect the wait queues of objects in the system.

For example, let’s use the Windbg Debugger Data Model to inspect the wait queues of all processes in the system. To
get a nice table view we’ll only show the first wait block for each process, though of course that doesn’t give us the full
picture:

dx -g @$procWaits = @$cursession.Processes.Where(p =>

(__int64)&p.KernelObject.Pcb.Header .WaitListHead !=

(__int64)p.KernelObject.Pch.Header .WaitListHead.Flink).Select(p =>
Debugger.Utility.Collections.FromListEntry(p.KernelObject.Pcb.Header .WaitListHead,
"nt!_KWAIT_BLOCK", "WaitListEntry")[0]).Select(p => new { WaitType = p.WaitType, BlockState =
p.BlockState, Thread = p.Thread, Dpc = p.Dpc, Object = p.0Object, Name = ((char*)
((nt!_EPROCESS*)p.Object)->ImageFileName).ToDisplayString("sb")})

8/10

| § uaitType § Blockstate § (+) Thread E

ox1fa ox1
0x240 ax2
2x248 ox2
2x2a8 ox2
2x2d4a ox2
ox2e8 ox2
2x368 ox2
@x3ec ox2
ox1a0 ox2
2x48c ox2
2x498 ox2
2x4ad ox2
@x4ac ox2
9x518 ox2
ox538 ox2
@x554 ax2
2x584 ox2
2x5c8 ox2
2x608 ox2
2X660 ox2
Bx670 ox2
oxecad ax2
ox6cc ox2
ox6da ox2
ox6e8 ox2
Ox76¢C ox2
@x790 ax2
2x798 ox2
2x7e8 ox2
ox7fa ox2
ox814 ox2
2x828 ox2
0x864 ax2
2x86¢C ox2
@x878 ox2
ox8de ox2
2x920 ox2
2x974 ax2
2x99¢ ox2
ox9da ox2
xa X
2xa0e ax2
oxbea ox2
xbec X
oxbe ox2

ox4
x4
ox4
ox4
x4
ox4
ox4
ox4
ox4
ox4
ox4
ox4
ox4
ox4
ox4
x4
ox4
ox4
ox4
ox4
ox4
x4
ox4
ox4
ox4
ox4
x4
ox4
ox4
x4
ox4
ox4
x4
ox4
ox4
ox4
ox4
x4
ox4
ox4
x4
ox4
ox4

oxffffcbsafes10040 exffffcbsafedloede
exffffch8bee1563ce @xtfffch8bee1563ce
exffffcbhsbee1563ce exffffcbsbee1563ce
oxffffcbhsbee1563ca exffffchsbeel563co
exffffcbsafeced780 exffffcb8afeced786
exffffcbsafeced7se oxffffcbsafeced78o
exffffcbsafefcees oxffffcbafefceeeo
exffffcbhgafefceern exffffcbsafefceeon
exffffcbsafefcees oxffffcbafefceeeo
exffffcbsafefceesn exffffcbafefceeeo
exffffchgafefceeon exffffcbsafefceeon
oxffffcbsafefceeon extfficb8afefceeod
exffffcbsafefcees oxffffcbafefceeeo
exffffcbhgafefceern exffffcbsafefceeon
exffffcbsafefcees oxffffcbBafefceeeo
oxffffcbgafefceed exffffcbBafefceeed
exffffcbgafefceeoo exffffcbsafefceeon
exffffcbgafefceesn exffffcbafefceeeo
exffffchgafefceeen exffffcbgafefceeon
exffffcbsafefceern exffffcbsafefceeon
exffffcbsafefcees oxffffcbafefceeeo
exffffchgafefceern exffffchgafefceeon
exffffcbgafefceeoo exffffcbsafefceeon
exffffcbgafefceesn exffffcbafefceeeo
exffffchgafefceeon exffffcbsafefceeon
oxffffcbgafefceeon extfffcbafefceeeo
exffffcbgafefcees exffffcbBafefceeed
exffffcbsafefceero exffffcbsafefceeon
exffffcbsafefcees exffffcbafefceeeo
oxffffcbgafefceedd exffffcbBafefceedd
exffffcbgafefceeoo exffffcbsafefcecon
exffffcbgafefceesn oxffffcbBafefceeto
exffffcbgafefcees exffffcbBafefceedd
exffffcbsafefceero exffffcbsafefcecon
exffffcbsafefcees oxffffcbBafefceedo
exffffcbhgafefceern exffffcbsafefceeen
oxffffcbsafefceero exffffchiafefceenn
oxffffcbgafefceed exffffcbBafefceedd
oxffffcbgafefceero exffffcbsafefcecon
exffffcbsafefceeon exffffchBafefceenn
exffffcbgafefcees exffffcbBafefceedd
exffffcbhgafefceern exffffcbsafefceeen
exffffcbsafefcees exffffcbBafefceeto

