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In 2018, James Forshaw published an article in which he briefly mentioned a trick that could

be used to inject arbitrary code into a PPL as an administrator. However, I feel like this post

did not get the attention it deserved as it literally described a potential Userland exploit for

bypassing PPL (which includes LSA Protection).

Introduction

I was doing some research on Protected Processes when I stumbled upon the following blog

post: Windows Exploitation Tricks: Exploiting Arbitrary Object Directory Creation for Local

Elevation of Privilege. This post was written by James Forshaw on Project Zero’s blog in

August 2018. As the title implies, the objective was to discuss a particular privilege escalation

trick, not a PPL bypass. However, the following sentence immediately caught my eye:

Abusing the DefineDosDevice API actually has a second use, it’s an Administrator to
Protected Process Light (PPL) bypass.

As far as I know, all the public tools for bypassing PPL that have been released so far involve

the use of a driver in order to execute arbitrary code in the Kernel (with the exception of

pypykatz as I mentioned in my previous post). In his blog post though, James Forshaw

casually gave us a Userland bypass trick on a plate, and it seems it went quite unnoticed by

the pentesting community.

The objective of this post is to discuss this technique in more details. I will first recap some

key concepts behind PPL processes, and I will also explain one of the major differences

between a PP (Protected Process) and a PPL (Protected Process Light). Then, we will see how

this slight difference can be exploited as an administrator. Finally, I will introduce the tool I

developed to leverage this vulnerability and dump the memory of any PPL without using any

Kernel code.

Background

I already laid down all the core principles behind PP(L)s on my personal blog here: Do You

Really Know About LSA Protection (RunAsPPL)?. So, I would suggest reading this post first

but here is a TL;DR.

PP(L) Concepts – TL;DR

https://blog.scrt.ch/2021/04/22/bypassing-lsa-protection-in-userland/
https://googleprojectzero.blogspot.com/2018/08/windows-exploitation-tricks-exploiting.html
https://itm4n.github.io/lsass-runasppl/
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When the PP model was first introduced with Windows Vista, a process was either protected

or unprotected. Then, beginning with Windows 8.1, the PPL model extended this concept and

introduced protection levels. The immediate consequence is that some PP(L)s can now be

more protected than others. The most basic rule is that an unprotected process can open a

protected process only with a very restricted set of access flags such as

PROCESS_QUERY_LIMITED_INFORMATION . If they request a higher level of access, the system

will return an Access is Denied  error.

For PP(L)s, it’s a bit more complicated. The level of access they can request depends on their

own level of protection. This protection level is partly determined by a special EKU field in

the file’s digital certificate. When a protected process is created, the protection information is

stored in a special value in the EPROCESS  Kernel structure. This value stores the protection

level (PP or PPL) and the signer type (e.g.: Antimalware, Lsa, WinTcb, etc.). The signer

type establishes a sort of hierarchy between PP(L)s. Here are the basic rules that apply to

PP(L)s:

A PP can open a PP or a PPL with full access if its signer type is greater or equal.

A PPL can open a PPL with full access if its signer type is greater or equal.

A PPL cannot open a PP with full access, regardless of its signer type.

For example, when LSA Protection is enabled, lsass.exe  is executed as a PPL, and you will

observe the following protection level with Process Explorer: PsProtectedSignerLsa-

Light . If you want to access its memory you will need to call OpenProcess  and specify the

PROCESS_VM_READ  access flag. If the calling process is not protected, this call will

immediately fail with an Access is Denied  error, regardless of the user’s privileges.

However, if the calling process were a PPL with a higher level ( WinTcb  for instance), the

same call would succeed (as long as the user has the appropriate privileges obviously). As you

will have understood, if we are able to create such a process and execute arbitrary code inside

it, we will be able to access LSASS even if LSA Protection is enabled. The question is: can we

achieve this goal without using any Kernel code?

