Journal of Computer Virology and Hacking Techniques
https://doi.org/10.1007/s11416-020-00370-y

ORIGINAL PAPER O‘)

Check for
updates

Superfetch: the famous unknown spy

Mathilde Venault'® - Baptiste David’

Received: 11 July 2020 / Accepted: 28 September 2020
© Springer-Verlag France SAS, part of Springer Nature 2020

Abstract

Since Windows Vista, Microsoft has offered us a new life companion called SysMain or Superfetch from its old name. This
is a service which analyzes and records the user daily software use to increase the speed of his or her experience on the
operating system. However, this service provides the opportunity to track software used and private files seen such as movies
or confidential files, reveal his or her lifetime activities and map directories. More than just a privacy issue, this constitutes
a reliable approach in forensic analysis. Furthermore, this service is often misunderstood due to its little documentation and
myths surrounding it, which makes things soon complicated to investigate. This paper is an extended version of the talk
presented at Black Hat USA 2020: it aims at debunking partial and fake news about SysMain and its files. This paper will
examine in detail its architecture, analyze its mechanisms and explain its operating method. It will detail the format of all the
prefetch files which has been undocumented or obsolete so far. In addition, this paper will illustrate forensic concrete cases
in which SysMain turns out to be useful.

Keywords Superfetch - SysMain - Prefetch

1 Introduction 1.2 Goals and mechanisms

1.1 Vocabulary and history The main goal of the service is to increase the speed of the
user experience. To this end, SysMain focuses on two aspects:
The notion of Prefetcher appeared in 2001 within the Amer-
ican brevet 6,633,968 [1], announcing the technique which
will be a part of Windows XP. Under Windows Vista, another
component called Superfetch is added to the algorithm and
the service is renamed within the name of this improvement,
until Windows 10. In this version, the service is renamed
SysMain but Microsoft did not explain this change [2].

On Windows 10, Superfetch is only a part of SysMain,
which is the name of the whole service, containing many
parts including the Prefetcher and Superfetch. As the name
was only changed with Windows 10, the whole algorithm is
commonly, though erroneously called Superfetch.

e Booting faster;
e Gaining time from the start-up to the closure of any pro-
cess.

To boot as fast as possible, SysMain will frequently cal-
culate the “optimal layout” which is the order of the file to
launch in memory at the boot. This list is established during
idle states: whenever CPU, disk and memory utilization are
under a certain percentage of use, the service will process
to non-urgent operations such as the optimal layout calcu-
lation. The result is written on C: \Windows\Prefetch)\
Layout.ini (Fig. 1).

On the other hand, increasing the navigation on applica-
tions is based on the mechanism of reducing page faults in
5 Mathilde Venault memory, which is an optimization in memory paging.

venault@et.esiea.fr

Baptiste David Memory paging A process is a set of pages in memory,
bdavid@et.esiea.fr which are the same sized block of data containing the instruc-
1" Laboratoire de Virologie et de Cryptologie Opérationnelles, tions of a program. Whenever a process is executed, these
ESIEA, Laval, France pages are mapped in theory into the physical memory (RAM)

Published online: 26 October 2020 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-020-00370-y&domain=pdf
http://orcid.org/0000-0002-9746-5917

M. Venault, B. David

| Layout.ini - Notepad i O *
File Edit Format View Help
[OptimallayoutFile] A~
Version=1
C: \WINDOWS"SYSTEM32\NTOSKRNL . EXE
: \WINDOWS\SYSTEM32\PSHED.DLL
:\WINDOWS\SYSTEM32\BOOTVID.DLL
\WINDOWS\SYSTEM32\KDCOM.DLL
:\WINDOWS\SYSTEM32\CI.DLL
:\WINDOWS\SYSTEM32\DRIVERS\MSRPC.5YS
:\WINDOWS\SYSTEM32\DRIVERS\CNG.SYS
:\WINDOWS\SYSTEM32\HAL.DLL

e 18 O e 1 O 5 T e O |

Fig.1 Extract of Layout.ini

within spaces called frames. To execute instructions, the
CPU has to figure out where the instructions are with two
available pieces of information: the page number and the
instruction offset. To facilitate the operation, each process
has its own Page table, associating page numbers and cor-
responding frame numbers. Therefore, when the CPU must
find an instruction, it looks into the process’ Page Table to
get the frame number containing the page of the instruction.
Then, the CPU is able to execute the instruction at the offset
it had in the first place (Fig. 2).

Still, under special circumstances, a page could be mapped
into the Virtual Memory, on the disk. When it happens, the
page table could not resolve the frame number and indicates
an invalid value to the CPU: a page fault occurs. The memory
management unit, responsible for declaring the page fault,

Fig.2 Memory paging
mechanisms

Process

n
Py
7 PZ

Page wumber

P
= <> [T10]

LA

[1]

» ThisPC » Local Disk (C:) » Windows » Prefetch »
Mame

ReadyBoot
D Layout.ini
D AghppLaunch.db
[] AM_DELTA.EXE-BT261F63.pf
[] APPLICATIONFRAMEHOST.EXE-CCEEFT58.pf
O AUDIODG.EXE-BDFD3029.pf
[BACKGROUNDTASKHOST.EXE-5CFO946E.of

Fig.3 View of Prefetch directory

will then rely on the operating system to find the page in the
virtual memory and will bring it back into a free frame of the
Physical Memory, so the operation could be redone. Once
the page is mapped into the physical memory, the page table
is updated and resolves the frame number of the initial page
number, just allocated. The CPU can now find the instruction.

This procedure requires time and memory operations thus
reducing the program’s reactivity. Superfetch aims at curtail-
ing page faults to avoid this loss of time. For each program,
it will log hard page faults occurred and it will record gen-
eral page accesses so it could prelaunch in memory pages the
user might need next time. Each process has one or more .pf
file on the C: \Windows\Prefetch directory (Fig. 3) as
a support for the next optimization.

RAM (Physical mewmory)

Tustruction offset

HDD

Virtual memory

Page Table
Page v° Frame n°
| e ! T4 =
ez | =1
QS in\J —]

@ Springer

Superfetch: the famous unknown spy

1.3 Involvements

The mechanisms explained above imply that SysMain is
watching and keeping traces of each action performed on
a computer such as:

e Evidences of software installs;

e Dates and times of application launches;

e Number of executions per program;

e Names and locations of files used by each process;

e Links to cache files that might contain the content of
personal text documents.

Therefore, SysMain knows a lot about you, from the time
you woke up to your favorite songs. On the one hand, it
raises a very serious privacy issue since it tracks your lifetime
activities. Even though Superfetch does improve the speed
of your experience on your OS, it raises the question of the
limit between profiling and spying.

