Vulpes: Obfuscating Memory Regions with Timers

B mez0.cc/posts/vulpes-obfuscating-memory-regions

Table of Contents

o Table of Contents
o Introduction
o (Cleaning up

o Sleeping with Timers
» The CORRECT region
= DLLMain Bugs

o Conclusion

Introduction

In this blog, I want to quickly document some bugs I squashed whilst playing with Ekko
(from 5pider). After looking into the technique, I figured it would be a cool addition to Vulpes
and that's what I did. However, the purpose of this blog is to discuss the issues I had with:

Reflective DLL Region Permissions

Reflective DLL Region Tracking for Ekko to protect
Threading in DLLMain

General Cleanup

in Maelstrom: Writing a C2 Implant, specifically, Safe Sleeping, we document the
background to this technique. Below is that excerpt:

On May 5th 2022, Austin Hudson posted a tweet with a blog: Studying “Next Generation
Malware” - NightHawk’s Attempt At Obfuscate and Sleep

This blog went through how Austin was able to identify a sample of Nighthawk which is a
proprietary C2 from a UK-based Cyber Security Consultancy, MDSec. In this post, Austin
discusses how the technique uses thread contexts and callbacks to flip the memory regions
permissions (which we will discuss further in later posts).

For clarity, the research efforts for this technique, on behalf of MDSec, was Peter Winter-Smith

and modexp.

I won't be detailing the technique, this blog is focusing on the aforementioned objective.

Cleaning_up

In the following screenshot, Vulpes can be seen hanging out in memory ina RX region:

1/8

https://mez0.cc/posts/vulpes-obfuscating-memory-regions/
https://github.com/Cracked5pider/Ekko
https://twitter.com/C5pider
https://pre.empt.dev/projects/vulpes/
https://pre.empt.dev/posts/maelstrom-the-implant/
https://pre.empt.dev/posts/maelstrom-the-implant/#Safe_Sleeping
https://twitter.com/ilove2pwn_
https://twitter.com/ilove2pwn_/status/1522259942337613825
https://suspicious.actor/2022/05/05/mdsec-nighthawk-study.html
https://www.mdsec.co.uk/nighthawk/
https://www.mdsec.co.uk/
https://www.mdsec.co.uk/
https://twitter.com/peterwintrsmith
https://twitter.com/modexpblog
https://pre.empt.dev/projects/vulpes/

v

- 0o X vulpes

General Statistics Performance Threads Token Modules Memory Envirorment Handles GPU Comment

[IHide free regions Strings... Refresh
Base address Type Sze Prot.. Use TotalWS Private WS Shareables Sn ™
0x7ffd47136000 Image: Commit 8k8 RW C\Windows\System32ypertd.di 8k8 sk8
0x7ffd47352000 Image: Commit 48 RW G
0x7ff47584000 Image: Commit 48 AW Cf
0x7ffd43035000 Image: Commit 4B RW G
0x7fid48098000 Image: Commit ke Rw ci 00000000 [l 2d 04 £9 4% 11 00 29 =4 54 01 00 0F Lf 40 00 41 S5 41 54 55 57 56 53 48 93 =c 26 49 69 cc 4d H...0....]....8 AURTUWVSH. . (I..M ~
R e P LI R e
Oxa2c000 Private: Commit 1268 RWG Y 0000060 83 =0 £0 43 0F bl b 46 35 o6 48 55 o0 75 € 4 8b 3 da 56 Oe 00 Sb 07 83 £2 02 OF 84 e£ 00 00 .
Orcfc000 Private: Commit 128 RWHG St 00000080 00 b9 Lf 00 00 00 8 =5 59 01 00 b& 01 00 00 Q0 48 83 c4 28 Sb S 5% 5d 41 5c 41 5d ¢3 0f 1f 00
0x1075000 Frivate: Commit 12k8 RWHG St 00000020 83 fa 01 OF 85 af 00 00 00 €5 42 8b 04 25 30 00 00 00 48 8b 1d £7 97 Oe 00 48 8b 70 08 31 £f 48
0x1279000 Private: Commit 12k RW4G SE 000000c0 8b 2d 4€ 75 11 00 b 18 0f L 84 00 00 00 00 00 48 39 c6 OF 84 b7 00 00 00 b3 =8 03 00 00 ££ d5
Ox17bc00 Private: Commit 12k RW4G S§ 000000=0 48 89 £8 £0 48 OF bl 33 48 85 c0 75 e3 31 ££ 48 8b 35 ca 97 Oc 00 Sb 06 83 £8 01 OF 84 ef 00
0x1955000 Private: Commit 12k RW4G st 00000100 00 &b 0¢ 55 cO OF 84 o5 0 00 00 Gb 0 83 £5 QL 0f 54 ba 00 00 00 85 £ OF 64 52 00 00 00 43
Denetzo prvae:Conri B RIS S Siran 01 % 01 0 00 50 35 G5 ch 20 % 5e 5% 4 41 5e 41 54 ca 0% 12 44 00 a0 8 01 00 00 30 45 5