PP vs PPL

The PP(L) model effectively prevents an unprotected process from accessing protected

processes with extended access rights using OpenProcess  for example. This prevents

simple memory access, but there is another aspect of this protection I did not mention. It also

prevents unsigned DLLs from being loaded by these processes. This makes sense, otherwise

the overall security model would be pointless as you could just use any form of DLL hijacking

and inject arbitrary code into your own PPL process. This also explains why a particular

attention should be paid to third-party authentication modules when enabling LSA

Protection.

https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer
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There is one exception to this rule though! And this is probably where the biggest difference

between a PP and a PPL lies. If you know about the DLL search order on Windows, you know

that, when a process is created, it first goes through the list of “Known DLLs”, then it

continues with the application’s directory, the System directories and so on… In this search

order, the “Known DLLs” step is a special one and is usually taken out of the equation for

DLL hijacking exploits because a user has no control over it. Though, in our case, this step is

precisely the “Achille’s heel” of PPL processes.

The “Known DLLs” are the DLLs that are most commonly loaded by Windows applications.

Therefore, to increase the overall performance, they are preloaded in memory (i.e. they are

cached). If you want to see the complete list of “Known DLLs”, you can use WinObj and take

a look a the content of the \KnownDlls  directory within the object manager.

WinObj – Known DLLs

Since these DLLs are already in memory, you should not see them if you use Process Monitor

to check the file operations of a typical Windows application. Things are a bit different when

it comes to Protected Processes though. I will take SgrmBroker.exe  as an example here.

https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
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Known DLLs loaded by a Protected Process

As we can see in Process Explorer, SgrmBroker.exe  was started as a Protected Process

(PP). When the process starts, the very first DLLs that are loaded are kernel32.dll  and

KernelBase.dll , which are both… …”Known DLLs”. Yes, in the case of a PP, even the

“Known DLLs” are loaded from the disk, which implies that the digital signature of each file

is always verified. However, if you do the same test with a PPL, you will not see these DLLs in

Process Monitor as they behave like normal processes in this case.

This fact is particularly interesting because the digital signature of a DLL is only verified

when the file is mapped, i.e. when a Section is created. This means that, if you are able to add

an arbitrary entry to the \KnownDlls  directory, you can then inject an arbitrary DLL and

execute unsigned code in a PPL.

Adding an entry to \KnownDlls  is easier said than done though because Microsoft already

considered this attack vector. As explained by James Forshaw in his blog post, the

\KnownDlls  object directory is marked with a special Process Trust Label as you can see on

the screenshot below.

https://www.google.com/search?client=firefox-b-d&q=Process+Explorer
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
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KnownDlls directory Process Trust Label

As you may imagine, based on the name of the label, only protected processes that have a

level higher than or equal to WinTcb  – which is actually the highest level for PPLs – can

request write access to this directory. But all is not lost as this is exactly where the clever trick

found by JF comes into play.

MS-DOS Device Names

As mentioned in the introduction, the technique found by James Forshaw relies on the use of

the API function DefineDosDevice , and involves some Windows internals that are not easy

to grasp. Therefore, I will first recap some of these concepts here before dealing with the

method itself.

DefineDosDevice?

Here is the prototype of the DefineDosDevice  function:

BOOL DefineDosDeviceW( 
 DWORD   dwFlags, 
 LPCWSTR lpDeviceName, 
 LPCWSTR lpTargetPath 
);

As suggested by its name, the purpose of the DefineDosDevice  is to literally define MS-

DOS device names. An MS-DOS device name is a symbolic link in the object manager with a

name of the form \DosDevices\DEVICE_NAME  (e.g.: \DosDevices\C: ) as explained in the

documentation. So, this function allows you to map an actual “Device” to a “DOS Device”.

This is exactly what happens when you plug in an external drive or a USB key for example.

The device is automatically assigned a drive letter, such as E: . You can get the

corresponding mapping by invoking QueryDosDevice .

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-definedosdevicew
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/introduction-to-ms-dos-device-names
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WCHAR path[MAX_PATH + 1]; 

if (QueryDosDevice(argv[1], path, MAX_PATH)) { 
   wprintf(L"%ws -> %ws\n", argv[1], path); 
}

Querying an MS-DOS device’s mapping

In the above example, the target device is \Device\HarddiskVolume5  and the MS-DOS

device name is E: . But wait a minute, I said that an MS-DOS device name was of the form

\DosDevices\DEVICE_NAME . So, this cannot be just a drive letter. No worries, there is an

explanation. For both DefineDosDevice  and QueryDosDevice , the \DosDevices\  part

is implicit. These functions automatically prepend the “device name” with \??\ . So, if you

provide E:  as the device name, they will use the NT path \??\E:  internally. Even then,

you will tell me that \??\  is still not \DosDevices\ , and this would be a valid point. Once

again, WinObj will help us solve this “mystery”. In the root directory of the object manager,

we can see that \DosDevices  is just a symbolic link that points to \?? . As a result,

\DosDevices\E: -> \??\E: , so we can consider them as the same thing. This symbolic

link actually exists for legacy reasons because, in older versions of Windows, there was only

one DOS device directory.