On the other hand, it is a significant forensic opportunity.
Within a forensic analysis, it helps to analyze very precisely
the activities, especially because a few people are even aware
of Superfetch traces, so these traces are usually left on a com-
puter. For instance, in malware analysis, the .pf files could
prove the program’s execution date and time and shows where
were located the malicious files.

So, from a black hat point of view or from a white hat one,
it does matter to know how SysMain works and what exactly
its files could reveal.

1.4 Previous work, documentation and myths

Few studies have been done so far to document SysMain
operation.The firstissue is that some of those done focused on
Windows versions older than Windows 10 such as the study
Digital Forensic Analysis on Prefetch Files [3] and thus, are
now obsolete. Regarding the format of the .pf files, doc-
umentation has been accessible and known approximately
since 2010, and the most up-to-date is Joachim Metz’s study
[4]. Still, Superfetch has another kind of file ending with a
“.db” extension and there are so far only two studies about:
Rewolf’s Blog [5] and Joachim Metz’s study [6]. Despite
these, the documentation is incomplete because Rewolf’s
Blog [5] covers precisely one file but sets aside the oth-
ers which are very different and Joachim Metz’s study [6]
focuses on reporting observations more than concluding after
a reversing engineering process.

Another widely covered aspect of SysMain has been
explained: the hash function, notably [7,8]. Even though lots
of these sources disagree on details such as the origin of the
string to hash, they all converge on the same algorithm, pre-
sented on the section about the hash algorithm, in Sect. 5.
Regarding the global operation, the most reliable source is

the documentation from Windows Internals [9], covering the
basics of the global operation. However, there are inaccu-
racies in it, reinforcing some myths already widespread.
One of them is that SysMain could be disabled setting
the registry value EnablePrefetecher to 0, within the key
HKLM\SYSTEM\CurrentControlSet\Control\
SessionManager\MemoryManagement. Despite this
method having been shared across the Internet and also writ-
ten about on Windows Internals [9], this is not enough to stop
SysMain nowawdays.

Indeed, whatever the value of this key is, SysMain will
keep on writing its databases. This is observable checking the
“last written time” of files on theC : \Windows\Prefetch
directory after executing a program, with the value of
EnablePrefetcher and EnableSuperfetch set to 0. While the
service was supposed to stop, the prefetch files are still being
updated. Regarding the registry value EnableSuperfetch,
SysMain has a function called PE£SvSuperfetchCheck
AndEnable, which forces this value to 3 no matter the ini-
tial value. This proves that these registry values do not have
any impact on SysMain’s activity. For the record, disabling
SysMain manually on the service control manager will solve
this issue. To do so, the Service Manager must be opened,
SysMain service selected and service properties accessed.
The Startup type should be set to Disabled and the changes
applied. SysMain will not track the user anymore upon the
computer restart.

Part|
Global operation

This section will explain the key points of SysMain’s
operation. The components listed and detailed are not the
exhaustive list of SysMain parts but aim at clarifying the key
points. At first sight, the service could be seen as many divi-
sions, handled by groups of functions identifiable by their
prefix (Table 1).

Further, these groups are connected to each other in order
to ensure the different types of tasks (Fig. 4). The major
task is the pf routines: the non-stop jobs responsible for the
essential functions such as processing traces of applications,
predicting and pre-launching pages the user might need. They
are also the parts communicating with the rest of the kernel:
exchanges with the drivers, RPC (Remote Procedure Call)
requests, logging and event parts, requests for information
WNF (Windows Notification Facility) states, global system
information.

Under special circumstances, SysMain can declare an idle
state state to process actions that need time and memory
operations, but do not require to be done every day. This is the
reason why SysMain will check for power supply presence

@ Springer

M. Venault, B. David

Table 1 Function initials and their meaning

Prefix Name

PfPr Prefetch Processor

PfTr Prefetch Trace

P1Si Prefetch Section Info
PfHp Prefetch Heap

P{CI Prefetch Collector

PfDb Prefetch Database

PfDi Prefetch Device Info

Rdb ReadyBoost

HbDrv Hybrid Drive

AgAl Agent Application Launch
AgGl Agent Global

AgPd Agent PFN Database
AgRp Agent Robust Performance
AgTw Agent Trace Writer

and utilization of CPU, disk and memory to be sure SysMain
will not be harmful to the user’s activities. In this free time,
SysMain will update the optimal layout boot or execute the
command defrag.exe -s -b: they are the idle tasks.
For the actions that do not require doing frequently, SysMain
has periodic tasks, based on action planned to synchronize
registry keys values or remnant data. To ensure all these tasks,
the work is divided per agent.

2 SysMain’s agents

SysMain includes agents: they are components dedicated
to a specific task. They are constantly watching for change
and could be triggered anytime. They are loaded in order of
importance, which is the following:

Agent PFN (Page Frame Number);
Agent Global;

Agent Application Launch;

Agent Context;

Agent Robust Performance.

Agent page frame number The page frame number is an
array representing each physical page state in memory on
the system (Active / Standby / Freed), which will then be
aware of page faults. The agent will be the direct interlocutor
of the PFN, so it can relay the page faults or page accesses and
classify the response. For instance, it classifies the memory
page’s origin: foreground or background application, or the
state: committed page or not. This agent is the one in charge
of getting the data from the memory, which will be the basis
of future pre-launching.

@ Springer

Agent global This agent oversees the context for one user.
It will define the criteria of Active Days, the limits of daily
phases (which hours and days belong to work time/morning
schedule), and it might organize histories successions of sce-
narios within a certain phase.

Agent application launch AgApl is involved throughout
the prediction chain. First, post-processing the data received
from a driver called FileInfo and concerning the files used by
aprocess or by the agent PfnDb. In addition, it creates Markov
chains to represent the probabilities of program uses. This
constitutes the base for giving predictions. Given the calcu-
lated probabilities, the agent will take decisions and ask the
memory manager to prelaunch certain pages.

Agent context This agent is responsible for watching the
overall context:

e The current state of the computer (standby, hibernation);
e The current session information (SID);
e The current user information (user token).

Whenever a change occurs, it updates the current information
so SysMain could be aware of the new situation and reacts if
needed. For instance, if there was a user session switching,
AgCx would take a snapshot of the current situation to be
able to restore it faster if it is required later. There are two
modes of disconnection:

e Classic Disconnect: properly quitting with the button and
logging in on the other session.

e Lazy Disconnect: changing within clicking on “discon-
necting”. In this case, the agent will also go through
Classic Disconnection mode.

