
1/18

WOW64!Hooks: WOW64 Subsystem Internals and
Hooking Techniques

mandiant.com/resources/wow64-subsystem-internals-and-hooking-techniques

Microsoft is known for their backwards compatibility. When they rolled out the 64-bit

variant of Windows years ago they needed to provide compatibility with existing 32-bit

applications. In order to provide seamless execution regardless of application bitness, the

WoW (Windows on Windows) system was coined. This layer, which will be referred to as

‘WOW64’ from here on out, is responsible for translating all Windows API calls from 32-bit

userspace to the 64-bit operating system kernel. This blog post is broken up into two

sections. First we start by diving deep into the WOW64 system. To do this, we trace a call

from 32-bit userspace and follow the steps it takes to finally transition to the kernel. The

second part of the post assesses two hooking techniques and their effectiveness. I will cover

how this system works, the ways malware abuses it, and detail a mechanism by which all

WoW syscalls can be hooked from userspace. Note that all information here is true as of

Windows 10, version 2004 and in some cases has changed from how previous Windows

versions were implemented.

Recognition

First and foremost, this is a topic which has existing research by multiple authors. This work

was critical in efficient exploration of the internals and research would have taken much

longer had these authors not publicly posted their awesome work. I would like to callout the

following references:

(wbenny): An extremely detailed view of WOW64 internals on ARM

(ReWolf): A PoC heaven’s gate implementation

(JustasMasiulis): A very clean C++ heaven’s gate implementation

(MalwareTech): A WOW64 segmentation explanation

WOW64 Internals

To understand how the WOW64 system works internally we will explore the call sequence

starting in 32-bit usermode before transitioning into the kernel from within a system DLL.

Within these system DLLs the operating system will check arguments and eventually

transition to a stub known as a syscall stub. This syscall stub is responsible for servicing the

API call in the kernel. On a 64-bit system, the syscall stub is straightforward as it directly

executes the syscall instruction as shown in Figure 1.

https://www.mandiant.com/resources/wow64-subsystem-internals-and-hooking-techniques
https://wbenny.github.io/2018/11/04/wow64-internals.html
http://blog.rewolf.pl/blog/?p=102
https://github.com/JustasMasiulis/wow64pp
https://www.malwaretech.com/2014/02/the-0x33-segment-selector-heavens-gate.html

2/18

Figure 1: Native x64 Syscall Stub

Figure 2 shows a syscall stub for a 32-bit process running on WOW64

Figure 2: WOW64 Syscall Stub

Notice that instead of a syscall instruction in the WOW64 version, Wow64SystemServiceCall

is called. In the WOW64 system what would normally be an entry into the kernel is instead

replaced by a call to a usermode routine. Following this Wow64SystemServiceCall, we can

see in Figure 3 that it immediately performs an indirect jmp through a pointer named

Wow64Transition.

Figure 3: Wow64SystemService transitions through a pointer ‘Wow64Transition’

Note that the Wow64SystemServiceCall function is found within ntdll labeled as

ntdll_77550000; a WOW64 process has two ntdll modules loaded, a 32-bit one and a 64-bit

one. WinDbg differentiates between these two by placing the address of the module after the

32-bit variant. The 64-bit ntdll can be found in %WINDIR%\System32 and the 32-bit in

%WINDIR%\SysWOW64. In the PDBs, the 64bit and 32bit ntdlls are referred to as ntdll.pdb

and wntdll.pdb respectively, try loading them in a disassembler! Continuing with the call

trace, if we look at what the Wow64Transition pointer holds we can see its destination is

wow64cpu!KiFastSystemCall. As an aside, note that the address of

wow64cpu!KiFastSystemCall is held in the 32-bit TEB (Thread Environment Block) via

member WOW32Reserved, this isn’t relevant for this trace but is useful to know. In Figure 4

we see the body of KiFastSystemCall.

Figure 4: KiFastSystemCall transitions to x64 mode via segment selector 0x33

3/18

The KiFastSystemCall performs a jmp using the 0x33 segment selector to a memory location

just after the instruction. This 0x33 segment transitions the CPU into 64-bit mode via a GDT

entry as described by (MalwareTech).