WinObj – DosDevices symbolic link

https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
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Local DOS Device Directories

The path prefix \??\  itself has a very special meaning. It represents the local DOS device

directory of a user and therefore refers to different locations in the object manager,

depending on the current user’s context. Concretely, \??  refers to the full path

\Sessions\0\DosDevices\00000000-XXXXXXXX , where XXXXXXXX  is the user’s logon

authentication ID. There is one exception though, for NT AUTHORITY\SYSTEM , \??  refers

to \GLOBAL?? . This concept is very important so I will take two examples to illustrate it. The

first one will be the USB key I used previously and the second one will be an SMB share I

manually mount through the Explorer.

In the case of the USB key, we already saw that \??\E:  was a symbolic link to

\Device\HarddiskVolume5 . As it was mounted by SYSTEM , this link should exist within

\GLOBAL??\ . Let’s verify that with WinObj.

WinObj – \GLOBAL??\E: symbolic link

Everything is fine! Now, let’s map an “SMB share” to a drive letter and see what happens.

Mapping a Network Drive
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This time, the drive is mounted as the logged-on user, so \??  should refer to

\Sessions\0\DosDevices\00000000-XXXXXXXX , but what is the value of XXXXXXXX ? To

find it, I will use Process Hacker and check the advanced properties of my explorer.exe

process’ primary access token.

Process Hacker – Explorer’s token advanced properties

The authentication ID is 0x1abce  so the symbolic link should have been created inside

\Sessions\0\DosDevices\00000000-0001abce . Once again, let’s verify that with WinObj.

WinObj – SMB share symbolic link

There it is! The symbolic link was indeed created in this directory.

Why DefineDosDevice?

As we saw in the previous part, the device mapping operation consists of a simple symbolic

link creation in the caller’s DOS device directory. Any user can do that as it affects only their

session. But there is a problem, because low-privileged users can only create “Temporary”

https://processhacker.sourceforge.io/
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
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kernel objects, which are removed once all their handles have been closed. To solve this

problem, the object must be marked as “Permanent“, but this requires a particular privilege

( SeCreatePermanentPrivilege ) which they do not have. So, this operation must be

performed by a privileged service that has this capability.

The symbolic link is marked as “Permanent”

As outlined by JF in his blog post, DefineDosDevice  is just a wrapper for an RPC method

call. This method is exposed by the CSRSS service and is implemented in

BaseSrvDefineDosDevice  inside BASESRV.DLL. What is special about this service is that

it runs as a PPL with the protection level WinTcb .

CSRSS service runing as a PPL (WinTcb)

Although this is a requirement for our exploit, it is not the most interesting fact about

DefineDosDevice . What is even more interesting is that the value of lpDeviceName  is

not sanitized. This means that you are not bound to provide a drive letter such as E: . We

will see how we can leverage this to trick the CSRSS service into creating an arbitrary

symbolic link in an arbitrary location such as \KnownDlls .

Exploiting DefineDosDevice

In this part, we will take a deep dive into the DefineDosDevice  function. We will see what

kind of weakness lies inside it and how we can exploit it to reach our goal.

The Inner Workings of DefineDosDevice
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In his article, JF did all the heavy lifting as he reversed the BaseSrvDefineDosDevice

function and provided us with the corresponding pseudo-code. You can check it out here. If

you do so, you should note that there is slight mistake at step 4 though, it should be

CsrImpersonateClient() , not CsrRevertToSelf() . Anyway, rather than copy-pasting

his code, I will try to provide a high-level overview using a diagram instead.