Agent robust performance Basically, this agent oversees
SysMain performance. According to Windows Internals [9],
it watches for specific file I/O access that might harm system
by populating the standby lists with unneeded data. It also
checks the frequency of accesses to the files referenced by
SysMain to avoid pre-launching irrelevant data such as the
whole content of a file opened just once. Thanks to an internal
threshold, AgRp prioritizes the files referenced to make sure
the performance is at its best and processes regular checks to
avoid keeping irrelevant data.

Superfetch: the famous unknown spy

Software ~-
AYCX |
! r 4 L—=-- l- - - "
LA—@-&I_ i WMewmory Wanager
PFN Database
‘Page Faults
- -
!:L\@?d X .
L o= -
AgAl |
o) Driver FileIufo
Page Access
-
AGRP |
e oS
pf dv
Scewarios Agents files

Fig.4 SysMain global operation

3 SysMain’s pillar: PfSvcGlobals

To facilitate communication from one function to another,
SysMain uses global variables. PfSvcGlobals is the major
global variable since the creation of the service. Unlike the
other global variables, this one is initialized before the main
thread worker and is by far the largest variable with 4 456
bytes.PfSvcGlobals contains values necessary to the proper
functioning of the whole service including:

e Handles to its own heap;

e Handles to registry keys and registry values;

e Handles to process logging, process events or other exter-
nal kernel communications;

e Time references for synchronization, task scheduling or
time measurement;

e Current session information (SID, user information, state
of computer’s components);

e References to other global variables;

e References to important structures;

e Countless flags used everywhere.

It is important to understand that PfSvcGlobals is not
“a big array”: it is the pillar of all the components of the

algorithm. PfSvcGlobals contains references to many other
important structures such as the ones related to the agents or
parts of the prefetcher (PfXp, PfSi, PfTr, PfCl, Pflu) which
are needed for the global operation. In addition, many of its
flags have an impact on the type of actions which have to be
done in the pf routines.

4 Drivers connected to SysMain’s activity
4.1 RdyBoost driver

There are two terms close to each other that might be confus-
ing: ReadyBoot and ReadyBoost. ReadyBoost is the name of
adriver, located at C: \Windows\System32\Drivers)\
RdyBoost . sys and which has a set of information on reg-
istry within the key HKLM\SYSTEM\CurrentControl
Set\Services\rdyboost. ReadyBoot refers to one of
the functionalities of SysMain to increase boot speed and has
its proper directory within the C: \Windows\Prefetch)\
ReadyBoot. According to Windows Internals [9], Ready-
Boost is “responsible for writing the cached data to the
NVRAM device. When you insert a USB flash disk into a
system, ReadyBoost looks at the device to determine its per-

@ Springer

M. Venault, B. David

formance characteristics and stores the results of its tests in

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVeic 15 ee 6o 00 00 60 00-42 063 00 00 97 10 17 23

Depending on these characteristics, ReadyBoost might ded-
icate a certain space of the disk for caching data and create
a file ReadyBoost .sfcache in the root of the device.
Data cached is compressed and encrypted per block using
AES (Advanced Encryption Standard) encryption. It allows
faster access to the data from the USB disk, contributing to
SysMain’s goals.

4.2 FileInfo driver

FileInfo is a mini-filter driver which gives to SysMain
information about the files used by a process, located on
C:\Windows\System32\Drivers\FileInfo.

sys. FileInfo allows SysMain to get the names of the current
memory pages processed and information about their origin.
Since FileInfo plays an important role in file construction,
at every launch SysMain starts the service and might even
change the driver’s start configuration, set to automatic start
depending on its needs.

According to Windows Internals [10] the prefetcher was
supposed to execute transparently to other activities on a
system but its file references can lead to sharing violations.
Filelnfo was used to watch for potential sharing violation
collisions and prevent them by stalling a second operation
on a file being accessed. This explains the need for creating
an independent driver and not include the component within
the service.

In addition, since SysMain does not have the rights to
get to information from ring 0, using a driver to do so was
the easiest solution. Windows Internals [9] explains FileInfo
driver associates streams, identified by a unique key, cur-
rently implemented as the FsContext field of the respective
file object, with file names so that the user-mode Superfetch
service can identify the specific file stream and offset with
which a page in the standby list belonging to a memory-
mapped section is associated.

In concrete terms, this driver tracks names and paths
of the files used by a given process to build a buffer
required to create the .pf files. To communicate, Sys-
Main sends an IO Control code through the function
NtDeviceIoControlFile () and gets back the buffer
built by FileInfo Fig. 5 through the function parameters. The
output buffer is written in the NL format, which includes
path environment instead of directories full path. The buffer
will be then translated under the watch of SysMain and post-
processed to contribute to the formation of .pf files.

Once SysMain has the NL formatted buffer, the envi-
ronment variable will be translated thanks to an internal
“translation table” and the data regarding the page numbers
and offsets will be stored into hash tables: the basis of the .pf
file.

@ Springer

2d 00 od 00 41 53 43 43-10 1c 13 00 01 00 00 00 -...ASCC........
93 00 00 00 00 Q0 00 00-00 00 00 00 18 00 00 OO0¢evvvuvuns
91 00 00 00 00 00 00 00-3e 8b la 1c 90 65 d5 01
30 e@ 15 72 86 dc ff ff-3e 81 1c 2C 00 00 00 00 ©..r....>. ., ...,
2e 00 2e 00 00 00 00 00-00 00 00 00 00 00 00 00
5C 00 44 00 45 00 56 00-49 00 43 00 45 00 5c 00 \.D.E.V.I.C.E
48 00 41 00 52 00 44 00-44 00 49 00 53 00 4b 00 H.A.R.D.D.I.S.
56 00 4T 00 4c 00 55 00-4d 00 45 00 32 00 00 00 V.0.L.U.M.E.2...
40 03 00 00 97 10 17 23-02 00 00 00 00 00 00 00 @...... #.oooooan
c@ 95 de 7e 08 c6 ff ff-30 e0 15 72 86 dc ff ff
01 00 00 00 00 00 00 00-01 00 la 00 5C @0 53 00 \
59 00 53 00 54 00 45 00-4d 00 20 00 56 00 4f 00 Y.S.T.E.M. .V.O.
4c 00 55 00 4d 00 45 00-20 00 49 00 4e 00 46 00 L.U.M.E. . F
4f 00 52 00 4d 00 41 00-54 00 49 00 Af 00 4e 00 O.R.M.A.
00 00 00 00 00 00 00 00-40 03 00 00 97 10 17 23
93 00 00 00 00 00 00 00-00 47 10 80 08 c6 ff ff
30 e@ 15 72 86 dc ff ff-01 00 00 00 00 00 00 00 ©..M............
91 00 1C 00 5C 00 24 00-45 00 58 00 54 00 45 00\.$%
4e 00 44 00 5C 00 24 00-52 00 4d 00 4d 00 45 00 N.D.\.$.
A
L

