
1/18

Deep dive into user-mode Asynchronous Procedure Calls
in Windows.

dennisbabkin.com/blog

Intro

Asynchronous Procedure Calls, or APC, was an always obscure subject for me. Even though it

is documented by Microsoft, the intricacies of its implementation kept me away from it in my

own software.

Recently though during our conversation with Rbmm, he pointed out some aspects of APC

that were stopping me from using it before. Additionally, when I tried searching online for a

comprehensive guide on APC, I didn't find much. Thus, I'm writing this blog post to shed

some light on APC and its use when writing Windows native code.

For those that don't like reading blog posts, make sure to check my video recap at the end.

APC Basics

APC, in short, is a property of a Windows thread that allows to specify a callback routine to

execute asynchronously. In most cases APC will be beneficial for code functions that perform

some lengthy operations, usually an input/output (or I/O), such as file operations, web

transactions, timers, etc. An APC in Windows is basically the way to attach a callback code to

a particular thread.

https://dennisbabkin.com/blog/?t=windows-apc-deep-dive-into-user-mode-asynchronous-procedure-calls
https://docs.microsoft.com/en-us/windows/win32/sync/asynchronous-procedure-calls
https://dennisbabkin.com/blog/author/?a=rbmm

2/18

APC in Windows comes in two flavors: kernel-mode and user-mode. The former is executed

primary as an interrupt (that we'll discuss in a separate blog post.) The latter one though has

some intricacies in the way a thread needs to call certain Windows APIs to ensure that an

APC callback can be invoked. This blog post will be about implementation of the user-mode

APC.

In my view, the best way to illustrate all these concepts is with code. So let's do it next.

Simple APC Example

Let's create the most basic example of how user-mode APC can be used. We'll be using a

console application (but for that matter, this can also be used in the service application as

well.)

For simplicity I will be using the C++ Console Application template in the Visual Studio.

Since we're dealing with the Windows-specific content, I will stick with WinAPIs for the code
samples below. For simplicity I will stay away from the standard C++ code primitives, as they
are not relevant to Windows internals that I will be discussing in this blog post.

Let's modify our main function to create a thread. Keep in mind to do error checks too:

C++

int main()
{

HANDLE hThread = ::CreateThread(NULL, 0, ThreadProc, 0, 0, NULL);
if (hThread)
{

 ::Sleep(1000 * 1000);
 ::CloseHandle(hThread);
}
else
 wprintf(L"ERROR: (%d) CreateThread\n", ::GetLastError());

}

The code above creates a Win32 thread and then goes into a sleep cycle for 1000 seconds. I

need this long delay to ensure that our main thread remains "alive" for the duration of our

test.

Then the thread procedure itself is just this:

C++

https://dennisbabkin.com/blog/?t=depths-of-windows-apc-aspects-of-asynchronous-procedure-call-internals-from-kernel-mode
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/introduction-to-windows-service-applications

3/18

DWORD WINAPI ThreadProc(
In LPVOID lpParameter

)
{

wprintf(L"[%u] Thread has started\n", ::GetCurrentThreadId());

::Sleep(1000 * 1000);
return 0;

}

As you can see I added another diagnostic output into the console to tell us what our thread

ID is, and then added another 1000-second delay at the end to make sure that our thread

stays alive for the duration of our test. So nothing fancy so far.

Now let's try to queue our APC. (In Microsoft jargon this means to add an APC callback to a

thread.) Doing that should notify the thread to execute our callback at the first available

opportunity. We can use the QueueUserAPC function to do that.

C++

int main()
{

HANDLE hThread = ::CreateThread(NULL, 0, ThreadProc, 0, 0, NULL);
if (hThread)
{
 ::Sleep(1000);

 if(!::QueueUserAPC(Papcfunc, hThread, 123))
 {
 wprintf(L"ERROR: (%d) QueueUserAPC\n", ::GetLastError());
 }

 ::Sleep(1000 * 1000);
 ::CloseHandle(hThread);
}
else
 wprintf(L"ERROR: (%d) CreateThread\n", ::GetLastError());

}

As you can see the call to QueueUserAPC takes the address of the callback function as the

first parameter, the thread handle to associate it with, and the last parameter as a user-

defined value to pass into the callback. Let's just choose something random, like 123. We also

need to make sure to catch and log all errors.