o 5 83 c4 28 Sb Se c c 8 5 5

mm:m" private: Commit 1208 RWG S 0000160 25 Sh Se 5254 41 Sc 41 5d c3 66 0F 17 44 00 00 43 d 0d 85 e 11 00 =& &4 5d 01 00 ¢7 07 00
0x22f2000 Private: Commit RWHG S8 50000180 00 00 43 87 33 b5 01 00 00 00 % OL £f ££ ££ 80 bf 01 00 00 00 8 55 ££ £f £f 66 0F Lf 44 00
0x401000 Image: Commit C! 00000120 31 cO 43 87 03 e9 74 £f £f £f 66 Of 1f 44 00 00 43 Sb 15 69 97 Oe 00 4 97 0e 00 c7

| s | Private: Commit 000001c0 0L 00 00 00 e2 0L 00 e5 3d ££ 22 £ ¢ 50 42 Eb 15 28 7 0= 00 4 7 0e 00 5
7103752 1000 Image: Commit ™ Ci 00000led S8 01 00 c7 06 0000 €8 25 ££ £f ££ 66 90 b9 1f 00 00 00 e 76 55 0L 00 e% Oc £f £f £f
x7fd40e5 1000 Image: Commit 1208 RX Ci 00000200 41 56 41 55 41 54 56 53 48 53 ec 20 48 Sb 35 6d 96 De 00 49 89 cd 59 16 41 89 d4 4c 89 3 85 d2 AVAURTVSH..
o410 Image: Commit s32k8 RY] 00000220 75 Se Eb 05 0 0085 o0 74 35 o8 4% Sb 00 00 49 £ dF 51 A2 de £9 €9 B B2 62 01 00 49 £9 w 5.0
0x7ffd42e51000 Image: Commit ke Rx gy 09000240 9T 44 ST e fo g SR Al At 00 00T ST AR LI SR de S es L B P eI AR IS S0 TS

For people who are familiar with the original Reflective Loader, it allocates memory as RWX:

// allocate all the memory for the DLL to be loaded into. we can load at any address
because we will

// relocate the image. Also zeros all memory and marks it as READ, WRITE and EXECUTE
to avoid any problems.

uiBaseAddress = (ULONG_PTR)pVirtualAlloc(NULL, ((PIMAGE_NT_HEADERS)uiHeaderValue)-
>0ptionalHeader.SizeOfImage, MEM_RESERVE|MEM_COMMIT, PAGE_EXECUTE_READWRITE);

This is something that Paranoid Ninja demonstrates in PE Reflection: The King is Dead,
Long Live the King and in his course: Malware on Steroids. From the blog, the following code

is shown:

2/8

https://github.com/stephenfewer/ReflectiveDLLInjection/blob/178ba2a6a9feee0a9d9757dcaa65168ced588c12/dll/src/ReflectiveLoader.c#L271
https://twitter.com/NinjaParanoid
https://bruteratel.com/research/feature-update/2021/06/01/PE-Reflection-Long-Live-The-King/
https://0xdarkvortex.dev/training-programs/malware-on-steroids/

numberOfSections = ((PIMAGE_NT_HEADERS)pOldNtHeader)->FileHeader .NumberOfSections;
pSectionHeader = ((ULONG_PTR) & ((PIMAGE_NT_HEADERS)pOldNtHeader)->0OptionalHeader +
((PIMAGE_NT_HEADERS)pOldNtHeader)->FileHeader .SizeOfOptionalHeader);
while (numberOfSections--) {

void* thisSectionVA = (void*) (dllNewBaseAddress +
((PIMAGE_SECTION_HEADER)pSectionHeader)->VirtualAddress);