54 00 41 00 44 00 41 00-54 00 41 00 5C 00 24 00 T.A.D.
54 00 58 00 46 00 4c 00-4f 00 47 00 00 00 00 00 T.X.F.
CO 01 00 00 97 10 17 23-04 00 00 00 00 00 00 00
10 40 16 72 86 dc ff ff-30 eo 15 72 86 dc ff ff .@.r....0..r....
01 00 00 00 00 00 00 00-01 00 ©5 00 5C 00 24 00
4d 00 46 00 54 00 00 00-00 02 00 00 97 10 17 23 M.F.T...uvvuun. #

05 00 00 00 00 00 00 00-20 6b 16 72 86 dc ff ff kiroo..
30 e0 15 72 86 dc ff ff-01 00 00 00 00 00 00 00 O..r......... ..
91 00 09 00 5C 00 24 00-4c 00 Af 00 47 00 46 00\.$.L.0.G.F.
49 00 4C 00 45 00 00 00-80 03 00 00 97 10 17 23 I.L.E.......... #
06 00 00 00 00 00 00 00-bo 4c 06 80 08 c6 ff ff |
30 e0 15 72 86 dc ff ff-01 00 00 00 00 00 00 00 O..Ir......... ..t
91 00 1f 00 5c 00 24 ©0-53 00 45 00 43 00 55 00\.$.S.E.C.U.
52 00 45 00 3a 00 24 00-53 00 49 00 49 00 3a 00 R.E.:.$.S.I.I.:.
24 00 49 00 4e 00 44 ©0-45 00 58 00 5T 00 41 00 $.I.N.D.E.X._.A.
4c 00 4c 00 Af 00 43 00-41 00 54 00 49 00 4f 00 L.L.0.C.A.T.I.O.
de 00 00 00 00 00 00 00-40 02 00 00 97 10 17 23 N....... @eeennn #

Fig.5 Buffer given by FileInfo to SysMain

5 SysMain hash algorithm

Whenever it comes to reverse SysMain, the hash process
soon becomes familiar. SysMain has its own hash algorithm
to serve two purposes:

e Building a part of the .pf files name;
e Making references on internal hash tables.

Under Windows 10 the hash algorithm is:

Result = 314159;

for(i =0;i < len(StringToHash);i + +)
char = StringToHashli];
charmaj = RtlUpcaseUnicodeChar(char);
Result = (Result x 37 + charmaj) x 37,

e))

The initialization value used as a seed is the beginning
of the pi decimals (3,14159). Superfetch has known several
hash algorithms since its creation, but they all share the same
basis. According to some studies [7,8], the following ele-
ments might have been changed on the previous versions:

e initialization value of the hash,;
e multiplier coefficient;

Superfetch: the famous unknown spy

e add of modulo operation.

This hash is far from being cryptographic: its operations
are basic and easy to reverse. Since uppercase and lower-
case characters will be processed the same way, two different
input strings might have the same hashed output. Therefore,
the algorithm is not second pre-image resistant nor collision
resistant. Still, this hash algorithm does not need to be cryp-
tographic because the strings hashed are used as references.
There is no actual need to protect the input, which is not
sensitive information.

6 Registry keys

More than 22 registry keys are frequently consulted, cre-
ated, or deleted within routine protocols.The most important
among them are:

HKLM\SYSTEM\CurrentControlSet\Control\
SessionManager\Memory Management)\
PrefetchParameters

e BaseTime

e Bootld

e EnablePrefetcher Despite countless sources claiming
that setting this value to 0 disable SysMain, this is not
the case.

e EnableSuperfetch This value is forced by SysMain to 3
on the function PfSvSuperfetchCheckAndEnable().

HKLM\SOFTWARE\Microsoft\Windows NT\
CurrentVersion\Prefetcher

e BootFilesOptimized Changed on PfXpUpdateOptimal-
Layout() just before the update of layout.ini.

e LastDiskLayoutTime

e MinRelayoutHours

e LastDiskLayoutTimeString Date and time of the last
optimal layout update.

e MaxPrefetchFiles By default, 256.

HKLM\ SOFTWARE \Mic rosoft \Wi ndows NT\
CurrentVersion\Superfetch

e PfPddata This value is database buffer, read within a
function called PfFgContextLoad(). Eventhough this is
a registry, there is no doubt it is a database such as the
one in the .db files, since it goes through the same checks
as the buffers from .db files.

e PfluBatteryPaths Path of the battery.

e PfluHistory Compressed buffer of 5604 bytes containing
file paths. The value is updated periodically within the
function PfluHistorySave().

e LastResPriGenTime Corresponds to a SystemFileTime of
the last synchronization, value x transformed such as x
shleft 64 shleft 23.

ResPriOptions

StartedComponents

Rebalancer Flags

PfRbMinPagesToPrefetch;

PfRbPrefetchStopTreshold

PfRbPostBootDurationInMs
PfRbPriolnversionThreshold

PfRbImageScoreBoost

PfRbLargeFileSizeInPages

\P£fAp

e ApFetch_%SIDHashed Compressed buffer:

e ApLaunch_%SIDHashed Compressed buffer with a fixed
size whichis actually a data containing full name of appli-
cations. This buffer is updated periodically.

e UserTime_%ID Compressed buffer related to the context
for a given user. This buffer is updated periodically.

\DiskAssessment

DiskNumber
LongSeekMicrosecondsBase
LongSeekMicrosecondsPerSqrtGB
PeakTransferMBsPerSecond

RPM

SeekBreakPages

SizeInGb

VolumeCreateTime
VolumeSerialNumber
PfRbSmallFileScoreBoost

\StaticConfig

ProtectedProcesses
ResPriHMImageListFilePath
ResPrilmageListFilePath
Sku

ServiceKeyPath
MigratedServiceKey

HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\OptimalLayout

e Enable auto layout Whenever the operating detects an
idle state, SysMain updates the optimal layout if the value
is set to 1. Not always available.

e LayoutFilePath Full path of the optimal layout, by
default: C:\Windows\Prefetch\Layout.ini.

@ Springer

M. Venault, B. David

HKLM\SOFTWARE\Microsoft\Windows NT\
CurrentVersion\EMDMgmt This key is linked to the
ReadyBoost job, EMD referring to External Memory Device,
the working name of ReadyBoost during its development
according to Windows Internals [9].

GroupPolicyDisallowCaches

Attributes

CacheSizeInMB

DeviceStatus

LastTestedTime
ReadyBootTrainingCountSinceLastServicing This value
refers to the activation of ReadyBoost.