Additionally, note that I added another 1-second delay right after the call to CreateThread

and before QueueUserAPC in the form as Sleep(1000) . The reason I did that was to point

out a potential race condition in our test code. The way CreateThread works is that it is an

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-queueuserapc

4/18

asynchronous function itself, meaning that it may return before the thread has a chance to

start. If that happens quickly, without any further delay our call to QueueUserAPC may also

succeed before the thread had started running. In that case, to quote the documentation:

If an application queues an APC before the thread begins running, the thread begins by calling
the APC function. After the thread calls an APC function, it calls the APC functions for all
APCs in its APC queue.

So it won't be a good test of our callback because it will be executed automatically even before

our thread has a chance to start running. The test we're making here is how to queue an APC

callback after the thread had begun executing. Thus we added a slight delay to ensure that.

OK. Then our APC callback becomes this:

C++

void Papcfunc(
ULONG_PTR Parameter

)
{

wprintf(L"[%u] APC callback has fired with param=%Id\n",
::GetCurrentThreadId(), Parameter);
}

Again, for the purpose of our test, I'm outputting into console the thread ID with which our

APC callback is executing and also the fact that our callback was actually invoked.

So if you run the code above, our thread will start, but the APC callback will not be invoked.

And that's what was very confusing to me at first. My question was, why?

The reason our APC callback was not invoked can be gleaned from the documentation:

When a user-mode APC is queued, the thread is not directed to call the APC function unless it
is in an alertable state.

A thread enters an alertable state by using SleepEx, SignalObjectAndWait,
WaitForSingleObjectEx, WaitForMultipleObjectsEx, or MsgWaitForMultipleObjectsEx to
perform an alertable wait operation.

What that quote says, is that a thread that has a queued APC needs to be in an alertable

state to invoke that APC. But what is that? Well, in short, this basically means that a thread

needs to call one of those listed waiting APIs to enter that state.

OK, so let's modify our thread procedure. The easiest function for us to call is SleepEx:

C++

https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleepex

5/18

DWORD WINAPI ThreadProc(
In LPVOID lpParameter

)
{

wprintf(L"[%u] Thread has started\n", ::GetCurrentThreadId());

DWORD dwR = ::SleepEx(INFINITE, TRUE);
wprintf(L"SleepEx returned %d\n", dwR);

::Sleep(1000 * 1000);
return 0;

}

Note the important thing is that I'm passing the 2nd parameter into SleepEx as TRUE ,

that brings that thread into an alartable state, or allows it to process its queued APC

callbacks. And again for our debugging purposes I also output the return value from the

SleepEx function onto the console.

Now if we run this code, the result is what we wanted to achieve and our APC callback is

invoked successfully:

There are several things to note here:

1. See that the APC callback has been invoked from within the context of the thread itself.

We can tell that because they both have the same thread ID.

2. SleepEx function call returned the value of 192, which is WAIT_IO_COMPLETION ,

that signifies that the function returned after APC callback was invoked.

https://dbimgs.s3-us-west-2.amazonaws.com/ntrccs-f-wndws-pc-dp-dv-nt-dr-md-snchrns-prcdr-clls-n-ndsws-sub01.png

6/18

3. If you remove, or comment out, the Sleep(1000) delay after a call to CreateThread

and run the code, note that the APC callback may be executed before the code in the

thread entry point (i.e. ThreadProc) has even started running:

When we called QueueUserAPC right after CreateThread the APC callback was
executed within initiation of a thread itself. (Remember that a thread is started
asynchronously after a call to CreateThread returns.) And thus in that case, the thread
did not need to be in an alertable state, or call SleepEx . But do not rely solely on this
behavior if you also want your APC callback to be executed after the thread has started
running. By doing so you are creating a bug in your code, or a race condition, which I
demonstrated by adding a one-second delay after a call to CreateThread . In your
production code such delay may come from some other code that is executed right after
you created a thread but before you queued an APC.