Overview of BaseSrvDefineDosDevice

In this flowchart, I highlighted some elements with different colors. The impersonation

functions are in orange and the symbolic link creation steps are in blue. Finally, I

highlighted the critical path we need to take in red.

https://googleprojectzero.blogspot.com/2018/08/windows-exploitation-tricks-exploiting.html
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First, we can see that the CSRSS service tries to open \??\DEVICE_NAME  while

impersonating the caller (i.e. the RPC client). The main objective is to delete the symbolic

link first if it already existed. But there is more to it, the service will also check whether the

symbolic link is “global”. For that purpose, an internal function, which is not represented

here, simply checks whether the “real” path of the object starts with \GLOBAL??\ . If so,

impersonation is disabled for the rest of the execution and the service will not

impersonate the client prior to the NtCreateSymbolicLinkObject()  call, which means

that the symbolic link will be created by the CSRSS service itself. Finally, if this operation

succeeds, the service marks the object as “Permanent” as I mentioned earlier.

A Vulnerability?

At this point you may have realized that there is a sort of TOCTOU (Time-of-Check Time-of-

Use) vulnerability. The path used to open the symbolic link and the path used to create it

are the same: \??\DEVICE_NAME . However, the “open” operation is always done while

impersonating the user whereas the “create” operation might be done directly as SYSTEM  if

impersonation is disabled. And, if you remember what I explained earlier, you know that

\??  represents a user’s local dos device directory and therefore resolves to different paths

depending on the user’s identity. So, although the same path is used in both cases, it may well

refer to completely different locations in reality!

In order to exploit this behavior, we must solve the following challenge: we need to find a

“device name” that resolves to a “global object” we control when the service impersonates the

client. And this same “device name” must resolve to \KnownDlls\FOO.dll  when

impersonation is disabled. This sounds a bit tricky, but we will go through it step by step.

Let’s begin with the easiest part first. We need to determine a value for DEVICE_NAME  in

\??\DEVICE_NAME  such that this path resolves to \KnownDlls\FOO.dll  when the caller is

SYSTEM . We also know that \??  resolves to \GLOBAL??  in this case.

If you check the content of the \GLOBAL??\  directory, you will see that there is a very

convenient object inside it.

WinObj – The “real” GLOBALROOT
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In this directory, the GLOBALROOT  object is a symbolic link that points to an empty path.

This means that a path such as \??\GLOBALROOT\  would translate to just \ , which is the

root of the object manager (hence the name “global root”). If we apply this principle to our

“device name”, we know that \??\GLOBALROOT\KnownDlls\FOO.DLL  would resolve to

\KnownDlls\FOO.dll  when the caller is SYSTEM . This is one part of the problem solved!

Now, we know that we should supply GLOBALROOT\KnownDlls\FOO.DLL  as the “device

name” for the DefineDosDevice  function call (remember that \??\  will be automatically

prepended to this value). If we want the CSRSS service to disable impersonation, we also

know that the symbolic link object must be considered as “global” so its path must start with

\GLOBAL??\ . So, the question is: how do you transform a path such as \??

\GLOBALROOT\KnownDlls\FOO.DLL  into \GLOBAL??\KnownDlls\FOO.dll ? The solution is

actually quite straightforward as this is pretty much the very definition of a symbolic link!

When the service impersonates the user, we know that \??  refers to the local DOS device

directory of this particular user, so all you have to do is create a symbolic link such that \??

\GLOBALROOT  points to \GLOBAL?? , and that’s it.

To summarize, when the path is opened by a user other than SYSTEM :

\??\GLOBALROOT\KnownDlls\FOO.dll 
-> \Sessions\0\DosDevices\00000000-XXXXXXXX\GLOBALROOT\KnownDlls\FOO.dll 

\Sessions\0\DosDevices\00000000-XXXXXXXX\GLOBALROOT\KnownDlls\FOO.dll 
-> \GLOBAL??\KnownDlls\FOO.dll

On the other hand, if the same path is opened by SYSTEM :

\??\GLOBALROOT\KnownDlls\FOO.dll 
-> \GLOBAL??\GLOBALROOT\KnownDlls\FOO.dll 

\GLOBAL??\GLOBALROOT\KnownDlls\FOO.dll 
-> \KnownDlls\FOO.dll

There is one last thing that needs to be taken care of. Before checking whether the object is

“global” or not, it must first exist, otherwise the initial “open” operation would just fail. So,

we need to make sure that \GLOBAL??\KnownDlls\FOO.dll  is an existing symbolic link

object prior to calling DefineDosDevice .
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WinObj – Permissions of \GLOBAL??