Part I
Prefetch Files
SysMain has two major types of support files:

e The scenario files (.pf) relative to programs;
e The database files (.db or .7db) relative to the agents.

They both can be found on the C:\Windows\Prefetch
directory, but the databases files are not always present
in the Prefetch directory. Another common characteristic
is the compression within the XPRESS_HUFFMAN algo-
rithm and with the RtlCompressBuffer () function
from Ntroskrnl. lib. The Table 2 details the databases
files and their brief description.

7 Databases: the agent’s support

The database files are the files ending with .db or .7db files.
Since they are not always present on the directory, they are

Table 2 Database names detailed

often forgotten and only a few documentations have so far
been made. Their main goal is to keep traces of the Agent’s
work so the data collected could be remnant through OS
reboots or context changes such as user switching or hiber-
nation. Each agent of SysMain (AgCx, AgGl, AgAl, AgRp,
AgPd) has one or more .db associated, with different names,
since one agent might need more than one internal database
for its operation. Their names and purposes have not been
documented at all and unfortunately the few studies made
about the format only partially documents it.

7.1 Databases construction

Databases files are traces of internal databases left during
Superfetch activities. Each Agent has its type of database, but
itis important to understand all the databases are connected to
each other. Despite their different purposes, they are built on
the same basis. Sysmain initialization functions build internal
databases “from scratch”, from different functions proper to
the agent. Each initialization function defines either default
parameters or specific parameters, then calls an underlying
function and so on. This means they are all built on the same
basis. Since they have the same basis, database files are read
within the same process and have the same way of finding
back the information. Here is the lecture process that aims at
extracting useful information from the database file:

1. Get the view of the file when it is required, decompress
the file if required and read the buffer;

2. Initialize a corresponding internal database with default

parameters and defaults sizes;

Check file format conditions;

4. Fill in the information extracted from the file and adapts
the internal database characteristics with the information.

et

Database name Details

AgAppLaunch.db
AgRobust.db

Related to the applications; contains names of .exe.

Related to the performance of SysMain.

AgCx_%SID.snp.db

AgGlFaultHistory.db AgGlFgAppHistory.db
AgGlGlobalHistory.db

AGIUAD_P_%SID.db AgGIUAD_%SID.db

dynrespri.7db cadrespri.7db

Related to user sessions; once per user. If there was a disconnection from one session
to another, SysMain would take a snapshot of the previous session so it could be loaded
faster if required later.

Related to the AgPd Agent, covering data from PFN, respecively referencing to Page
Faults, Foreground application and global accesses.

UAD might refer to User Active Days. Since SysMain includes the context within its
prediction, could be related to the context.

Referencing to Dynamic Reserved priority. They seem to be used as a basis to sort data
and synchronize. Whenever the file is created, the registry value LastResPriGenTime is
updated.

@ Springer

Superfetch: the famous unknown spy

Once the step of linking the database file and the internal
database is completed, the database is ready to be used else-
where on the service.

7.2 Database format

Under Windows 10, the format of the compressed databases
files is Table 3.

Whenever the file is decompressed, the common header
format for the .db files is Table 4. Please note after this header
the generalities are not possible to be made because of each
database specificities.

Magicnumber The magic number have been seen for groups
of databases but any connection could have been established.
Table 5 shows the magic number seen and their associated
database on one specific machine.

Sizes The minimum total size is 72 bytes, verified in
common compliance function called PfDbFilevVerify

Table 3 Compressed .db file format

Offset Content

0x00 0x4d4d41 MAM

0x04 Total size of the decompressed data
0x08 Checksum

0x10 Data compressed

Table4 Uncompressed .db file format

Offset Content

0x00 Magic Number

0x04 Total Size

0x08 Header Size

0x0C FileType Param

0x10 Param 1

0x14 Param 2

0x18 Param 3

0x1C Param 4

0x20 Param 5

0x24 Param 6

0x28 Param 7

0x34 Count of volumes

0x38 Count of paths registered

0x3C Check condition verified after the
lecture process to ensure integrity
of the data

0x40 Condition to do specific lecture operations

Table 5 Magic number and associated .db

Magic number .db associated seen

03 AgCs_%s.db AgGlFaultHistory.db
AgGlFaultAppHistory.db
AgGIUAD_P%s.db dynrespri.7db

cadrespri.7db
05 PfPre_%sidhash.mkd AgAppLaunch.db
OF AgRobust.db

Table 6 FileType parameters

FileType Parameters

5 40h; 58h; 10h; 10h; 10h ; 10h; Oh ;0h
6 48h; 58h; 60h; 18h; 20h ; 10h; 10h ;0h
7 48h; 48h ;60h ;18h ;10h ;10h ;10h ; Oh
8 60h; 38h; 50h; 8; 8; 14h; 8; Oh

9 Oh

A 60h; 38h; 50h; 8; 8; C; 8h; Oh

B 60h; 38h; 5S0h; 10h; 10h; 10h; 10h

C 60h; 38h; 50h; C; 08h; 08h; 08h

D Oh

E 48h; 70h; 90h; 10h; 10h; 10h; 10h

F 68h; 40h; 50h; 8h; 8h; 14h; 8h

10 60h; 40h; 88h; 10h; 18h; 8h; 8h

11 Oh

12 50h; 50h; 58h; 18h; 10h; 10h; 10h

13 60h; 38h; 50h; 8h; 8h: 8h; 8h

14 60h; 40h; 58h; 10h; 8h; 8h; 8h

15 60h; 50h; 58h; 10h; 18h; 8h; 8h

16 60h; 40h; 50h; 8h; 8h; 8h; 8h

Common (). The header size follows the same rule, it must
be higher than 72 bytes. Still, each database file might have
its own criteria thus the required sizes could be higher in
complementary compliance functions.

Filetype parameters The FileType number indicates the
index in an internal array relative to database sizes and offset
calculation on the file (Table 6). The array is a 9 DWORD
table long, declared within the name PfDbDatabasePar
amsForFileType. If there are reading problems, Sys-
Main, thanks to the index indicated by the filetype number,
knows where to find the parameters.

The spread of the different FileType could be explained
by retro compatibility. Under Windows 10, the values tend
to the last values, then the previous versions might have pre-
vious numbers and some of them remained and some others
evaluated.

@ Springer

M. Venault, B. David

Explanation of the parameters

e Parameter 1: it is useful to calculate the offset of the
volume path, with the following sum: Offset of volume
path = End of header + Param 1.

e Parameter 2: it is useful to calculate the offset of the
second string, with the following sum: Offset of string 2
= End of volume path 4 Param 2.

e Parameter 3: it is useful for offset calculation as recurrent
patterns. Unlike the Parameter 1 and 2, it will be used in
an offset calculation loop.

e Parameter 4, 5, 6 and 7: Size parameters for internal
database.

