
1/13

versprite.com /blog/security-research/reverse-engineering-undocumented-structures/

Reversing Stories: Updating the Undocumented ESTROBJ and
STROBJ Structures for Windows 10 x64

Overview
From time to time the VS-Labs, VerSprite’s Cybersecurity Research and Development division, encounters scenarios
whereby undocumented Windows functions or structures need to be reverse engineered in order to perform
vulnerability analysis.

One example of this that was recently encountered was when the team decided to reverse a recently patched N-Day
vulnerability and determined that the undocumented function ESTROBJ::ptlBaseLineAdjustSet(), which was
introduced with Windows 8.1, needed to be reversed in order to fully understand the vulnerability. What made this
task more difficult than normal was the fact that two undocumented structures, ESTROBJ and STROBJ had been
updated in Windows 10. As a result, HexRays Decompiler was failing to output valid pseudocode anymore.

So how could one solve this scenario? In the following section, we will review the skills needed to reverse
undocumented structures. By the end of the tutorial, readers will have created updated definitions of the ESTROBJ
and STROBJ structures for Windows 10 x64 1903 and will have produced valid pseudocode for
ESTROBJ::ptlBaseLineAdjustSet().

Obtaining Background Information

When first reversing a function, it is always good to see if there is any information available about it online. In some
cases, there may be forums or websites that have already discussed the internals of a function and how it works,
which may allow one to obtain the information they need without performing any additional work.

Unfortunately, if one looked online at the time this post was published, they would be unable to find any
documentation on the ESTROBJ::ptlBaseLineAdjustSet() function, as was only introduced in Windows 8.1 and
therefore had not been part of any source code leaks or public analysis. However, there is some hope, as if one loads
the public symbols for ESTROBJ::ptlBaseLineAdjustSet() into IDA Pro, they will obtain the following function
definition:

ESTROBJ::ptlBaseLineAdjustSet Function Prototype

void __fastcall ESTROBJ::ptlBaseLineAdjustSet(ESTROBJ *__hidden this, struct _POINTL

*)

This tells us that the function has two arguments. Closer inspection reveals that the second argument is a POINTL
structure, whose definition can be found on MSDN and whose structure can be seen below:

POINTL Structure Definition

typedef struct _POINTL {

 LONG x;

 LONG y;

} POINTL, *PPOINTL;

From this definition, it is possible to determine that the ESTROBJ::ptlBaseLineAdjustSet() function is likely working
with points on the screen as POINTL is designed to be a structure that describes the coordinates of a single point on
the screen.

The other parameter, the hidden this parameter is an ESTROBJ structure. This is an internal, undocumented
structure designed to handle the “global aspects of the text positioning and text size computation” according to the
leaked NT 4.0 source code.

The most recent definition for an ESTROBJ structure is from ReactOS. Unfortunately, ReactOS is designed to be an
open-source copy of Windows XP and therefore does not reflect the changes that have been added to recent
versions of Windows, such as Windows 10.

Since the Windows kernel can change quite dramatically between releases, it is likely that some elements of the
ESTROBJ structure have been updated since it was last documented by ReactOS. With these points in mind, here is
ReactOS’s definition of the ESTROBJ and STROBJ structures:

ReactOS’s ESTROBJ and STROBJ Definitions

typedef struct _STROBJ

{

 ULONG cGlyphs;

 FLONG flAccel;

 ULONG ulCharInc;

https://versprite.com/blog/security-research/reverse-engineering-undocumented-structures/
https://versprite.com/security-resources/blog/security-research/
https://versprite.com/tag/nday-vulnerabilities-and-exploits/
https://docs.microsoft.com/en-us/windows/win32/api/windef/ns-windef-pointl
https://github.com/ZoloZiak/WinNT4/blob/f5c14e6b42c8f45c20fe88d14c61f9d6e0386b8e/private/ntos/w32/ntgdi/gre/textobj.hxx#L17

2/13

 RECTL rclBkGround;

 GLYPHPOS *pgp;

 LPWSTR pwszOrg;