Let's recap the trace we've performed to this point. We started from a call in ntdll,

NtResumeThread. This function calls the Wow64SystemServiceCall function which then

executes the Wow64Transition. The KiFastSystemCall performs the transition from 32-bit to

64-bit execution. The flow is shown in Figure 5.

Figure 5: 32-bit to 64-bit transition

The destination of the CPU transition jump is the 64-bit code show in Figure 6.

Figure 6: Destination of KiFastSystemCall

Figure 6 shows the first 64-bit instruction we’ve seen executed in this call trace so far. In

order to understand it, we need to look at how the WOW64 system initializes itself. For a

detailed explanation of this refer to (wbenny). For now, we can look at the important parts in

wow64cpu!RunSimulatedCode.

4/18

Figure 7: 64bit registers are saved in RunSimulatedCode

Figure 7 depicts the retrieval of the 64-bit TEB which is used to access Thread Local Storage

at slot index 1. Then the moving of a function pointer table into register r15. The TLS data

retrieved is an undocumented data structure WOW64_CPURESERVED that contains

register data and CPU state information used by the WOW64 layer to set and restore

registers across the 32-bit and 64-bit boundaries. Within this structure is the

WOW64_CONTEXT structure, partially documented on the Microsoft website. I have listed

both structures at the end of this post. We’ll look at how this context structure is used later,

but for our understanding of the jmp earlier all we need to know is that r15 is a function

pointer table.

It’s interesting to note at this point the architecture of the WOW64 layer. From the

perspective of the 64-bit kernel the execution of 32-bit (Wow64) usermode applications is

essentially a big while loop. The loop executes x86 instructions in the processor's 32-bit

execution mode and occasionally exits the loop to service a system call. Because the kernel is

64-bit, the processor mode is temporarily switched to 64-bit, the system call serviced, then

the mode switched back and the loop continued where it was paused. One could say the

WOW64 layer acts like an emulator where the instructions are instead executed on the

physical CPU.

Going back to the jmp instruction we saw in Figure 6, we now know what is occurring. The

instruction jmp [r15 + 0xF8] is equivalent to the C code jmp TurboThunkDispatch[0xF8 /

sizeof(uint64_t)]. Looking at the function pointer at this index we can see we’re at the

function wow64cpu!CpupReturnFromSimulatedCode (Figure 8).

https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-wow64_context

5/18

Figure 8: TurboThunk table's last function pointer entry is an exit routine

This routine is responsible for saving the state of the 32-bit registers into the

WOW64_CONTEXT structure we mentioned before as well as retrieving the arguments for

the syscall. There is some trickiness going on here, so let’s examine this in detail. First a

pointer to the stack is moved into r14 via xchg, the value at this location will be the return

address from the syscall stub where Wow64SystemServiceCall was called. The stack pointer

r14 is then incremented by 4 to get a pointer to where the stack should be reset when it’s time

to restore all these context values. These two values are then stored in the context’s EIP and

ESP variables respectively. The r14 stack pointer is then incremented one more time to get

the location where the __stdcall arguments are (remember stdcall passes all arguments on

the stack). This argument array is important for later, remember it. The arguments pointer is

moved into r11, so in C this means that r11 is equivalent to an array of stack slots where each

slot is an argument uint32_t r11[argCount]. The rest of the registers and EFlags are then

saved.

Once the 32-bit context is saved, the WOW64 layer then calculates the appropriate

TurboThunk to invoke by grabbing the upper 16 bits of the syscall number and dispatches to

that thunk. Note that at the beginning of this array is the function

TurboDispatchJumpAddressEnd, shown in Figure 9, which is invoked for functions that do

not support TurboThunks.

Figure 9: TurboThunk table's first function pointer entry is an entry routine

6/18

TurboThunks are described by (wbenny)—read his blog post at this point if you have not. To

summarize the post, for functions that have simple arguments with widths <=

sizeof(uint32_t) the WOW64 layer will directly widen these arguments to 64 bits via zero or

sign-extension and then perform a direct syscall into the kernel. This all occurs within

wow64cpu, rather than executing a more complex path detailed as follows. This acts as an

optimization. For more complex functions that do not support TurboThunks the

TurboDispatchJumpAddressEnd stub is used which dispatches to wow64!SystemServiceEx

to perform the system call as shown in Figure 10.

