
1/8

Vulpes: Obfuscating Memory Regions with Timers
mez0.cc/posts/vulpes-obfuscating-memory-regions

Table of Contents

Table of Contents

Introduction

Cleaning up

Sleeping with Timers

The CORRECT region

DLLMain Bugs

Conclusion

Introduction

In this blog, I want to quickly document some bugs I squashed whilst playing with Ekko

(from 5pider). After looking into the technique, I figured it would be a cool addition to Vulpes

and that's what I did. However, the purpose of this blog is to discuss the issues I had with:

Reflective DLL Region Permissions

Reflective DLL Region Tracking for Ekko to protect

Threading in DLLMain

General Cleanup

in Maelstrom: Writing a C2 Implant, specifically, Safe Sleeping, we document the

background to this technique. Below is that excerpt:

On May 5th 2022, Austin Hudson posted a tweet with a blog: Studying “Next Generation
Malware” - NightHawk’s Attempt At Obfuscate and Sleep

This blog went through how Austin was able to identify a sample of Nighthawk which is a
proprietary C2 from a UK-based Cyber Security Consultancy, MDSec. In this post, Austin
discusses how the technique uses thread contexts and callbacks to flip the memory regions
permissions (which we will discuss further in later posts).

For clarity, the research efforts for this technique, on behalf of MDSec, was Peter Winter-Smith
and modexp.

I won't be detailing the technique, this blog is focusing on the aforementioned objective.

Cleaning up

In the following screenshot, Vulpes can be seen hanging out in memory in a RX region:

https://mez0.cc/posts/vulpes-obfuscating-memory-regions/
https://github.com/Cracked5pider/Ekko
https://twitter.com/C5pider
https://pre.empt.dev/projects/vulpes/
https://pre.empt.dev/posts/maelstrom-the-implant/
https://pre.empt.dev/posts/maelstrom-the-implant/#Safe_Sleeping
https://twitter.com/ilove2pwn_
https://twitter.com/ilove2pwn_/status/1522259942337613825
https://suspicious.actor/2022/05/05/mdsec-nighthawk-study.html
https://www.mdsec.co.uk/nighthawk/
https://www.mdsec.co.uk/
https://www.mdsec.co.uk/
https://twitter.com/peterwintrsmith
https://twitter.com/modexpblog
https://pre.empt.dev/projects/vulpes/

2/8

For people who are familiar with the original Reflective Loader, it allocates memory as RWX:

// allocate all the memory for the DLL to be loaded into. we can load at any address
because we will

// relocate the image. Also zeros all memory and marks it as READ, WRITE and EXECUTE
to avoid any problems.

uiBaseAddress = (ULONG_PTR)pVirtualAlloc(NULL, ((PIMAGE_NT_HEADERS)uiHeaderValue)-
>OptionalHeader.SizeOfImage, MEM_RESERVE|MEM_COMMIT, PAGE_EXECUTE_READWRITE);

This is something that Paranoid Ninja demonstrates in PE Reflection: The King is Dead,

Long Live the King and in his course: Malware on Steroids. From the blog, the following code

is shown:

https://github.com/stephenfewer/ReflectiveDLLInjection/blob/178ba2a6a9feee0a9d9757dcaa65168ced588c12/dll/src/ReflectiveLoader.c#L271
https://twitter.com/NinjaParanoid
https://bruteratel.com/research/feature-update/2021/06/01/PE-Reflection-Long-Live-The-King/
https://0xdarkvortex.dev/training-programs/malware-on-steroids/

3/8

numberOfSections = ((PIMAGE_NT_HEADERS)pOldNtHeader)->FileHeader.NumberOfSections;

pSectionHeader = ((ULONG_PTR) & ((PIMAGE_NT_HEADERS)pOldNtHeader)->OptionalHeader +
((PIMAGE_NT_HEADERS)pOldNtHeader)->FileHeader.SizeOfOptionalHeader);

while (numberOfSections--) {

 void* thisSectionVA = (void*) (dllNewBaseAddress +
((PIMAGE_SECTION_HEADER)pSectionHeader)->VirtualAddress);