8 Scenarios: the traces of the user’s activities

Scenarios are the supports for Superfetch to log what hap-
pened during a program’s execution and improve future
predictions. An application has one or more scenario files
attributed depending on the way it has been executed. The
name is always composed of “NameoftheApp - HASH.pf”,
the hash referring to the command line that allowed the exe-
cution hashed. The highest number of scenarios files within
the Prefetch directory and their size are fixed by the value
of the registry key: SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Prefetcher. By default, the
scenario maximum number is 256 and the maximum size
is 10 485 760 bytes. Whenever a process starts up, the sce-
nario is immediately created or updated, referencing the page
accesses and the page faults that occurred to avoid them at
the next launch. Given the references of these pages, the
next time, the process will be started, SysMain determines
whether or not it is a prelaunchable application or not, calcu-
lates the entry threshold, compares it to an internal threshold
so it could be sure it is worth to prelaunch the page and does
sO.

8.1 Scenario construction

Whenever a program is launched, SysMain always follows
the same logic to build the corresponding scenario:

1. Get what the scenario name would be;

2. Retrieve the file used by the process thanks to the minifil-
ter driver Filelnfo;

3. Initialize a “scenario info” buffer, containing the basic
header such as process information, the current date and
time execution;

4. Only if the scenario file already exists:

a Open the existing file;
b Decompress and gets the older buffer;

@ Springer

¢ Verify the buffer format and basic conditions. If there
is a single problem, the file is deleted.

d Copy the obsolete content on the new buffer, select
and update information.

5. Compress the buffer, add a header and write it into the
file.

8.2 Scenario format

Under Windows 10, the format of the compressed scenario
is Table 7.

Whenever the scenario is decompressed, the header format
is Table 8.

8.3 Scenario content

The scenarios are the tip of the SysMain iceberg: they con-
tain the result of a long process of the data generated by the
user experience within a certain context, and the condition
to achieve what SysMain has been created for: prelaunching
what is required by a user when the time comes. Once the
buffer is decompressed, the last part of the file contains full
paths of files used by the applications. The majority are inter-
nal files required for the global operation of the application:
DLLs (Dynamic Link Libraries), dependencies, or any files
with an extension specific to the application. Still, there are

Table7 Compressed .pf file format

Offset Content

0x00 0x4d4d41 MAM

0x04 Total size of the decompressed data
0x08 Data compressed

Table 8 Uncompressed .pf file format

Offset Content

0x00 Operating system identifier
0x04 SCCA: prefetch signature
0x08 11 41 43 43: format condition
0x0C Total size of the file

0x10 Program name

0x4C Hash Value

0x50 RESERVED

0x58 Count of paths registered
0x64 Offset of paths block

0x6C Offset of volume block

0x64 Size of volume block

0x80 8 last dates and times of execution
0xC8 Count of executions

Superfetch: the famous unknown spy

0003BDAO
0003BDBO
0003BDCO
0003BDDO
0003BDEO
0003BDFO
0003BE0O
0003BE10
0003BE20
0003BE30
0003BE40
0003BES0
0003BE60
0003BE70
0003BES0
0003BE90
0003BEAO
0003BEBO
0003BECO
0003BEDO

I
&
<

g SR R AN I)

M " V.0,
00 L.U.M.E.{.0.1l.d.

v el el

Fig.6 Extract of VLC.EXE-5A3EF7FA.pf (decompressed)

also recent files or often used files (Fig. 6). Thus, the sce-
nario of photo editors contains the name of the last photos
opened, the scenario of media players contains the names of
songs listened to or the title of the last movie seen but also
dates and hours of these actions. Combining the list of those,
SysMains allows to determine habits and hobbies of the user.

In addition, SysMain goes further, storing references to
the cache files. The cache files are the result of the Cache
Manager performance, which stores temporarily data to
reduce the access time next time the data is required. Within
the UserDirectory\AppData\Local\Microsoft)
Windows\Cache, there are parts of files accessed remain-
ing from previous use. The Cache is designed to do stream
caching, which implies the data stored could be also parts
of files, in clear. Therefore, SysMain referencing the cache
files gives the possibility to view clear text data from the user
applications, including documents editor containing private
data.

9 Forensic uses and opportunities

Superfetch resources turn out to be useful for many forensic
situations. Finding traces of executed programs provides the
opportunity to determine which activities have been done on
a computer. In addition, the details given by the scenarios
allow to understand the context of the program use, thanks
to the hours of the activity or the amount of time it has been
used. Thus, it is possible to find some patterns in the user
activities or establish connections between actions. This part
aims at showing some of the potentials clues that may be
found in the scenarios. All of the operations can be achieved
with the tool called SysMain View, available on Github
at MathildeVenault/SysMainView. This tool allows to com-
press, decompress, edit, and view information on databases
and scenarios files. This section details some circumstances
where SysMain traces might contribute to forensic analysis.

9.1 Malware analysis

As part of malware analysis, SysMain could be useful to
trace the history of events on a computer and determine the
circumstances of the attack. This may help to figure the exact
time of the attack and to identify the malicious payload.

Methods It would be possible to to visit the prefetch files,
examine the program traces at the estimated period of the
attack and look for something suspicious. If the malware is
an executable, its scenario would have been created: look
for prefetch files with unfamiliar names and recent activity.
If the malware is in the form of a script, it would have been
executed through a shell: search into the command-line inter-
preter scenarios the names of the scripts they have executed,
name and the location of the payload might be found there.
If the script has not been removed, it might remain on the
system and it might allow a reverse engineer process of the
malware.

The scenarios could also help to understand the vector of
the infection. If it is a phishing attack, traces might be left in
Word office programs scenarios or pdf files readers: look for
anything suspicious in the recent files opened. In this way,
this might complete a forensic investigation in web browsers.

Example On an incident response mission, a computer from
an employee has been infected by a malware which deletes
files on the system and when the victim found out, he imme-
diately turned off his computer. The goal: find out what
happened. The first look at the recent activities reveals that
PowerShell has been active at 4:23 pm, whereas the owner is
not supposed to use this kind of application. Another scenario
demonstrates PowerShell was executed less than 5 times but
unfortunately does not list any suspicious file.

Investigating further on the recent activities shows that the
victim has opened Word for the last at4:21 pm, and among the
files related to Word’s activity there is one from a USB device
whichis: D: \MYUSB\NovemberSchedule.docx. After-
wards, the victime precise he was reading this document from
a USB key while all of his professional documents were dis-
appearing from his desktop. The device is retrieved and the
document opened in a sandbox: there is VBA macro exe-
cuting directly on PowerShell the command deleting all the
content of the user documents.