} STROBJ;

typedef struct _ESTROBJ

{

 STROBJ strobj; // 000

 ULONG cgposCopied; // 024

 ULONG cgposPositionsEnumerated; // 028

 RFONTOBJ *prfo; // 02c

 FLONG flTO; // 030

 GLYPHPOS *pgpos; // 034

 POINTFX ptfxRef; // 038

 POINTFX ptfxUpdate; // 040

 POINTFX ptfxEscapement; // 048

 RECTFX rcfx; // 050

 FIX fxExtent; // 060

 FIX fxExtra; // 064

 FIX fxBreakExtra; // 068

 DWORD dwCodePage; // 06c

 ULONG cExtraRects; // 070

 RECTL arclExtra[3]; // 074

 RECTL rclBkGroundSave; // 0a8

 PWCHAR pwcPartition; // 0b4

 PLONG plPartition; // 0b8

 PLONG plNext; // 0bc

 GLYPHPOS *pgpNext; // 0c0

 LONG lCurrentFont; // 0c4

 POINTL ptlBaseLineAdjust; // 0c8

 ULONG cTTSysGlyphs; // 0d0

 ULONG cSysGlyphs; // 0d4

 ULONG cDefGlyphs; // 0d8

 ULONG cNumFaceNameLinks; // 0dc

 PULONG pacFaceNameGlyphs; // 0e0

 ULONG acFaceNameGlyphs[8]; // 0e4

// size 104

} ESTROBJ, PESTROBJ;

Now that ReactOS has provided the definition of the ESTROBJ structure and the associated STROBJ structure that it
encapsulates, it should be possible to decompile ESTROBJ::ptlBaseLineAdjustSet() using HexRays Decompiler to
see if a clean decompilation is possible or not.

Decompiling ESTROBJ::ptlBaseLineAdjustSet() – Adding in Type Info
Before using HexRays Decompiler to decompile ESTROBJ::ptlBaseLineAdjustSet(), users need to provide the
decompiler with as much type information as possible. This includes the types of each of the function’s parameters,
the types of each of the variables that the function uses, the return type of the function itself, and the return types and
parameter types of any additional functions that are called.

This is an important part of the process because without this information, the decompiler is not able to understand
what data types it is operating on at each point within the disassembly. By providing the type information, the
decompiler can more accurately determine how the code should be handing certain parameters. This not only makes
the pseudocode more accurate but can also allow it to apply appropriate optimizations to make it shorter and more
concise, which can result in pseudocode output that is much easier to read and understand.

Thankfully, IDA Pro has already defined the function prototype from the public PDB files so there is no need to fill in
parameter type information. As there is no publicly available information on the return type for
ESTROBJ::ptlBaseLineAdjustSet(), it will be set to void, as this is what was defined in the PDB files.

Once this is done, the next step is to verify that IDA Pro has the information needed to process the types for each of
the parameters, which are of type ESTROBJ and POINTL respectively. One can verify which types are in IDA Pro’s
type database by pressing SHIFT+F1 or selecting View->Open subviews->Local types. This will open the local types
window, which should look similar to Figure 1.

3/13

Figure 1 – Viewing the local type window in IDA Pro

Pressing CTRL+F will allow one to search for a specific type in IDA Pro’s type database. Type POINTL to see if the
POINTL structure has already been defined in IDA Pro’s local types. IDA Pro should indicate that it already has a
definition for the POINTL structure, as can be seen in Figure 2. Notice that this definition is the same one that was
shown on MSDN, so no alterations are needed.

Figure 2 – Searching for a specific type in IDA Pro’s type database

The next structure that needs to be defined is ESTROBJ. However, before one can define this structure, one needs to
define the STROBJ structure. This is needed as the first field within the ESTROBJ structure is a STROBJ structure
named strobj. As the STROBJ structure is not yet defined in IDA Pro, it must be defined in IDA as a local type before
the ESTROBJ structure can be defined.

Looking again, one can see that STROBJ in turn depends on the RECTL and GLYPHPOS structures. RECTL is
defined by default in IDA Pro 7.4, however GLYPHPOS is not, so one needs to add it to IDA Pro’s local type
database. Adding a local type in IDA Pro can be achieved by clicking SHIFT+F1 to open the local types window and
then pressing the INSERT key. This will display a new screen where one can define their own structure using C code.

A second look at the GLYPHPOS structure shows that it requires the GLYPHDEF structure to be defined.
GLYPHDEF in turn will require the GLYPHBITS and PATHOBJ structures to be defined. Thankfully, all these
structures are documented on MSDN. The following snippet shows their definitions:

GLYPHBITS, PATHOBJ, GLYPHDEF, and GLYPHPOS Structure Definitions

typedef struct _GLYPHBITS {

 POINTL ptlOrigin;

 SIZEL sizlBitmap;

 BYTE aj[1];

} GLYPHBITS;

typedef struct _PATHOBJ {

 FLONG fl;

 ULONG cCurves;

} PATHOBJ;

typedef union _GLYPHDEF {

 GLYPHBITS *pgb;

 PATHOBJ *ppo;

} GLYPHDEF;

typedef struct _GLYPHPOS {

4/13

 HANDLE hg;

 GLYPHDEF *pgdf;

 POINTL ptl;

} GLYPHPOS, *PGLYPHPOS;

To speed up the process of defining all these structures, one can use a nifty feature of IDA Pro that allows multiple
structures to be defined in the types window at once. This can be achieved by copying and pasting the list above
directly into IDA Pro’s type window and then hitting the OK button. Figure 3 below shows what the type window
should look like prior to hitting the OK button.