 ULONG_PTR thisSectionVirtualSize = ((PIMAGE_SECTION_HEADER)pSectionHeader)-
>Misc.VirtualSize;

 DWORD ulPermissions = 0;

 if (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_WRITE) {

 ulPermissions = PAGE_WRITECOPY;

 }

 if (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ) {

 ulPermissions = PAGE_READONLY;

 }

 if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_WRITE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ)) {

 ulPermissions = PAGE_READWRITE;

 }

 if (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) {

 ulPermissions = PAGE_EXECUTE;

 }

 if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_WRITE)) {

 ulPermissions = PAGE_EXECUTE_WRITECOPY;

 }

 if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ)) {

 ulPermissions = PAGE_EXECUTE_READ;

 }

 if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_WRITE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ)) {

 ulPermissions = PAGE_EXECUTE_READWRITE;

 }

 pVirtualProtect(thisSectionVA, thisSectionVirtualSize, ulPermissions,
&ulPermissions);

 pSectionHeader += sizeof(IMAGE_SECTION_HEADER);

}

To quote the blog:

4/8

The below screenshot shows the newly rebased PE section which does not have any RWX
regions anymore, and the RX section only contains the executable code i.e. the .text section
since all other remaining sections are allocated to other regions now.

This allows the Reflective DLL's .text section to be converted to RX, and that is what the

screenshot earlier on was showing.

For the eagle-eyed, there was only one memory region. As this was demonstrated in Malware

on Steroids and I cannot find any reference online showing how to determine which region to

free. However, PE Reflection: The King is Dead, Long Live the King does show how to free it:

#include "badger.h"

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD dwReason, LPVOID lpReserved)

{

 BOOL bReturnValue = TRUE;

 switch (dwReason)

 {

 case DLL_PROCESS_ATTACH: {
 struct DLL_SWEEPER *dllSweeper = (struct DLL_SWEEPER*)lpReserved;

 CHAR* newlpParam = NULL;

 task_crealloc(&newlpParam, (CHAR*)dllSweeper->lpParameter);

 VirtualFree((LPVOID)dllSweeper->lpParameter, 0, MEM_RELEASE);

 VirtualFree((LPVOID)dllSweeper->dllInitAddress, 0, MEM_RELEASE);

 badger_main(newlpParam);

 break;

 }

 case DLL_PROCESS_DETACH:

 case DLL_THREAD_ATTACH:

 case DLL_THREAD_DETACH:

 break;

 }

 return bReturnValue;

}

This is not something I will be showing, though.

At this point, the Reflective DLL looks okay in memory. It has one region cleaned up and

freed, and then the other operating out of RX .

Sleeping with Timers

Again, we discussed Ekko in Maelstrom: Writing a C2 Implant:

https://0xdarkvortex.dev/training-programs/malware-on-steroids/
https://bruteratel.com/research/feature-update/2021/06/01/PE-Reflection-Long-Live-The-King/
https://github.com/Cracked5pider/Ekko/
https://pre.empt.dev/posts/maelstrom-the-implant/

5/8

Once the proof-of-concept was made public by Austin, C5pider then built it out into an open-
source tool called Ekko. However, this proof-of-concept uses the base address of the entire
image as the region to protect, this only works when the malware is the entire EXE on disk, or
loaded as a proper DLL. This can be seen on line 36:

ImageBase = GetModuleHandleA(NULL);

In the event that malware wants to load in the implant entirely through memory, so something
like a Reflective DLL, this technique will not work as the GetModuleHandleA call will get
the base address of the image the DLL is being loaded into. For example, say the DLL is being
reflectively loaded into calc.exe , then the GetModuleHandleA will be the base of
calc.exe .