ULONG_PTR thisSectionVirtualSize = ((PIMAGE_SECTION_HEADER)pSectionHeader)-
>Misc.VirtualSize;

DWORD ulPermissions = 0;

if (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_WRITE) {
ulPermissions = PAGE_WRITECOPY;
}
if (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ) {
ulPermissions = PAGE_READONLY;
}
if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_WRITE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ)) {
ulPermissions = PAGE_READWRITE;
}
if (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) {
ulPermissions = PAGE_EXECUTE;
}
if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_WRITE)) {
ulPermissions = PAGE_EXECUTE_WRITECOPY;
}
if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ)) {
ulPermissions = PAGE_EXECUTE_READ;
}
if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_WRITE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ)) {
ulPermissions = PAGE_EXECUTE_READWRITE;

pVirtualProtect(thisSectionVA, thisSectionVirtualSize, ulPermissions,
&ulPermissions);

pSectionHeader += sizeof (IMAGE_SECTION_HEADER);

To quote the blog:

3/8

The below screenshot shows the newly rebased PE section which does not have any RWX
regions anymore, and the RX section only contains the executable code i.e. the .text section

since all other remaining sections are allocated to other regions now.

This allows the Reflective DLL's .text section to be converted to RX, and that is what the
screenshot earlier on was showing.

For the eagle-eyed, there was only one memory region. As this was demonstrated in Malware
on Steroids and I cannot find any reference online showing how to determine which region to
free. However, PE Reflection: The King is Dead, Long Live the King does show how to free it:

#include "badger.h"

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD dwReason, LPVOID lpReserved)
{

BOOL bReturnValue = TRUE;

switch (dwReason)

{
case DLL_PROCESS_ATTACH: {

struct DLL_SWEEPER *dllSweeper = (struct DLL_SWEEPER*)lpReserved;
CHAR* newlpParam = NULL;

task_crealloc(&newlpParam, (CHAR*)dllSweeper->1pParameter);
VirtualFree((LPVOID)d1l1lSweeper->1pParameter, 0, MEM_RELEASE);
VirtualFree((LPVOID)d1l1lSweeper->dllInitAddress, ©, MEM_RELEASE);

badger_main(newlpParam);
break;

b
case DLL_PROCESS_DETACH:

case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
break;

}
return bReturnValue;

}

This is not something I will be showing, though.

At this point, the Reflective DLL looks okay in memory. It has one region cleaned up and
freed, and then the other operating out of RX .

leeping with Timers

Again, we discussed Ekko in Maelstrom: Writing a C2 Implant:

4/8

https://0xdarkvortex.dev/training-programs/malware-on-steroids/
https://bruteratel.com/research/feature-update/2021/06/01/PE-Reflection-Long-Live-The-King/
https://github.com/Cracked5pider/Ekko/
https://pre.empt.dev/posts/maelstrom-the-implant/

Once the proof-of-concept was made public by Austin, C5pider then built it out into an open-
source tool called Ekko. However, this proof-of-concept uses the base address of the entire
image as the region to protect, this only works when the malware is the entire EXE on disk, or
loaded as a proper DLL. This can be seen on line 36:

ImageBase = GetModuleHandleA(NULL);

In the event that malware wants to load in the implant entirely through memory, so something

like a Reflective DLL, this technique will not work as the GetModuleHandleA call will get

the base address of the image the DLL is being loaded into. For example, say the DLL is being

reflectively loaded into calc.exe ,thenthe GetModuleHandleA will be the base of
calc.exe .