Figure 3 – Declaring multiple structure definitions in IDA Pro’s type editor

Next, add in the ReactOS definition of the STROBJ field. Figure 4 shows what the type window should look like prior
to hitting the OK button.

Figure 4 – Defining the STROBJ structure in IDA Pro’s type editor

If everything went well, no error messages should appear. If any error messages appear, it is possible that RECTL
has not been defined in IDA Pro’s type database (newer versions of IDA Pro have more updated type definition
databases). In this case, one should define RECTL using the RECTL definition from MSDN. After successfully
updating the IDA Pro type database with the definition for RECTL, attempt to add the STROBJ definition again. This
should result in STROBJ being added without any error messages being shown.

Once STROBJ has been successfully added to the local types, it is time to repeat the same process for ReactOS’s
definition of ESTROBJ. To do this, one must provide definitions for the POINTFX, RECTFX and FIX structures. The

5/13

definitions of these structures can all be found on the GDI Data Types page on MSDN. Copy and paste the following
lines into a new IDA Pro types window to define the POINTFX, RECTFX, and FIX structures in the correct order.
Once this is done, press the OK button to save the types into IDA Pro’s database.

RECTFX and POINTFX Structure Definitions

typedef int FIX;

typedef struct _RECTFX {

 FIX xLeft;

 FIX yTop;

 FIX xRight;

 FIX yBottom;

} RECTFX;

typedef struct _POINTFX {

 FIX x;

 FIX y;

} POINTFX;

Once this is done, it should be possible to create the local structure definition for ESTROBJ by using the following
definition and repeating the same type definition process as before.

ESTROBJ Structure Definition from ReactOS

typedef struct _ESTROBJ

{

 STROBJ strobj; // 000

 ULONG cgposCopied; // 024

 ULONG cgposPositionsEnumerated; // 028

 RFONTOBJ *prfo; // 02c

 FLONG flTO; // 030

 GLYPHPOS *pgpos; // 034

 POINTFX ptfxRef; // 038

 POINTFX ptfxUpdate; // 040

 POINTFX ptfxEscapement; // 048

 RECTFX rcfx; // 050

 FIX fxExtent; // 060

 FIX fxExtra; // 064

 FIX fxBreakExtra; // 068

 DWORD dwCodePage; // 06c

 ULONG cExtraRects; // 070

 RECTL arclExtra[3]; // 074

 RECTL rclBkGroundSave; // 0a8

 PWCHAR pwcPartition; // 0b4

 PLONG plPartition; // 0b8

 PLONG plNext; // 0bc

 GLYPHPOS *pgpNext; // 0c0

 LONG lCurrentFont; // 0c4

 POINTL ptlBaseLineAdjust; // 0c8

 ULONG cTTSysGlyphs; // 0d0

 ULONG cSysGlyphs; // 0d4

 ULONG cDefGlyphs; // 0d8

 ULONG cNumFaceNameLinks; // 0dc

 PULONG pacFaceNameGlyphs; // 0e0

 ULONG acFaceNameGlyphs[8]; // 0e4

 // Total size 104

} ESTROBJ, PESTROBJ;

After this definition is added, enter the following two lines into a new local type definition to ensure that there are
appropriate links between the backend structures that were just created (_ESTROBJ and _STROBJ) and the
common symbol names (ESTROBJ and STROBJ).