Figure 10: Complex system calls go through Wow64SystemServiceEx

We’ll look at this routine in a moment as it’s the meat of this blog post, but for now let’s finish

this call trace. Once Wow64SystemServiceEx returns from doing the system call the return

value in eax is moved into the WOW64_CONTEXT structure and then the 32-bit register

states are restored. There’s two paths for this, a common case and a case that appears to exist

only to be used by NtContinue and other WOW64 internals. A flag at the start of the

WOW64_CPURESERVED structure retrieved from the TLS slot is checked, and controls

which restore path to follow as shown in Figure 11.

7/18

Figure 11: CPU state is restored once the system call is done; there’s a simple path and a complex

one handling XMM registers

The simpler case will build a jmp that uses the segment selector 0x23 to transition back to

32-bit mode after restoring all the saved registers in the WOW64_CONTEXT. The more

complex case will additionally restore some segments, xmm values, and the saved registers in

the WOW64_CONTEXT structure and then will do an iret to transition back. The common

case jmp once built is shown in Figure 12.

Figure 12: Dynamically built jmp to transition back to 32bit mode

8/18

At this point our call trace is complete. The WOW64 layer has transitioned back to 32-bit

mode and will continue execution at the ret after Wow64SystemServiceCall in the syscall stub

we started with. Now that an understanding of the flow of the WOW64 layer itself is

understood, let’s examine the Wow64SystemServiceEx call we glossed over before.

A little bit into the Wow64SystemServiceEx routine, Figure 13 shows some interesting logic

that we will use later.

Figure 13: Logging routines invoked before and after dispatching the syscalls

The routine starts by indexing into service tables which hold pointers to routines that convert

the passed argument array into the wider 64-bit types expected by the regular 64-bit system

modules. This argument array is exactly the stack slot that was stored earlier in r14.

Two calls to the LogService function exist, however these are only called if the DLL

%WINDIR%\system32\wow64log.dll is loaded and has the exports Wow64LogInitialize,

Wow64LogSystemService, Wow64LogMessageArgList, and Wow64LogTerminate. This DLL

is not present on Windows by default, but it can be placed there with administrator

privileges.

The next section will detail how this logging DLL can be used to hook syscalls that transition

through this wow64layer. Because the logging routine LogService is invoked before and after

the syscall is serviced we can achieve a standard looking inline hook style callback function

capable of inspecting arguments and return values.

Bypassing Inline Hooks

As described in this blog post, Windows provides a way for 32-bit applications to execute 64-

bit syscalls on a 64-bit system using the WOW64 layer. However, the segmentation switch we

noted earlier can be manually performed, and 64-bit shellcode can be written to setup a

syscall. This technique is popularly called “Heaven’s Gate”. JustasMasiulis’ work

call_function64 can be used as a reference to see how this may be done in practice

(JustasMasiulis). When system calls are performed this way the 32-bit syscall stub that the

WOW64 layer uses is completely skipped in the execution chain. This is unfortunate for

security products or tracing tools because any inline hooks in-place on these stubs are also

https://github.com/JustasMasiulis/wow64pp/blob/be72557d0bd2e997d985fd9c590529b62de3765b/include/wow64pp.hpp#L727

9/18

bypassed. Malware authors know this and utilize “Heaven’s Gate” as a bypass technique in

some cases. Figure 14 and Figure 15 shows the execution flow of a regular syscall stub

through the WOW64 layer, and hooked syscall stub where malware utilizes “Heaven’s Gate”.

Figure 14: NtResumeThread transitioning through the WOW64 layer

Figure 15: NtResumeThread inline hook before transitioning through the WOW64 layer

As seen in Figure 15, when using the Heaven’s Gate technique, execution begins after the

inline hook and WOW64 layer is done. This is an effective bypass technique, but one that is

easy to detect from a lower level such as a driver or hypervisor. The easiest bypass to inline

hooks is simply to restore the original function bytes, usually from bytes on disk. Malware

such as AgentTesla and Conti has been known to utilize this last evasion technique.