For this to work with a proper Reflective DLL, the code needs to be changed slightly. The
easiest way to redefine the function is as such:

VOID EkkoObf(DWORD SleepTime, DWORD64 ImageBase, DWORD ImageSize);
Whilst also removing the call to GetModuleHandleA :
ImageBase GetModuleHandleA(NULL);

ImageSize ((PIMAGE_NT_HEADERS) (ImageBase + ((PIMAGE_DOS_HEADER) ImageBase
)->e_1fanew))->OptionalHeader.SizeOfImage;

The CORRECT region

The next thing is to figure out which region. Well, the region we have is the RX one. I spent
some time debugging and Paranoid Ninja pointed out that it should be the rebased .text
section, which is obvious in hindsight:

if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ)) {

ulPermissions = PAGE_EXECUTE_READ;

}
So, in my Reflective Loader:

if (dwPermissions == PAGE_EXECUTE_READ)
{

Caller.Region = lpCurrentSection;
Caller.Size = dwCurrentSection;

}

Where caller is:

5/8

https://twitter.com/C5pider
https://github.com/Cracked5pider/Ekko
https://github.com/Cracked5pider/Ekko/blob/9db598259ddcdc254d964b067ac141346ce7bb22/Src/Ekko.c#L36
https://twitter.com/NinjaParanoid

struct CALLER

{
LPVOID Region;
DWORD Size;
LPVOID Release;
}i

The struct is then passed to DLLMain as seen in PE Reflection: The King is Dead, Long Live
the King:

((DLLMAIN)uivalueA)

(
(HINSTANCE)uiBaseAddress,

DLL_PROCESS_ATTACH,
&Caller

)
Where DLLMain is:

BOOL WINAPI Dl11lMain(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpReserved)

{
CALLER* Caller = { 0 };

switch (fdwReason) {
case DLL_PROCESS_ATTACH:
if (1lpReserved != nullptr)

{
Caller = (CALLER*)lpReserved;
VirtualFree(Caller->Release, 0, MEM_RELEASE);
StartVulpes(Caller->Region, Caller->Size);
break;
}
break;
case DLL_THREAD_ATTACH:
break;
case DLL_THREAD_DETACH:
break;
case DLL_PROCESS_DETACH:
break;

}
return TRUE;

At this point, I had the correct region. But this then led to a few days of debugging.

DLLMain Bugs

For the longest time, my DLLMain had created a thread on DLL PROCESS ATTACH :

6/8

https://bruteratel.com/research/feature-update/2021/06/01/PE-Reflection-Long-Live-The-King/

NtCreateThreadEx(&hThread, GENERIC_EXECUTE, NULL, (HANDLE)(HANDLE)-1, StartVulpes,
nullptr, FALSE, 0, 0, 0, nullptr);

But this only caused issued because:

1. The Reflective Loader creates a thread pointing to the export function

2. The export function does some stuff and then calls DLLMain . So, that call will remain
in the context of the thread from the Loader.

3. DLLMain is called and a subsequent thread is created pointing to the implants core
function, then it breaks.

4. The DLLMain returns and the NtwWaitForSingleObject call returns, and the
implant exits with ERROR_SUCCESS .

| TL;DR: DLLMain shouldn't create a thread because the loader will do the thread creation.

Also, don't be like me and use a Parent Process Id spoof in the loader which injects into a
suspended process because the process hasn't finished setting up. This left the thread created
by the loader with a base address of 0x0 , crashing within Ekko .

By simply removing the thread creation in DLLmain , and just calling the function, the
timers work:
” Payloads Listeners Commands ‘Web Logs O Settings v ? v

Implant Id Listener Operating System ~ Hostname Address Username Integrity ProcessName Processld Architecture Last Seen

e fesregens St

Sie Prot.. Use Total WS PrivateWS Shareable WS Sh A

Base address
Ox1ce8000
0x2102000

0x2302000
02506000
0x401000

Conclusion

Allin all, this took a few days of my life. The Timers technique is a interesting and is a cool

way to hide malicious memory regions. With that said, Patriot is a tool put together by Joe

Desimone to detect this method by searching memory for timers which point to
NtContinue !

Thanks to:

Peter Winter-Smith and modexp: Original authors of the technique

Austin Hudson: For identifying a sample and Reverse Engineering the technique ¢ ¢
spider: For proof-of-concepting the research

Paranoid Ninja: For helping me understand Reflective DLLs properly and debugging
the memory region setup

7/8

https://github.com/joe-desimone/patriot
https://mobile.twitter.com/dez_
https://twitter.com/peterwintrsmith
https://twitter.com/modexpblog
https://twitter.com/ilove2pwn_
https://twitter.com/C5pider
https://twitter.com/NinjaParanoid

8/8