In a situation when you need to execute APC callback before the thread entry point
ThreadProc , the correct way to do it is to create that thread suspended, by specifying
CREATE_SUSPENDED flag, then queue an APC using QueueUserAPC function call, and
resume the thread using ResumeThread function. Note that APC callbacks will not be
executed while thread is still suspended. When you resume the thread the APC
callback(s) will run first, in order that you queued them, and then the thread entry point
ThreadProc will run next.

Multiple APC Callbacks

Now let's dive a little bit deeper. Can we queue multiple APC callbacks to one thread?

https://dbimgs.s3-us-west-2.amazonaws.com/ntrccs-f-wndws-pc-dp-dv-nt-dr-md-snchrns-prcdr-clls-n-ndsws-sub02.png
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-resumethread

7/18

Let's modify our code to accomplish that. I'll try to queue a large number of APCs at once.

How about a thousand:

C++

int main()
{

HANDLE hThread = ::CreateThread(NULL, 0, ThreadProc, 0, 0, NULL);
if (hThread)
{
 ::Sleep(1000);

 for (int q = 0; q < 1000; q++)
 {
 if (!::QueueUserAPC(Papcfunc, hThread, q))
 {
 wprintf(L"ERROR: (%d) QueueUserAPC with value

q=%d\n", ::GetLastError(), q);
 break;
 }
 }

 ::Sleep(1000 * 1000);
 ::CloseHandle(hThread);
}
else
 wprintf(L"ERROR: (%d) CreateThread\n", ::GetLastError());

}

I modified our call to QueueUserAPC to be called in a loop. I also changed its user-defined

parameter to an index in that loop, and also modified our error reporting code to notify us of

a specific cycle that the function may fail at and break the loop.

If you run that code as-is, it may produce this output:

8/18

So the answer to the original question is yes, we can queue multiple APC callbacks to the same
thread. They will be executed sequentially in the order that they were queued. And the number
of available APC callbacks that can be queued seems to be only limited by the amount of non-
pageable kernel memory in the system.

The tricky thing about our sample above is that by introducing the loop we also introduced

another race condition into our code. Did you spot it? (Rbmm had actually pointed that

condition out to me.)

To spot it, let's add a slight delay after each call to QueueUserAPC in our loop. We'll do it

with a call to Sleep(1) :

C++

https://dbimgs.s3-us-west-2.amazonaws.com/ntrccs-f-wndws-pc-dp-dv-nt-dr-md-snchrns-prcdr-clls-n-ndsws-sub03.png
https://dennisbabkin.com/blog/author/?a=rbmm

9/18

int main()
{

HANDLE hThread = ::CreateThread(NULL, 0, ThreadProc, 0, 0, NULL);
if (hThread)
{
 ::Sleep(1000);

 for (int q = 0; q < 1000; q++)
 {
 if (!::QueueUserAPC(Papcfunc, hThread, q))
 {
 wprintf(L"ERROR: (%d) QueueUserAPC with value

q=%d\n", ::GetLastError(), q);
 break;
 }

 ::Sleep(1);
 }

 ::Sleep(1000 * 1000);
 ::CloseHandle(hThread);
}
else
 wprintf(L"ERROR: (%d) CreateThread\n", ::GetLastError());

}

But now if we run this code, the result may look like this:

So why did we get only one APC callback with that delay?

https://dbimgs.s3-us-west-2.amazonaws.com/ntrccs-f-wndws-pc-dp-dv-nt-dr-md-snchrns-prcdr-clls-n-ndsws-sub04.png

10/18

Well, this is a classic race condition. The reason is that our ThreadProc had only one call to

SleepEx . Let's see what could've happened with and without a delay in our loop:

Without a delay our loop quickly went through all the calls to QueueUserAPC . In that

particular instance, the thread executing our loop was able to do so within its own time

slice before our ThreadProc thread had a chance to run. So in that case all 1000 APCs

were queued before SleepEx function in our ThreadProc ran. But then when it did,

it executed them sequentially as we queued them, which made it look like what we

wanted to achieve.

With a delay though our loop was queuing an APC per each time slice of its execution.

So after the first call to QueueUserAPC , the SleepEx function in our ThreadProc

was invoked, which processed our single queued callback and returned. But after that

the ThreadProc simply went into its 1000-second delay, which does not put it into an

alertable state. And thus we saw only one APC callback in our output.