Creating Links Between Backend Structures and Commonly Used Names

typedef struct _ESTROBJ ESTROBJ;

typedef struct _STROBJ STROBJ;

Finally, to confirm all the previous steps completed successfully, open the local types window by pressing SHIFT+F1
and search for STROBJ. The results should be the same as the ones shown in Figure 5.

https://docs.microsoft.com/en-us/windows-hardware/drivers/display/gdi-data-types

6/13

Figure 5 – Type window after STROBJ and ESTROBJ are properly defined

Decompiling ESTROBJ::ptlBaseLineAdjust() – Initial Decompilation

Now that IDA has all of the prerequisite information, it is possible to utilize HexRays Decompiler to examine what the
decompiled code for ESTROBJ:ptlBaseLineAdjustSet() looks like. To do this, assuming one has purchased and
installed the HexRays Decompiler plugin, navigate to ESTROBJ:ptlBaseLineAdjustSet() And press F5. The following
pseudocode should be shown:

Initial ESTROBJ::ptlBaseLineAdjustSet Pesudocode From HexRays Decompiler

void __fastcall ESTROBJ::ptlBaseLineAdjustSet(ESTROBJ *this, struct _POINTL *a2)

{

 struct _POINTL v2; // rax

 ULONG v3; // edx

 __int64 v4; // r9

 __int64 v5; // r10

 v2 = *a2;

 v3 = 0;

 *(struct _POINTL *)&this->lCurrentFont = v2;

 if ((v2.x || this->ptlBaseLineAdjust.x) && this->strobj.cGlyphs)

 {

 v4 = 0i64;

 v5 = 0i64;

 do

 {

 if (*(_DWORD *)&this->pwcPartition[v5] == HIDWORD(this->pgpNext))

 {

 *(_DWORD *)(*(_QWORD *)&this->flTO + v4 + 16) += this->lCurrentFont;

 *(_DWORD *)(*(_QWORD *)&this->flTO + v4 + 20) += this->ptlBaseLineAdjust.x;

 ++v3;

 }

 v5 += 2i64;

 v4 += 24i64;

 }

 while (v3 < this->strobj.cGlyphs);

 }

}

A quick visual inspection of this code shows there are still a few places where the decompiler’s output could be
improved. In particular, v3 is clearly a loop counter of some sort, given that it is initially set to 0 and is being compared
against this->strobj.cGlyphs. Let’s rename v3 to var_current_glyph_number so the decompiled code is clearer.
Additionally, let’s rename a2, aka the second argument to the function, to pPOINTL to appropriately reflect the fact
that it is a pointer to POINTL structure. Finally, let’s rename v2 to var_POINTL so that it is easier to see where the
local copy of this parameter is being used within ESTROBJ:ptlBaseLineAdjustSet(). With these changes, the
updated, decompiled code looks like the following:

ESTROBJ::ptlBaseLineAdjustSet Pesudocode After Initial Renaming of Variables

void __fastcall ESTROBJ::ptlBaseLineAdjustSet(ESTROBJ *this, struct _POINTL *pPOINTL)

{

 struct _POINTL var_POINTL; // rax

 ULONG var_current_glyph_number; // edx

 __int64 v4; // r9

 __int64 v5; // r10

 var_POINTL = *pPOINTL;

 var_current_glyph_number = 0;

 *(struct _POINTL *)&this->lCurrentFont = var_POINTL;

 if ((var_POINTL.x || this->ptlBaseLineAdjust.x) && this->strobj.cGlyphs)

7/13

 {

 v4 = 0i64;

 v5 = 0i64;

 do

 {

 if (*(_DWORD *)&this->pwcPartition[v5] == HIDWORD(this->pgpNext))

 {

 *(_DWORD *)(*(_QWORD *)&this->flTO + v4 + 16) += this->lCurrentFont;

 *(_DWORD *)(*(_QWORD *)&this->flTO + v4 + 20) += this->ptlBaseLineAdjust.x;

 ++var_current_glyph_number;

 }

 v5 += 2i64;

 v4 += 24i64;

 }

 while (var_current_glyph_number < this->strobj.cGlyphs);

 }

}

Decompiling ESTROBJ::ptlBaseLineAdjust() – Updating STROBJ
Whilst the updates have managed to make the code easier to read, it is clear upon closer inspection that there are
still some noticeable issues within the pseudocode. In particular, the flTO field seems to have been relocated or
removed from the ESTROBJ structure since it is being used as an array within the pseudocode, despite the ReactOS
definition stating that flTO is of type FLONG, which MSDN notes is the type for “a set of 32-bit flags”.

In order to confirm that the flTO field was indeed moved; one can use either static analysis or dynamic analysis. In
this case, both methods were deployed to ensure that as much information could be gathered as possible.