9.2 Suspicion of illegitimate activity
The prefetch files play an important role in the context of
criminal investigations since they are a means to track any

suspect as long as there is an access to his or her computer.
Indeed, they provide lots of information on the user personal

@ Springer

M. Venault, B. David

files and give concrete evidence of certain activities, which
are essential for forensic purposes.

Methods The first step in this kind of forensic investiga-
tion involves profiling the owner of the machine. It includes
determining what the common use of the machine is: what the
context of use is (professional or private), which programs
are used the most, when the usual activities are realized, and
so on. To this end, it is interesting to observe for each pro-
gram how many times they have been executed and the last
dates and times of execution. The hours of program execu-
tion could give the exact schedule of the user. For instance,
if Microsoft Teams and any mailbox application are opened
every morning between 8 am and 10 am except the Saturday
and Sunday it is possible to assume the computer is used
for professional purposes. Similarly, if a movie media player
or video games applications are opened each evening, the
machine is likely a personal computer.

Profiling could be expended also thanks to the names of
the files used by each process, recorded in the scenarios. This
tells a lot about user activities, especially text editors or media
players. This kind of program reveals the type of documents
the user has and exposes his or her hobbies and preferences.
Given the movies and songs recorded on media players, the
type of music and movies he or she likes could be guessed.
This applies to lots of other things such as text documents,
which might reveal favorite readings or even wider informa-
tion, such as works the user is working on lately. Sometimes,
the files recorded lead to other important information such
as events or intents. If the user has lately written a CV, it is
possible to speculate he or she might think about getting a
new job. If the user has seen his or her last holiday pictures,
then the name of the folder would be recorded, and it might
contain details about the date or the destination.

In addition to profile someone, the scenarios constitute
concrete evidence of the user’s activity on the machine.
Indeed, whether the file is still stored on the computer mem-
ory or not, the record on the scenarios remains. Looking
into the prefetch files allows listing the files that have been
opened on the computer, even if they are now removed or if
they have been consulted from an external device. Irrespec-
tive of whether the file is still on the disk, the record remains
since SysMain references the original path of the file at the
moment the file was consulted. Grouping the different direc-
tories and files registered can thus lead to a precise mapping
of the computer, in the past.

The same goes for the applications: SysMain keeps the
scenario of a program uninstalled for a certain time after-
wards. The maximum duration depends on the global use of
the computer; SysMain will remove the corresponding sce-
nario once it figures out the file is not useful anymore, thanks
to its Agent Robust Performance. In the case of criminal acts,

@ Springer

the traces are often destroyed or at least hidden as much as
possible and SysMain is one of the rare means to get precise
and reliable information.

Example A company just fired an employee for professional
misconduct. The company suspects illegal activities on the
professional machine. How could it be possible to find evi-
dence of such acts?

The first approach is to look for suspicious programs, that
could have been used for illegal activities, and among the
prefetch files, one catches attention: a scenario proving the
use of tor browser, one of the means to access to the dark web.
This shows that tor has been executed more than fifty times
and among the last execution dates and times, the majority
indicate the execution at night. Looking into other scenarios
reveals a list of more than 30 files named “Passport” with
identification numbers and last names in the scenario of a
photo editor.

9.3 Warning: scenario falsification

It is important to keep in mind that Superfetch traces might
be falsified. Indeed, any hacker could remove prefetch files
or edit the information that could betray what has been done
on the computer. For the record, it is possible to save the sce-
nario corresponding to the program that is about to been used
and once the action that has to be hidden is done, replace the
legitimate scenario with the scenario backed-up before. Sim-
ilarly, it is possible to edit sensitive information such as the
dates and the count of executions, directly on the legitimate
scenario. Windows will not notice the change and process
the scenario, without the traces of what has been done. In a
forensic investigation whilst falsification is unlikely to have
been done, it is still a possibility. SysMain traces are useful
but not infallible.

Partlll
Remarks and Conclusions
9.4 Weaknesses of SysMain

The biggest weaknesses of SysMain are due to the need for
retro compatibility. Among its 2500 functions, some of them
show deficiencies when functions need to adapt to old OS
characteristics. For instance, the process of loading agents.
Whenever it comes to load its agents, SysMain has two ways
of processing:

e PfSvLoadDefaultAgents () which is an associa-
tion of basis load;

Superfetch: the famous unknown spy

e PfPrAgentsLoadFromRegistry () whichisbased
on references on the registry.

The function PfPrAgent sLoadFromRegistry plays
an important role. First, it opens the following key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft)
WindowsNT\CurrentVersion\Superfetch. It gets
all the values on the Agent s hive, separating multiple names
within the same value name if they are many of them with
the RegEnumvaluea () (Fig. 7).

SysMain has now strings association, which are actually
library names (argument LibraryName) and function names
of the specified library (argument ProcName). The function
PfPrAgentLoad () will be called for each association.

Therefore, as soon as the registry value is edited, it is
possible to indicate to Sysmain a specific dynamic library
and any function of this dll, which will be loaded and exe-
cuted without any further checks. In addition, it is also
possible to execute multiple functions this way since the
PfPrAgentLoad () function is called once per value on
the \Agents hive. The SysMain process of agents loading
is not explicit enough about characteristics of the DLL to be
loaded and it is thus possible to load a malicious DLL.: this is
DLL side-loading. Even though this is not a DLL Hijacking
such as explained on Blog [11], it was important enough to
report the weakness to Microsoft. This weakness is likely due
to retro compatibility because this function does not seem to
be used anymore under Windows 10.

9.5 Conclusion

SysMain has been misunderstood for a while, whereas it
plays an important role within Windows’ daily performance.
Reversing was challenging: SysMain has lots of functions
belonging to lots of different notions and the backward
compatibility needs make its architecture, which is already
complex by design, even wider. Another major point was
evaluating the consequences of SysMain’s job. The privacy
issue is undeniable. As long as SysMain is enabled on a
computer, it is possible to track the user and exploit the infor-
mation. This paper aimed at clarifying SysMain’s operation
to give the means to anyone to make this decision in full

ErrCode = RegEnumUalueA(
RegistryAgents_,
i;

(LPSTR)&ProcName,
&cchUalueName,
0i6Y,
&Type,
(LPBYTE)&LibraryName,
&cbData);

ErrCodecp_ = ErrCode;

Fig.7 Part 1 of PfPrAgentsLoadFromRegistry () function

knowledge of the facts. It also aimed at illustrating forensic
concrete cases in which SysMain turns out to be useful and
at showing how the tool presented can help in these kind of
forensic analysis.