To fix this timing bug, we need to ensure that we put our thread into an alertable state for as

many times as we queue our APCs. To do that in our test example, we can simply call it in an

infinite loop like so:

C++

DWORD WINAPI ThreadProc(
In LPVOID lpParameter

)
{

wprintf(L"[%u] Thread has started\n", ::GetCurrentThreadId());

for(;;)
{
 DWORD dwR = ::SleepEx(INFINITE, TRUE);
 wprintf(L"SleepEx returned %d\n", dwR);
}

//::Sleep(1000 * 1000); // becomes redundant
return 0;

}

In your production code though you would probably not call SleepEx in your worker

thread. Instead you will be using a function such as WaitForSingleObjectEx, or

WaitForMultipleObjectsEx that will not only let you put your thread into an alertable state,

but will also let you keep track of some signaling object, like an event, to properly end that

thread.

In case you queued more than one APC callback, they will run in order specified. Also note that
only one callback function will run at a time. Each APC callback will be executing in the
context of the thread that it was queued for.

https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-waitforsingleobjectex
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-waitformultipleobjectsex

11/18

Next let's review some additional gotchas that may come up with APCs - how to handle them

in a GUI app.

APC With GUI Apps

A GUI app in Windows behaves in a slightly different manner than a console app or a service.

GUI app comes with a message loop, that by itself does not allow processing of APC

callbacks.

If you create a stock Windows Desktop Application for C++ in Visual Studio, its message

loop in the wWinMain function may look like this:

C++

MSG msg;

while (GetMessage(&msg, nullptr, 0, 0))
{

if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg))
{
 TranslateMessage(&msg);
 DispatchMessage(&msg);
}

}

return (int)msg.wParam;

Note that the way Microsoft uses GetMessage function in the stock sample above is
incorrect because it may return three values: 0 if it receives WM_QUIT message, -1 if it
fails, or other value if it receives some other message. In other words, the while loop should
account for an error condition, as described here.

In the loop above GetMessage function waits indefinitely for a message and then returns it in

msg when one arrives.

So let's see what happens when we try to queue an APC to that thread. In this example we

will stay with a single-threaded nature of our GUI app.

Let's create a helper function that will queue an APC for us:

C++

https://docs.microsoft.com/en-us/dotnet/framework/windows-services/introduction-to-windows-service-applications
https://en.wikipedia.org/wiki/Message_loop_in_Microsoft_Windows
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getmessage
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getmessage

12/18

void Papcfunc(
ULONG_PTR Parameter

)
{

HWND hWnd = (HWND)Parameter;
::MessageBox(hWnd, L"APC callback fired OK", L"Success", MB_ICONINFORMATION);

}

void set_test_APC(HWND hWnd)
{

if (!::QueueUserAPC(Papcfunc, ::GetCurrentThread(), (ULONG_PTR)hWnd))
{
 ::MessageBox(hWnd, L"ERROR: QueueUserAPC failed", L"ERROR",

MB_ICONERROR);
}

}

As before, we're using QueueUserAPC but instead of starting a new thread we will use the

same thread that we're running in. Additionally, for the output we will use a GUI message

box to tell us if queuing of APC succeeded or failed.

Lastly, we can invoke our set_test_APC as a handler from our main window menu.

But if we compile and run our GUI app, and then test our set_test_APC function, the APC

callback will not be invoked. Why?

The reason is still the same as in the first console example above. Our main thread, that we

queued our APC to, does not enter an alertable state by invoking those "magic APIs" that

Microsoft listed in their documentation.

To make this work we need to adjust our message loop, and namely unfold the GetMessage

function, to enter an alertable state. So let's see how our message loop will look then:

C++

13/18

MSG msg;
int nExitCode = 0;

for (;;)
{

DWORD dwR = ::MsgWaitForMultipleObjectsEx(0, NULL, INFINITE, QS_ALLINPUT,
MWMO_ALERTABLE | MWMO_INPUTAVAILABLE);

if (dwR == WAIT_FAILED)
{
 //Error
 assert(false);
 nExitCode = -1;
 break;
}

while (::PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{
 if (msg.message == WM_QUIT)
 {
 //Normal exit
 return (int)msg.wParam;
 }

 if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
}

}

return nExitCode;

Note the addition of a new function, MsgWaitForMultipleObjectsEx, that is actually doing

all the heavy lifting, of not just waiting for an incoming message, but also processing of APC

callbacks for us. In it, we requested to wait for all messages by specifying QS_ALLINPUT flag,

and then also requested to enter an alertable state by using MWMO_ALERTABLE , and also to

return when messages are available by using MWMO_INPUTAVAILABLE .