To do this, the VS-Labs Research Team wrote a small piece of code to execute the
ESTROBJ::ptlBaseLineAdjustSet() function. A kernel debugger was then attached to the computer to allow for the
examination of the this pointer passed to ESTROBJ::ptlBaseLineAdjustSet(), which is an ESTROBJ object. The
following output shows the content of the this pointer:

Contents of this Pointer Within ESTROBJ::ptlBaseLineAdjustSet

win32kfull!ESTROBJ::ptlBaseLineAdjustSet+0x3:

ffffd4ea`ee0a0ac3 4c8bc1 mov r8,rcx

kd> dd rcx

ffff9581`35ee7810 00000001 00000073 00000000 00000000

ffff9581`35ee7820 00000000 0000000e 00000010 00001f80

ffff9581`35ee7830 0300ef50 ffffd48d 35ee7a20 ffff9581

ffff9581`35ee7840 00000000 ffff9581 35ee77d0 ffff9581

ffff9581`35ee7850 0300ef50 ffffd48d eebb40d0 ffffd4ea

ffff9581`35ee7860 757ebce8 fffff802 757e864e fffff802

ffff9581`35ee7870 00000000 00000000 00000000 00000000

ffff9581`35ee7880 00000000 00000000 00000000 00000000

For reference, here is ReactOS’s definition of the first few fields of ESTROBJ:

First Few Lines of ReactOS’s Definition of ESTROBJ

typedef struct _ESTROBJ

{

 STROBJ strobj; // 000

 ULONG cgposCopied; // 024

 ULONG cgposPositionsEnumerated; // 028

 RFONTOBJ *prfo; // 02c

 FLONG flTO; // 030

 GLYPHPOS *pgpos; // 034

Additionally, since the first field within ESTROBJ is a STROBJ, let’s quickly revisit the definition of STROBJ:

ReactOS’s Definition of the STROBJ Structure

typedef struct _STROBJ

{

 ULONG cGlyphs;

 FLONG flAccel;

 ULONG ulCharInc;

 RECTL rclBkGround;

 GLYPHPOS *pgp;

 LPWSTR pwszOrg;

} STROBJ;

https://docs.microsoft.com/en-us/windows-hardware/drivers/display/gdi-data-types

8/13

Looking at the dump above, one can see that the first three DWORDs (32-bit long blocks of data) can be mapped on
to the first three elements of STROBJ, which means that cGlyphs is 1, flAccel is 0x73, and ulCharInc is 0. However,
the following elements appear to have been altered.

In particular, there is supposed to be a RECTL structure named rclBkGround followed by two pointers: a GLYPHPOS
pointer named pgp and then a LPWSTR pointer named pwszOrg. Looking at the definition of a RECTL structure
reveals that it is made up of 4 DWORDs as shown below:

MSDN’s Definition of the RECTL Structure

struct _RECTL

{

 LONG left;

 LONG top;

 LONG right;

 LONG bottom;

};

The disassembly doesn’t match this even though the data starting at ffff9581`35ee7820 appears to match the format
of the RECTL structure, there appears to be an extra DWORD worth of data at ffff9581`35ee781c. This can be further
confirmed by examining the data at ffff9581`35ee7830 and ffff9581`35ee7838. As ReactOS’s definition for STROBJ
only has two parameters that are next to one another that are both pointers, namely pgp and pwszOrg, one can
conclude that ffff9581`35ee7830 is pgp and ffff9581`35ee7838 is pwszOrg.

This leaves one with an issue as there is now one DWORD worth of extra data that is not being accounted for in the
current ReactOS structure definition. By running the test script multiple times however, VS-Labs was able to
determine that DWORD at ffff9581`35ee782C, aka offset 0x1C of STROBJ, changed between runs.

This suggests that it is not part of the RECTL structure, since the RECTL structure should remain consistent between
attempts. From this, one can determine that the RECTL structure starts at ffff9581`35ee781C and that the data at
ffff9581`35ee782C is some unknown 32-bit long value. With this information, one can add a new DWORD sized field
named unknown to the STROBJ structure directly after the RECTL field. This should result in the following STROBJ
structure:

VS-Lab’s Updated STROBJ Structure for Windows 10 v1903 on x64

struct _STROBJ

{

 ULONG cGlyphs;

 FLONG flAccel;

 ULONG ulCharInc;

 RECTL rclBkGround;

 DWORD unknown;

 GLYPHPOS *pgp;

 LPWSTR pwszOrg;

};

Decompiling ESTROBJ::ptlBaseLineAdjust() – Updating ESTROBJ
With the STROBJ structure updated, one can return to the task of updating the position of the flTO field within the
ESTROBJ structure. Several methods can be utilized to find the new location where flTO should be, however, VS-
Labs Research Team found that the most effective method was to examine the leaked source code of
ESTROBJ::bPartitionInit(), a function which used the flTO field and whose operations had not changed drastically in
Windows 10.