Hooking WOW64 via Inline Hooks

As a malware analyst being able to detect when samples attempt to bypass the WOW64 layer

can be very useful. The obvious technique to detect this is to place inline hooks on the 64-bit

syscall stubs as well as the 32-bit syscall stubs. If the 64-bit hook detects an invocation that

didn’t also pass through the 32-bit hook, then it’s known that a sample is utilizing Heaven’s

Gate. This technique can detect both evasion techniques previously detailed. However, in

practice this is very difficult to implement. Looking at the requirements that must be satisfied

to hook the 64-bit syscall stub we come up with this list:

10/18

1. Install 64-bit hook from a 32-bit module

How do you read/write 64-bit address space from a 32-bit module?

2. Implement a 64-bit callback from a 32-bit module

Typically, inline hooking uses C functions as callback stubs, but we’re compiling a

32-bit module so we’ll have a 32-bit callback instead of the required 64-bit one.

To solve the first challenge ntdll kindly provides the exports

NtWow64ReadVirtualMemory64, NtWow64WriteVirtualMemory64, and

NtWow64QueryInformationProcess64. Using these it is possible to read memory, write

memory, and retrieve the PEB of a 64-bit module from a 32-bit process. However, the second

challenge is much harder as either shellcode or a JIT will be required to craft a callback stub

of the right bitness. In practice ASMJIT may be utilized for this. This is however a very

tedious technique to trace a large number of APIs. There are other challenges to this

technique as well. For example, in modern Windows 10 the base address of ntdll64 is set to a

high 64-bit address rather than a lower 32-bit address as in Windows 7. Due to this,

supporting returns from callbacks back up to the original hooked stub and allocating a

trampoline within the required memory range is difficult since the standard ret instruction

doesn’t have enough bits on the stack to represent the 64-bit return address.

As an aside, it should be noted that the WOW64 layer contains what is likely a bug when

dealing with the NtWow64* functions. These APIs all take a HANDLE as first argument,

which should be sign extended to 64-bits. However, this does not occur for these APIs,

therefore when using the pseudo handle -1 the call fails with STATUS_INVALID_HANDLE.

This bug was introduced in an unknown Windows 10 version. To successfully use these APIs

OpenProcess must be used to retrieve a real, positive valued handle.

I will not be covering the internals of how to inline hook the 64-bit syscall stub since this post

is already very long. Instead I will show how my hooking library PolyHook2 can be extended

to support cross-architecture hooking using these Windows APIs, and leave the rest as an

exercise to the reader. This works because PolyHook’s trampolines are not limited to +-2GB

and do not spoil registers. The internals of how that is achieved is a topic for another post.

Figure 16 depicts how to overload the C++ API of polyhook to read/write memory using the

aforementioned WinAPIs.

https://github.com/stevemk14ebr/PolyHook_2_0

11/18

Figure 16: Overloading the memory operations to read/write/protect 64-bit memory

Once these inline hooks are in-place on the 64-bit syscall stubs, any application utilizing

Heaven’s Gate will be properly intercepted. This hooking technique is very invasive and

complicated and can still be bypassed if a sample was to directly execute a syscall instruction

rather than using the 64-bit module’s syscalls stub. Therefore, a driver or hypervisor is more

suitable to detect this evasion technique. Instead we can focus on the more common byte

restoration evasion techniques and look for a way to hook the WOW64 layer itself. This

doesn’t involve assembly modifications at all.

Hooking WOW64 via LogService

Thinking back to the WOW64 layer’s execution flow we know that all calls which are sent

through the Wow64SystemServiceEx routine may invoke the routine

Wow64LogSystemService if the logging DLL is loaded. We can utilize this logging DLL and

routine to implement hooks which can be written the exact same way as inline hooks, without

modifying any assembly.

12/18

The first step to implementing this is to force all API call paths through the

Wow64SystemServiceEx routine so that the log routine may be called. Remember earlier that

those that support TurboThunks will not take this path. Lucky for us we know that any

TurboThunk entry that points to TurboDispatchJumpAddressEnd will take this path.

Therefore, by pointing every entry in the TurboThunk table to point at that address, the

desired behavior is achieved. Windows kindly implements this patching via

wow64cpu!BTCpuTurboThunkControl as shown in Figure 17.