9.6 Limitations

This study represents a solid base to understand SysMain on
Windows 10. Nevertheless, SysMain is intended to evolve,
and it might change dramatically with the next Windows
version or at any upgrade. Therefore, what is documented
now could be anytime obsolete or upgraded. Also, access
to Prefetch directory requires an administrator’s privilege.
From a black hat point of view, if the hacker does not have
administrator access, the process becomes complicated and
the knowledge about SysMain might be useless.

9.7 Future work

Even though the study is a solid base covering all of the essen-
tial aspects of the global operation, it would be interesting
to explore further on the external components of SysMain’s
performance such as the drivers. Indeed, the drivers related to
SysMain’s activity have lots of functions unused by SysMain.
What are their uses? Do they have other functionalities? In
addition, SysMain’s performance is closely tied to the mem-
ory manager, including the cache. As the cache management
is not widely documented, it would be rewarding to under-
stand its mechanisms and its exact links with SysMain.

References

1. Zwiegincew, A., Walsh, J.E.: Prefetching of pages prior to a hard
page fault sequence. U.S. Patent (2001)

2. suat.cini: Superfetch service has been promoted to sysmain. con-
gratulations! [Online]. Available: https://answers.microsoft.com/
en-us/insider/forum/all/superfetch-service-has-been-promoted-
to-sysmain/395cd8b7-7a02-44fa-af91-dd6b358b7276. Accessed
07 2018

3. Shashidhar, N.K., Novak, D.: Digital forensic analysis on
prefetch files. Int. J. Inf. Secur. Sci. 4(2), 39-49 (2015).
https://pdfs.semanticscholar.org/2e5e/bffd41661a4ca85420be88
1£70b2162a4638.pdf

4. Metz, J.: Superfetch databases [Online]. Available: https://
github.com/libyal/libscca/blob/master/documentation/Windows
9%20Prefetch%?20File %20%28PF %29 %20format.asciidocc.
Accessed 02 2020

5. Blog, R.: Windows superfetch file format-partial specification
[Online]. Available: http://blog.rewolf.pl/blog/?p=214. Accessed
102011

6. Metz, J.: Superfetch databases [Online]. Available: https://
github.com/libyal/libagdb/blob/master/documentation/ Windows
9%?20SuperFetch%20(DB)%20format.asciidoc. Accessed 04 2014

7. Blog, H.: Prefetch hash calculator [Online]. Available: http:/
www.hexacorn.com/blog/2012/06/13/prefetch-hash-calculator-
a-hash-lookup-table-xpvistaw7w2k3w2k8. Accessed 06 2012

@ Springer

https://answers.microsoft.com/en-us/insider/forum/all/superfetch-service-has-been-promoted-to-sysmain/395cd8b7-7a02-44fa-af91-dd6b358b7276
https://answers.microsoft.com/en-us/insider/forum/all/superfetch-service-has-been-promoted-to-sysmain/395cd8b7-7a02-44fa-af91-dd6b358b7276
https://answers.microsoft.com/en-us/insider/forum/all/superfetch-service-has-been-promoted-to-sysmain/395cd8b7-7a02-44fa-af91-dd6b358b7276
https://pdfs.semanticscholar.org/2e5e/bffd41661a4ca85420be881f70b2162a4638.pdf
https://pdfs.semanticscholar.org/2e5e/bffd41661a4ca85420be881f70b2162a4638.pdf
https://github.com/libyal/libscca/blob/master/documentation/Windows%20Prefetch%20File%20%28PF%29%20format.asciidocc
https://github.com/libyal/libscca/blob/master/documentation/Windows%20Prefetch%20File%20%28PF%29%20format.asciidocc
https://github.com/libyal/libscca/blob/master/documentation/Windows%20Prefetch%20File%20%28PF%29%20format.asciidocc
http://blog.rewolf.pl/blog/?p=214
https://github.com/libyal/libagdb/blob/master/documentation/Windows%20SuperFetch%20(DB)%20format.asciidoc
https://github.com/libyal/libagdb/blob/master/documentation/Windows%20SuperFetch%20(DB)%20format.asciidoc
https://github.com/libyal/libagdb/blob/master/documentation/Windows%20SuperFetch%20(DB)%20format.asciidoc
http://www.hexacorn.com/blog/2012/06/13/prefetch-hash-calculator-a-hash-lookup-table-xpvistaw7w2k3w2k8
http://www.hexacorn.com/blog/2012/06/13/prefetch-hash-calculator-a-hash-lookup-table-xpvistaw7w2k3w2k8
http://www.hexacorn.com/blog/2012/06/13/prefetch-hash-calculator-a-hash-lookup-table-xpvistaw7w2k3w2k8

M. Venault, B. David

8. Hiddenillusion Blog: Go prefetch yourself [Online]. Avail-
able: https://hiddenillusion.github.io/2016/05/10/go- prefetch-
yourself/. Accessed 05 2016

9. Yosifovich, S., Russinovich, M.E., Ionescu, A.: Windows Internals,
Part 2 (6th edn.). Microsoft Press, Redmond, Washington (2017)

10. Margosis, A., Rusisnovich, M.: Windows Sysinternal Administra-
tor’s Reference. Microsoft Press, Redmond, Washington (2011)

@ Springer

11. Blog, I.: Windows dlIl hijacking (hopefully) clarified [Online].
Available: https://itm4n.github.io/windows-dll-hijacking-clar
ified. Accessed 04 2020

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://hiddenillusion.github.io/2016/05/10/go-prefetch-yourself/
https://hiddenillusion.github.io/2016/05/10/go-prefetch-yourself/
https://itm4n.github.io/windows-dll-hijacking-clarified
https://itm4n.github.io/windows-dll-hijacking-clarified

	Superfetch: the famous unknown spy
	Abstract
	1 Introduction
	1.1 Vocabulary and history
	1.2 Goals and mechanisms
	1.3 Involvements
	1.4 Previous work, documentation and myths

	Part I
	Global operation
	2 SysMain's agents
	3 SysMain's pillar: PfSvcGlobals
	4 Drivers connected to SysMain's activity
	4.1 RdyBoost driver
	4.2 FileInfo driver

	5 SysMain hash algorithm
	6 Registry keys
	Part II
	Prefetch Files
	7 Databases: the agent's support
	7.1 Databases construction
	7.2 Database format

	8 Scenarios: the traces of the user's activities
	8.1 Scenario construction
	8.2 Scenario format
	8.3 Scenario content

	9 Forensic uses and opportunities
	9.1 Malware analysis
	9.2 Suspicion of illegitimate activity
	9.3 Warning: scenario falsification

	Part III
	Remarks and Conclusions
	9.4 Weaknesses of SysMain
	9.5 Conclusion
	9.6 Limitations
	9.7 Future work

	References