Also note that we're then using PeekMessage to retrieve a message and then to remove it

from the queue by specifying the PM_REMOVE flag.

Additionally, we need to catch the moment when our GUI app is exiting. This will happen

when the logic in it calls PostQuitMessage function, that in turn sends us the WM_QUIT

message, that our updated message loop will catch and then exit from the wWinMain

function with the exit code supplied to PostQuitMessage .

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-msgwaitformultipleobjectsex
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-peekmessagew
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-postquitmessage

14/18

Lastly, we still need to take care of the error handling. In case of a GUI app for debugging-

stage error handling I prefer to use visual assertions, provided by the assert.h library, as

the assert macro. I used it in case MsgWaitForMultipleObjectsEx fails, to give us a

visual indication of a problem.

Note that assert macros are compiled only in the Debug build configuration and are very
handy for debugging GUI applications.

So if we run the program with our updated message loop, after we invoke our

set_test_APC , the APC callback should be called and we should see our visual indicator:

As you see, it wasn't that much code to unfold our message loop.

But next let's see what happens when we don't have access to a message loop.

APC With a Dialog Box

A dialog box in Windows parlance is a window that is created internally by specifying a

special layout of its controls in the format of a resource. In your app, you may be creating

many of your windows this way, using the Visual Studio's resource editor. The following code

demonstrates creation of such a dialog in our stock Win32 GUI app:

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/assert-macro-assert-wassert?view=msvc-160
https://dbimgs.s3-us-west-2.amazonaws.com/ntrccs-f-wndws-pc-dp-dv-nt-dr-md-snchrns-prcdr-clls-n-ndsws-sub05.png

15/18

C++

DialogBox(hInst, MAKEINTRESOURCE(IDD_ABOUTBOX), hWnd, About);

It's easy to overlook the simplicity of the DialogBox macro, that in one line can create,

process and destroy a new window.

To try our APC callback with that dialog box, lets try to add a button to it (using Visual Studio

resource editor) and then add a handler to it to invoke our set_test_APC function:

But when we invoke our set_test_APC from a dialog box, nothing happens. Why?

The reason we don't have our APC callback invoked from a dialog box is because internally it

uses its own message loop. To address it, we will need to unfold the call to DialogBoxParam,

or the function that is called by the DialogBox macro.

This task is a little bit more involved and requires the use of a small undocumented hack.

Let's review the code:

C++

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-dialogboxw
https://dbimgs.s3-us-west-2.amazonaws.com/ntrccs-f-wndws-pc-dp-dv-nt-dr-md-snchrns-prcdr-clls-n-ndsws-sub06.png
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-dialogboxparamw

16/18

HWND hDlg = ::CreateDialog(hInst, MAKEINTRESOURCE(IDD_ABOUTBOX), hWnd, About);
if (hDlg)
{

::ShowWindow(hDlg, SW_SHOW);

//Disable parent window to make ours into a modal dialog
::EnableWindow(hWnd, FALSE);

MSG msg;
BOOL bStopStop = FALSE;

for (; !bStopStop;)
{
 DWORD dwR = ::MsgWaitForMultipleObjectsEx(0, NULL, INFINITE,

QS_ALLINPUT,
 MWMO_ALERTABLE | MWMO_INPUTAVAILABLE);
 if (dwR == WAIT_FAILED)
 {
 //Error
 assert(false);
 break;
 }

 while (::PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
 {
 //Hack to ensure processing of EndDialog() calls
 if (msg.message == WM_NULL && msg.hwnd == hDlg)
 {
 //Normal exit
 bStopStop = true;
 break;
 }

 if (!::IsDialogMessage(hDlg, &msg))
 {
 if(msg.message >= WM_KEYFIRST && msg.message <=

WM_KEYLAST)
 {
 TranslateMessage(&msg);
 }

 DispatchMessage(&msg);
 }
 }
}

::DestroyWindow(hDlg);
hDlg = NULL;

//Re-enable parent window
::EnableWindow(hWnd, TRUE);

}

17/18

else
assert(false);

As you can see, there's way more code. It's somewhat similar to how we handled the main

message loop, but also has its own intricacies. To name a few:

First, to get access to the message loop we need to create our dialog as modeless. (Note

that DialogBoxParam creates modal dialog boxes. So we need to emulate that.) We

can achieve this by calling the CreateDialog macro.