Figure 17: Patching the TurboThunk table is implemented for us

Note that in previous Windows versions the module which exported this and how it did is

different to Windows 10, version 2004. After invoking this patch routine all syscall paths

through WOW64 go through Wow64SystemServiceEx and we can focus on crafting a logging

DLL that man-in-the-middles (MITMs) all calls. There are a couple of challenges to be

considered here:

1. How do we determine which system call is currently occurring from the logging DLL?

2. How are callbacks written? Wow64log is 64-bit DLL, we’d like a 32-bit callback.

Is shellcode required, or can we make nice C style function callbacks?

3. What APIs may we call? All that’s loaded is 64-bit ntdll.

The first concern is rather easy, from within the wow64log DLL we can read the syscall

number from the syscall stubs to create a map of number to name. This is possible because

syscall stubs always start with the same assembly and the syscall number is at a static offset

of 0x4. Figure 18 shows how we can then compare the values in this map against the syscall

number passed to Wow64LogSystemService’s parameter structure

WOW64_LOG_SERVICE.

13/18

typedef uint32_t* WOW64_ARGUMENTS;
 struct WOW64_LOG_SERVICE

 {
 uint64_t BtLdrEntry;

 WOW64_ARGUMENTS Arguments;
 ULONG ServiceTable;

 ULONG ServiceNumber;
 NTSTATUS Status;

 BOOLEAN PostCall;
 };

EXTERN_C
__declspec(dllexport)

 NTSTATUS
 NTAPI

 Wow64LogSystemService(WOW64_LOG_SERVICE* service)
 {

 for (uint32_t i = 0; i < LAST_SYSCALL_ID; i++) {
 const char* sysname = SysCallMap[i].name;

 uint32_t syscallNum = SysCallMap[i].SystemCallNumber;
 if (ServiceParameters->ServiceNumber != syscallNum)

 continue;
 //LOG sysname

 }
 }

Figure 18: Minimal example of determining which syscall is occurring—in practice the service

table must be checked too

Writing callbacks is a bit more challenging. The wow64log DLL is executing in 64-bit mode

and we’d like to be able to write callbacks in 32-bit mode since it’s very easy to load

additional 32-bit modules into a WOW64 process. The best way to handle this is to write

shellcode which is capable of transitioning back to 32-bit mode, execute the callback, then go

back to 64-bit mode to continue execution in the wow64log DLL. The segment transitions

themselves are rather easy at this point, we know we just need to use 0x23 or 0x33 segment

selectors when jumping. But we also need to deal with the calling convention differences

between 64-bit and 32-bit. Our shellcode will therefore be responsible for moving 64-bit

arguments’ register/stack slots to the 32-bit arguments register/stack slots. Enforcing that

32-bit callbacks may only be __cdecl makes this easier as all arguments are on the stack and

the shellcode has full control of stack layout and cleanup. Figure 19 shows the locations of the

arguments for each calling convention. Once the first 4 arguments are relocated all further

arguments can be moved in a loop since it’s simply moving stack values into lower slots. This

is relatively easy to implement using external masm files in MSVC. Raw bytes will need to be

emitted at points rather than using the assembler due to the mix of architectures.

Alternatively, GCC or Clang inline assembly could be used. ReWolf’s work achieves the

opposite direction of 32-bit -> 64-bit and implements the shellcode via msvc inline asm. X64

14/18

MSVC doesn’t support this and there are complications with REX prefixes when using that

method. It’s nicer to use external masm files and rely on the linker to implement this

shellcode.

Arg Number Cdecl Location Fastcall Location Special Case?

0 [ebp + 8] rcx Yes

1 [ebp + 12] rdx Yes

2 [ebp + 16] r8d Yes

3 [ebp + 20] r9d Yes

4 [ebp + 24] [rbp + 32 + 8] No

5 [ebp + 28] [rbp + 32 + 16] No

6 [ebp + 32] [rbp + 32 + 24] No

Figure 19: Cdecl vs Fastcall argument positions

Once this shellcode is written and wrapped into a nice C++ function, it’s possible for the

wow64log DLL to invoke the callback via a simple C style function pointer call shown in

Figure 20.