Examining the source code for ESTROBJ::bPartitionInit() reveals that the flTO field is utilized at the very beginning of
the function, where a check is made to see if the flTO field has the TO_SYS_PARTITION flag set, as can be seen in
the snippet below.

Leaked Source Code for ESTROBJ::bPartitionInit() Showing TO_SYS_PARTITION Check

// Snippet taken from

https://github.com/ZoloZiak/WinNT4/blob/f5c14e6b42c8f45c20fe88d14c61f9d6e0386b8e/private/ntos/w32/ntgdi/

BOOL ESTROBJ::bPartitionInit(COUNT c, UINT uiNumLinks, BOOL bEudcInit)

{

 flAccel &= ~(SO_CHAR_INC_EQUAL_BM_BASE|SO_ZERO_BEARINGS);

 if(!(flTO & TO_SYS_PARTITION))

Figure 6 shows the disassembly of the Windows 10 version of this code.

9/13

Figure 6 – Windows 10 bPartitionInit() initial disassembly

By referring to line 42 of textobj.hxx in the leaked NT 4.0 source code, one can translate the 0x1000 in the
disassembly shown in Figure 6 to TO_SYS_PARTITION. Therefore, one can confirm that there is a test at the start of
the Windows 10 version of ESTROBJ::bPartitionInit() that checks if offset 0xE8 of the ESTROBJ structure contains
the flag TO_SYS_PARITION, and will jump to loc_1C013689D if it does not. This matches the if(!(flTO &
TO_SYS_PARTITION)) line in the leaked source code, which confirms that offset 0xE8 of the Windows 10 ESTROBJ
structure is flTO.

Before one can update the ESTROBJ structure, however, they need to identify what data already exists at offset
0xE8 of ReactOS’s definition of the ESTROBJ structure to determine if any additional fields need to be removed or
relocated. To find this out, go back to the Local Types window, search for the _ESTROBJ type, and right-click and
select Edit on the structure. The window shown in Figure 7 should appear (note that only IDA Pro v7.4 and later has
support for offset information for structures, so this will not be displayed if you are running an earlier version of IDA
Pro):

Figure 7 – Viewing outdated ESTROBJ structure

From the output shown in Figure 7, one can observe that offset 0xE8 in the ReactOS ESTROBJ structure definition is
currently pgpNext. Let’s update this structure to relocate the flTO element from offset 0x40 of ESTROBJ to offset
0xE8. The new structure is shown in the snippet below:

VS-Labs' Updated ESTROBJ Structure for Windows 10 v1903 on x64

struct _ESTROBJ

{

STROBJ strobj;

ULONG cgposCopied;

https://github.com/ZoloZiak/WinNT4/blob/f5c14e6b42c8f45c20fe88d14c61f9d6e0386b8e/private/ntos/w32/ntgdi/gre/textobj.hxx#L42

10/13

ULONG cgposPositionsEnumerated;

RFONTOBJ *prfo;

GLYPHPOS *pgpos;

POINTFX ptfxRef;

POINTFX ptfxUpdate;

POINTFX ptfxEscapement;

RECTFX rcfx;

FIX fxExtent;

FIX fxExtra;

FIX fxBreakExtra;

DWORD dwCodePage;

ULONG cExtraRects;

RECTL arclExtra[3];

RECTL rclBkGroundSave;

PWCHAR pwcPartition;

PLONG plPartition;

PLONG plNext;

GLYPHPOS *pgpNext;

FLONG flTO;

LONG lCurrentFont;

POINTL ptlBaseLineAdjust;

ULONG cTTSysGlyphs;

ULONG cSysGlyphs;

ULONG cDefGlyphs;

ULONG cNumFaceNameLinks;

PULONG pacFaceNameGlyphs;

ULONG acFaceNameGlyphs[8];

};

Decompiling ESTROBJ::ptlBaseLineAdjust() – Double Checking the
Decompilation Results
As we have now updated quite a few structure definitions, it would be good idea to check that the modifications have
achieved the desired effect. The following snippet shows the decompiler’s view of ESTROBJ::ptlBaseLineAdjustSet
now that the ESTROBJ structure definition has been updated:

Updated ESTROBJ::ptlBaseLineAdjustSet Pesudocode Using New STROBJ and ESTROBJ

Definitions

void __fastcall ESTROBJ::ptlBaseLineAdjustSet(ESTROBJ *this, struct _POINTL *pPOINTL)