To convert our modeless dialog box into a modal one, we need to disable the parent

window for the duration when our dialog is shown, and then remember to re-enable it

back. We can do that using the EnableWindow function.

Our updated message loop is similar to what we've done before. The call to

MsgWaitForMultipleObjectsEx is exactly the same. Again, we need it to ensure that

our thread can process APC callbacks. But additionally it also waits for messages in a

queue and returns if there are any.

Because it's a dialog box, we needed to differentiate between messages that are specific

for our dialog window using the IsDialogMessage function, and not to process them in

our message loop logic. This is needed to ensure that dialog specific key combinations

continue to work.

Alternatively we call TranslateMessage to convert keyboard strokes into specific

messages. We do so only if we detect that its a keyboard message.

And lastly, the most critical part of our message loop, is how we end it. The issue with

the modal dialog box is that it is destroyed using the EndDialog function. Internally,

this function simply hides the dialog window, and then sets a flag to end the internal

message loop. After that it sends the WM_NULL message to invoke execution inside the

said message loop.

Since we can't access the internal flag inside its message loop, we can only rely on the

presence of the WM_NULL message to end our own loop. This is definitely a hack

though. Ideally you would not rely on it and instead use some internal variable to signal

when the dialog window needs to close, and set it before calling EndDialog . Then you

would check it after confirmation that msg.message == WM_NULL .

Lastly, since we created our modeless window we need to remember to destroy it. We

do it at the end using DestroyWindow function.

Now, with our modified message loop, when we invoke our set_test_APC from the dialog

box, we get our APC callback to fire just fine:

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-createdialogw
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-enablewindow
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-isdialogmessagew
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-enddialog
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-destroywindow

18/18

Caveats

Note that even though we were able to emulate most common message loops in GUI apps,

this doesn't keep us out of the woods yet, when it comes to queuing user-mode APCs. There

are still a few cases when that poses a challenge, that you need to be aware of. All of them

have their own internal message loops that we do not have access to. To name just a few

examples:

MessageBox - creates a popup message box that is a modal dialog window that also

hides its own message loop. Unfortunately there's no easy solution to replace it. Thus if

you need to rely on APC callbacks when a message box can be shown, it is better to

either write your own implementation of a message box, or to use some other

notification technique other than APC.

PropertySheet - any property sheet, or a wizard is usually created as a modal dialog

window and will have similar issues processing APC callbacks.

GetOpenFileName, GetSaveFileName, SHBrowseForFolder, ChooseFont,

PrintDlgEx - are just a few functions that come to mind that display a dialog window

with its own internal message loop that will prevent processing of APCs. The

workaround here is simply to use some other notification technique other than APC.

https://dbimgs.s3-us-west-2.amazonaws.com/ntrccs-f-wndws-pc-dp-dv-nt-dr-md-snchrns-prcdr-clls-n-ndsws-sub07.png
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-messagebox
https://docs.microsoft.com/en-us/windows/win32/api/prsht/nf-prsht-propertysheetw
https://docs.microsoft.com/en-us/windows/win32/controls/property-sheets
https://docs.microsoft.com/en-us/windows/win32/controls/property-sheets#wizards
https://docs.microsoft.com/en-us/windows/win32/api/commdlg/nf-commdlg-getopenfilenamew
https://docs.microsoft.com/en-us/windows/win32/api/commdlg/nf-commdlg-getsavefilenamew
https://docs.microsoft.com/en-us/windows/win32/api/shlobj_core/nf-shlobj_core-shbrowseforfolderw
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/ms646914(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/ms646942(v=vs.85)