Figure 20: call_function32 invokes shellcode to call a 32-bit callback from the 64-bit logging DLL

From within the 32-bit callback any desired MITM operations can be performed, but

restrictions exist on which APIs are callable. Due to the context saving that the WOW64 layer

performs, 32-bit APIs that would re-enter the WOW64 layer may not be called as the context

values would be corrupted. We are therefore limited to only APIs that won’t re-enter

WOW64, which are those that are exported from the 64-bit ntdll. The NtWriteFile export

may be used to easily write to stdout or a file, but we must re-enter the 64-bit execution mode

and do the inverse argument mapping as before. This logging routine can be called from

within the 32-bit callbacks and is shown in Figure 21 and Figure 22.

15/18

Figure 21: call_function64 invokes shellcode to call the 64bit WriteFile from with the 32bit callback

Figure 22: 32bit callbacks must log via routines that only call non-reentrant WOW64 APIs

The result is clean looking callback stubs that function exactly how inline hooks might, but

with zero assembly modifications required. Arguments can easily be manipulated as well, but

the return status may not be modified unless a little stack walk hackery is implemented. The

only other consideration is that the wow64log DLL itself needs to be carefully crafted to not

build with any CRT mechanisms. The flags required are:

Disable CRT with /NODEFAULT LIB (all C APIs now unavailable), set a new entry

point name to not init CRT NtDllMain

Disable all CRT security routines /GS-

Disable C++ exceptions

Remove default linker libraries, only link ntdll.lib

Use extern “C” __declspec(dllimport) <typedef> to link against the correct NtApis

An example of a program hooking its own system calls via wow64log inline hooks is shown in

Figure 23.

Figure 23: Demonstration of inline hooks in action

16/18

Conclusion

Using inline WOW64 hooks, wow64log hooks, and kernel/hypervisor hooks, all techniques of

usermode hook evasion can be identified easily and automatically. Detecting which layers of

hooks are skipped or bypassed will give insight into which evasion technique is employed.

The identifying table is:

Evasion Mode 32bit
Inline

wow64Log 64bit
Inline

Kernel/Hypervisor

Prologue Restore ❌ ✔ ✔ ✔

Heavens Gate sys-stub ❌ ❌ ✔ ✔

Heavens Gate direct
syscall

❌ ❌ ❌ ✔

Structure Appendix

struct _WOW64_CPURESERVED

{

 USHORT Flags;

 USHORT MachineType;

 WOW64_CONTEXT Context;

 char ContextEx[1024];

};

typedef ULONG *WOW64_LOG_ARGUMENTS;

struct _WOW64_SYSTEM_SERVICE

{

 unsigned __int32 SystemCallNumber : 12;

 unsigned __int32 ServiceTableIndex : 4;

 unsigned __int32 TurboThunkNumber : 5;

 unsigned __int32 AlwaysZero : 11;

};

#pragma pack(push, 1)

struct _WOW64_FLOATING_SAVE_AREA

{

 DWORD ControlWord;

 DWORD StatusWord;

 DWORD TagWord;

 DWORD ErrorOffset;

17/18

 DWORD ErrorSelector;

 DWORD DataOffset;

 DWORD DataSelector;

 BYTE RegisterArea[80];

 DWORD Cr0NpxState;

};

#pragma pack(pop)

#pragma pack(push, 1)

struct _WOW64_CONTEXT

{

 DWORD ContextFlags;

 DWORD Dr0;

 DWORD Dr1;

 DWORD Dr2;

 DWORD Dr3;

 DWORD Dr6;

 DWORD Dr7;

 WOW64_FLOATING_SAVE_AREA FloatSave;

 DWORD SegGs;

 DWORD SegFs;

 DWORD SegEs;

 DWORD SegDs;

 DWORD Edi;

 DWORD Esi;

 DWORD Ebx;

 DWORD Edx;

 DWORD Ecx;

 DWORD Eax;

 DWORD Ebp;

 DWORD Eip;

 DWORD SegCs;

 DWORD EFlags;

 DWORD Esp;

 DWORD SegSs;

 BYTE ExtendedRegistersUnk[160];

 M128A Xmm0;

 M128A Xmm1;

 M128A Xmm2;

 M128A Xmm3;

 M128A Xmm4;

 M128A Xmm5;

 M128A Xmm6;

18/18

 M128A Xmm7;

 M128A Xmm8;

 M128A Xmm9;

 M128A Xmm10;

 M128A Xmm11;

 M128A Xmm12;

 M128A Xmm13;

 M128A Xmm14;

 M128A Xmm15;

};

#pragma pack(pop)