oxffffcb8afe2bsdose
oxffffcb8afeefooge
oxffffcb8afefs55140
oxffffcb8afefb6oge
oxffffcb8beve2blge
exffffcbsbeeo31180
exffffcb8boee4oese
exffffcbgbee12f24e
oxffffcbsbooo2fese
exffffcb8b83c96240
oxffffcb8be3ca3ese
oxffffcb8bo3cb5080
exffffcb8b®3cb8680e
exffffcbgbe3de2oce
oxffffcb8bo3dooese
oxffffcb8be3dedese
oxffffcbsbe3de3oce
exffffcb8be3d8cese
oxffffcb8be3defese
oxffffcb8be3dbdese
exffffcb8be3e37080
exffffcb8be3eb7080
oxffffcbgbe3dfsese
exffffcb8be3eb8ege
exffffcbg8be3ebeoge
oxffffcb8bo3f2cese
oxffffcb8b@3f5a080
exffffcbsbe3fesoce
exffffcb8bes@7dece
oxffffcb8be5082080
oxffffcbsbes5129080
exffffcb8bo5133080
oxffffcb8bes1a00ce
oxffffcb8afdfboese
oxffffcb8afdfb3ege
oxffffcb8afdf73e8e
oxffffcb8afdf1ao8e
oxffffcb8afdfdoese
oxffffcb8afefsdeceo
oxffffcb8afefas080
oxffffcb8be52b4680
oxffffcb8bes53bceceo
oxffffcb8bo53co080

csrss.exe

wininit.

exe

csrss.exe

winlogon.exe
services.exe

lsass.exe

svchost.
.exe
svchost.
.exe
svchost.
.exe
svchost.
.exe
svchost.
.exe
svchost.
.exe
svchost.
vm3dservice.
svchost.
.exe
svchost.
.exe
svchost.
.exe
svchost.
.exe
svchost.
.exe
svchost.
.exe
svchost.
.exe
svchost.
.exe
svchost.
.exe
spoolsv.
.exe
svchost.
.exe
svchost.

svchost

svchost

svchost

svchost

svchost

svchost

svchost

svchost

svchost

svchost

svchost

svchost

svchost

svchost

svchost

svchost

svchost

exe

exe

exe

exe

exe

exe

exe

exe

exe

exe

exe

exe

exe

exe

exe

exe

exe

exe

exe

ex

We mostly see here waits of type wWaitNotification (2), which is what we expect to see — user-mode threads

asynchronously waiting for processes to exit. Now let’s run our driver and run a new query which will only pick
processes that have wait blocks with type waitbpc (4):

dx @$dpcwaits = @$cursession.Processes.Where(p =>
(__int64)&p.KernelObject.Pcb.Header .WaitListHead !=
(__int64)p.KernelObject.Pcb.Header .WaitListHead.Flink &&

Debugger.Utility.Collections.FromListEntry(p.KernelObject.Pcb.Header .WaitListHead,
"nt!_KWAIT_BLOCK",

[0x6bO]

"WaitListEntry").Where(p => p.WaitType ==

cmd.exe [Switch To]

4).Count()

1= 0)

Now we only get one result — the cmd.exe process that our driver is waiting on. Now we can dump its whole wait
queue and see who is waiting on it. We will also use a little helper function to show us the symbol that the DPC ’s

DeferredRoutine is pointing to:

dx -r@ @$getsym = (x => Debugger.Utility.Control.ExecuteCommand(".printf\"%y\",

((__int64)x).ToDisplayString("x")))

dx -g

+

Debugger .Utility.Collections.FromListEntry(@$dpcwaits.First().KernelObject.Pcb.Header .WaitListHead,

"nt!_ KWAIT_BLOCK",
p.BlockState, Thread = p.Thread,

"WaitListEntry").Select(p => new { WaitType = p.WaitType,
Dpc = p.Dpc, Object = p.Object, Name = ((char*)
((nt!_EPROCESS*)p.Object)->ImageFileName).ToDisplayString("sb"), DpcTarget = (@$getsym(p.Dpc-
>DeferredRoutine))[0]})

BlockState =

9/10

https://windows-internals.com/wp-content/uploads/2020/11/wait_blocks_processes.png

WaitType BlockState +) Threa +) Dpc Objec DpcTarge:
itTyp: lockStat: hread bject p get

| [ox0] | oxfffff8057ef23020 oxffff8057ef23020 oxffffcbsbl24fe240 DpclaitOnProcess!DpcRoutine (fffff8e5 7ef21150)

Only one wait block is queued for this process and its pointing to our driver!

This analysis process can also be converted to JavaScript to have a bit more control over the presentation of the
results, or to C to automatically check the wait queues of different objects (keep in mind it is extremely unsafe to do
this at runtime due to the lock synchronization required — using the com/c++ Debugger API to do forensics on a
memory dump or live dump is the preferred way to go).

Conclusion

This new addition to the Windows kernel is exciting since it allows the option of asynchronous waits for drivers, a
capability that only existed for user-mode until now. I hope we will see this extended to properly support more object
types soon, making this feature generically useful to all drivers in various cases.

The implementation of all the functions discussed in this post can be found here.

Read our other blog posts:

10/10

https://windows-internals.com/wp-content/uploads/2020/11/dpc_wait_blocks.png
https://github.com/yardenshafir/DpcWait/tree/main