{

 struct _POINTL var_POINTL; // rax

 ULONG var_current_glyph_number; // edx

 __int64 v4; // r9

 __int64 v5; // r10

 var_POINTL = *pPOINTL;

 var_current_glyph_number = 0;

 this->ptlBaseLineAdjust = var_POINTL;

 if ((var_POINTL.x || this->ptlBaseLineAdjust.y) && this->strobj.cGlyphs)

 {

 v4 = 0i64;

 v5 = 0i64;

 do

 {

 if (this->plPartition[v5] == this->lCurrentFont)

 {

 this->pgpos[v4].ptl.x += this->ptlBaseLineAdjust.x;

 this->pgpos[v4].ptl.y += this->ptlBaseLineAdjust.y;

 ++var_current_glyph_number;

 }

 ++v5;

 ++v4;

 }

 while (var_current_glyph_number < this->strobj.cGlyphs);

 }

}

By examining this pseudocode, it possible to determine that v4 is a variable that controls the current entry within the
pgpos array that is being processed. Similarly, v5 is a variable that controls the current entry within the this-

11/13

>plPartition array that is being checked against this->lCurrentFont. Given this information, let’s rename this->v4 to
var_pgpos_entry and v5 to var_plPartitionEntry. With these edits the code should look much cleaner and should be
very easy to understand.

ESTROBJ::ptlBaseLineAdjustSet Pesudocode After Renaming v5 and v4

void __fastcall ESTROBJ::ptlBaseLineAdjustSet(ESTROBJ *this, struct _POINTL *pPOINTL)

{

 struct _POINTL var_POINTL; // rax

 ULONG var_current_glyph_number; // edx

 __int64 var_pgpos_entry; // r9

 __int64 var_plPartitionEntry; // r10

 var_POINTL = *pPOINTL;

 var_current_glyph_number = 0;

 this->ptlBaseLineAdjust = var_POINTL;

 if ((var_POINTL.x || this->ptlBaseLineAdjust.y) && this->strobj.cGlyphs)

 {

 var_pgpos_entry = 0i64;

 var_plPartitionEntry = 0i64;

 do

 {

 if (this->plPartition[var_plPartitionEntry] == this->lCurrentFont)

 {

 this->pgpos[var_pgpos_entry].ptl.x += this->ptlBaseLineAdjust.x;

 this->pgpos[var_pgpos_entry].ptl.y += this->ptlBaseLineAdjust.y;

 ++var_current_glyph_number;

 }

 ++var_plPartitionEntry;

 ++var_pgpos_entry;

 }

 while (var_current_glyph_number < this->strobj.cGlyphs);

 }

}

Decompiling ESTROBJ::ptlBaseLineAdjust() – Final Checks
Whilst the code looks correct now, to provide complete assurance, it is necessary to double-check that the this-
>plPartition and this->lCurrentFont fields are located at offset 0xD0 and 0xEC of the ESTROBJ structure respectively.

An initial bit of reassurance can be obtained by looking at the leaked source code for ESTROBJ::bTextToPath(). A
close inspection will reveal that one of its lines performs a very similar operation to the one in the pseudocode the
decompiler generated for ESTROBJ::ptlBaselineAdjustSet().

In particular, in both functions a loop is utilized which iterates over cGlyphs elements within the plPartition array, and
on each iteration lCurrentFont is compared to the current entry being processed within plPartition to see if they
match. Therefore, one can conclude that comparing this->plPartition and this->lCurrentFont with one another is
normal, as this operation has been performed in the past.

To obtain complete assurance, however, one can once again examine the leaked source code of
ESTROBJ::bPartitionInit(). By reviewing the code, one can find that the plPartition field is NULL’d out via
RtlZeroMemory(). If one returns to the disassembly of ESTROBJ::bPartitionInit() in IDA Pro, as shown in Figure 8, it
should be possible to observe a similar pattern whereby offset 0xD0 of the ESTROBJ object contained in RBX is
NULL’d out via a memset() call. This replicates the RtlZeroMemory() call shown in the leaked code and confirms that
offset 0xD0 of ESTROBJ is indeed plPartition on Windows 10.