For this to work with a proper Reflective DLL, the code needs to be changed slightly. The

easiest way to redefine the function is as such:

VOID EkkoObf(DWORD SleepTime, DWORD64 ImageBase, DWORD ImageSize);

Whilst also removing the call to GetModuleHandleA :

ImageBase = GetModuleHandleA(NULL);

ImageSize = ((PIMAGE_NT_HEADERS) (ImageBase + ((PIMAGE_DOS_HEADER) ImageBase
)->e_lfanew))->OptionalHeader.SizeOfImage;

The CORRECT region

The next thing is to figure out which region. Well, the region we have is the RX one. I spent

some time debugging and Paranoid Ninja pointed out that it should be the rebased .text

section, which is obvious in hindsight:

if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ)) {

 ulPermissions = PAGE_EXECUTE_READ;

}

So, in my Reflective Loader:

if (dwPermissions == PAGE_EXECUTE_READ)

{

 Caller.Region = lpCurrentSection;

 Caller.Size = dwCurrentSection;

}

Where Caller is:

https://twitter.com/C5pider
https://github.com/Cracked5pider/Ekko
https://github.com/Cracked5pider/Ekko/blob/9db598259ddcdc254d964b067ac141346ce7bb22/Src/Ekko.c#L36
https://twitter.com/NinjaParanoid

6/8

struct CALLER

{

 LPVOID Region;

 DWORD Size;

 LPVOID Release;

};

The struct is then passed to DLLMain as seen in PE Reflection: The King is Dead, Long Live

the King:

((DLLMAIN)uiValueA)

(

 (HINSTANCE)uiBaseAddress,

 DLL_PROCESS_ATTACH,

 &Caller

);

Where DLLMain is:

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpReserved)

{

 CALLER* Caller = { 0 };

 switch (fdwReason) {

 case DLL_PROCESS_ATTACH:

 if (lpReserved != nullptr)

 {

 Caller = (CALLER*)lpReserved;

 VirtualFree(Caller->Release, 0, MEM_RELEASE);

 StartVulpes(Caller->Region, Caller->Size);

 break;

 }

 break;

 case DLL_THREAD_ATTACH:

 break;

 case DLL_THREAD_DETACH:

 break;

 case DLL_PROCESS_DETACH:

 break;

 }

 return TRUE;

}

At this point, I had the correct region. But this then led to a few days of debugging.

DLLMain Bugs

For the longest time, my DLLMain had created a thread on DLL_PROCESS_ATTACH :

https://bruteratel.com/research/feature-update/2021/06/01/PE-Reflection-Long-Live-The-King/

7/8

NtCreateThreadEx(&hThread, GENERIC_EXECUTE, NULL, (HANDLE)(HANDLE)-1, StartVulpes,
nullptr, FALSE, 0, 0, 0, nullptr);

But this only caused issued because:

1. The Reflective Loader creates a thread pointing to the export function

2. The export function does some stuff and then calls DLLMain . So, that call will remain

in the context of the thread from the Loader.

3. DLLMain is called and a subsequent thread is created pointing to the implants core

function, then it breaks.

4. The DLLMain returns and the NtWaitForSingleObject call returns, and the

implant exits with ERROR_SUCCESS .

TL;DR: DLLMain shouldn't create a thread because the loader will do the thread creation.

Also, don't be like me and use a Parent Process Id spoof in the loader which injects into a

suspended process because the process hasn't finished setting up. This left the thread created

by the loader with a base address of 0x0 , crashing within Ekko .

By simply removing the thread creation in DLLmain , and just calling the function, the

timers work:

Conclusion

All in all, this took a few days of my life. The Timers technique is a interesting and is a cool

way to hide malicious memory regions. With that said, Patriot is a tool put together by Joe

Desimone to detect this method by searching memory for timers which point to

NtContinue !

Thanks to:

Peter Winter-Smith and modexp: Original authors of the technique

Austin Hudson: For identifying a sample and Reverse Engineering the technique 👀
5pider: For proof-of-concepting the research

Paranoid Ninja: For helping me understand Reflective DLLs properly and debugging

the memory region setup

https://github.com/joe-desimone/patriot
https://mobile.twitter.com/dez_
https://twitter.com/peterwintrsmith
https://twitter.com/modexpblog
https://twitter.com/ilove2pwn_
https://twitter.com/C5pider
https://twitter.com/NinjaParanoid

8/8