Figure 8 – ESTROBJ::bPartitionInit() zeroing out the memory at offset 0xD0 of the ESTROBJ

https://github.com/ZoloZiak/WinNT4/blob/f5c14e6b42c8f45c20fe88d14c61f9d6e0386b8e/private/ntos/w32/ntgdi/gre/textobj.cxx#L2178
https://github.com/ZoloZiak/WinNT4/blob/f5c14e6b42c8f45c20fe88d14c61f9d6e0386b8e/private/ntos/w32/ntgdi/gre/misceudc.cxx#L2157

12/13

Finally, to confirm the offset of this->lCurrentFont within ESTROBJ, let’s examine the leaked source code for
STROBJ_bEnumLinked(). The following snippet shows the relevant lines of this function:

Leaked STROBJ_bEnumLinked Source Code Lines

BOOL STROBJ_bEnumLinked(ESTROBJ *peso, ULONG *pc,PGLYPHPOS *ppgpos)

{

 // Quick exit.

 if (peso->cgposCopied == 0)

 {

 for (peso->plNext = peso->plPartition, peso->pgpNext = peso->pgpos;

 *(peso->plNext) != peso->lCurrentFont;

 (peso->pgpNext)++, (peso->plNext)++);

 {

 ...

 }

 }

 ...

Figure 9 shows the corresponding disassembly for the STROBJ_bEnumLinked function in Windows 10 (comments
added for additional clarity).

Figure 9 – Disassembly of opening lines of STROBJ_bEnumLinked

A quick glance over the disassembly in Figure 9 reveals that there is a check to see if peso->cgposCopied is 0. This
can be confirmed as offset 0x30 of ESTROBJ is moved into EAX, after which EAX is checked to ensure it is not 0. If it
is 0, a jump is taken to loc_1C0009260, which has the effect of ensuring that the for loop starting at loc_1C00091F0
is never entered.

An examination of the next block, which is on the left side of the branch in Figure 9, reveals that RAX is set to
plPartition as RCX contains the value of the peso parameter, which is of type ESTROBJ, and our earlier analysis
confirmed that offset 0xD0 of an ESTROBJ is plPartition. We can also verify that the following line, mov EDX,
[RBX+0xEC], sets EDX to offset 0xEC of the ESTROBJ structure. At this point in the analysis, we do not know what
this offset is related to, so we will make a note to come back to this and will continue our analysis.

If one skips over the following lines they will see that there is a check at loc_1C00091F0 which will compare RAX, or
peso->plPartition to offset 0xEC of the ESTROBJ, aka EDX. If no match is made then execution jumps to
loc_1C00091E1 which increments the pointers before execution returns to loc_1C00091F0, or the start of the loop.
This can be seen in Figure 10.

https://github.com/ZoloZiak/WinNT4/blob/f5c14e6b42c8f45c20fe88d14c61f9d6e0386b8e/private/ntos/w32/ntgdi/gre/misceudc.cxx#L2051

13/13

Figure 10 – Disassembly of STROBJ_bEnumLinked’s for loop

If one re-examines the leaked source code, one will notice that this behavior looks very similar to the following line,
particularly as this is the only check done in its for loop:

Initializing the Value That peso->plNext Points to Within the Leaked Source Code

*(peso->plNext) != peso->lCurrentFont;

Tracing peso->plNext’s usage in the leaked source code shows that it is initialized to peso->plPartition:

Initializing peso->plNext in Leaked Source Code

peso->plNext = peso->plPartition

This ultimately means that earlier, when RAX was set to RCX+0xD0, it was actually being set to the value of peso-
>plPartition. This confirms that offset 0xD0 of the ESTROBJ is indeed plPartition. Furthermore, the check between
[RAX] and EDX is really a check between *(peso->plNext), aka RAX, and peso->lCurrentFont, aka EDX. Since EDX
is set earlier on to the value of RBX+0xEC, and RBX in turn is set earlier on in the code to the value of ECX, aka the
peso parameter, it is possible to confirm that offset 0xEC of ESTROBJ is the lCurrentFont field in Windows 10.

With these checks complete, we now have complete assurance that the definition of the ESTROBJ structure is
correct and that the pseudocode generated by HexRays Decompiler is as accurate as it can be.

Conclusion

Whilst undocumented structures are often seen as untouchable items that require hours of time and dedication to
reverse engineer, this is not always the case. Sometimes all that is needed is a little bit of background information or
context to proceed. Be sure to use publicly available information from forums, GitHub, and ReactOS; with more
resources, comes more potential leads when it comes time to investigate.

Additionally, don’t forget that the best way to verify how a structure has changed is to examine it yourself. Utilize IDA
Pro to perform static analysis and identify where the structure is being used, then follow this up with WinDBG to
identify what fields exist in the structure and what their types might be.

Finally, remember that all of this takes time. Some structures may be more complex and contain many other
structures nested inside them. If possible, start with smaller, simpler structures first and then build up from there. For
more complex structures, be sure to make use of IDA Pro’s type database and dynamic analysis to ensure that all
members of the structure have been updated appropriately and there are no unexpected changes.