There is a slight issue here. Administrators cannot create objects or even directories within

\GLOBAL?? . This is not really a problem; this just adds an extra step to our exploit as we will

have to temporarily elevate to SYSTEM  first. As SYSTEM , we will be able to first create a

fake KnownDlls  directory inside \GLOBAL??\  and then create a dummy symbolic link

object inside it with the name of the DLL we want to hijack.

The Full Exploit

There is a lot of information to digest so, here is a short recap of the exploit steps before we

discuss the last considerations. In this list, we assume we are executing the exploit as an

administrator.

1. Elevate to SYSTEM , otherwise we will not be able to create objects inside \GLOBAL?? .

2. Create the object directory \GLOBAL??\KnownDlls  to mimic the actual \KnownDlls

directory.

3. Create the symbolic link \GLOBAL??\KnownDlls\FOO.dll , where FOO.dll  is the

name of the DLL we want to hijack. Remember that what matters is the name of the

link itself, not its target.

4. Drop the SYSTEM  privileges and revert to our administrator user context.

5. Create a symbolic link in the current user’s DOS device directory called GLOBALROOT

and pointing to \GLOBAL?? . This step must not be done as SYSTEM  because we want

to create a fake GLOBALROOT  link inside our own DOS directory.

6. This is the centerpiece of this exploit. Call DefineDosDevice  with the value

GLOBALROOT\KnownDlls\FOO.dll  as the device name. The target path of this device

is the location of the DLL but I will get to that in the next part.
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Here is what happens inside the CSRSS service at the final step. It first receives the value

GLOBALROOT\KnownDlls\FOO.dll  and prepends it with \??\  so this yields the device

name \??\GLOBALROOT\KnownDlls\FOO.dll . Then, it tries to open the corresponding

symbolic link object while impersonating the client.

\??\GLOBALROOT\KnownDlls\FOO.dll 
-> \Sessions\0\DosDevices\00000000-XXXXXXXX\GLOBALROOT\KnownDlls\FOO.dll 
-> \GLOBAL??\KnownDlls\FOO.dll

Since the object exists, it will check if it’s global. As you can see, the “real” path of the object

starts with \GLOBAL??\  so it’s indeed considered global, and impersonation is disabled

for the rest of the execution. The current link is deleted and a new one is created, but this

time, the RPC client is not impersonated, so the operation is done in the context of the

CSRSS service itself as SYSTEM :

\??\GLOBALROOT\KnownDlls\FOO.dll 
-> \GLOBAL??\GLOBALROOT\KnownDlls\FOO.dll 
-> \KnownDlls\FOO.dll

Here we go! The service creates the symbolic link \KnownDlls\FOO.dll  with a target path

we control.

DLL Hijacking through Known DLLs

Now that we know how to add an arbitrary entry to the \KnownDlls  directory, we should

come back to our original problem, and our exploit constraints.

Which DLL to Hijack?

We want to execute arbitrary code inside a PPL, and ideally with the signer type “WinTcb”.

So, we need to find a suitable executable candidate first. On Windows 10, four built-in

binaries can be executed with such a level of protection as far as I know: wininit.exe ,

services.exe , smss.exe  and csrss.exe . smss.exe  and csrss.exe  cannot be

executed in Win32 mode so we can eliminate them. I did a few tests with wininit.exe  but

letting this binary run as an administrator with debug privileges is a bad idea. Indeed, there

is a high chance it will mark itself as a Critical Process, meaning that when it terminates, the

system will likely crash with a BSOD.

This leaves us with only one potential candidate: services.exe . As it turns out, this is the

perfect candidate for our purpose. Its main function is very easy to decompile and

understand. Here is the corresponding pseudo-code.
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int wmain() 
{ 
   HANDLE hEvent; 
   hEvent = OpenEvent(SYNCHRONIZE, FALSE, L"Global\\SC_AutoStartComplete"); 
   if (hEvent) { 
       CloseHandle(hEvent); 
   } else { 
       RtlSetProcessIsCritical(TRUE, NULL, FALSE); 
       if (NT_SUCCESS(RtlInitializeCriticalSection(&CriticalSection)) 
           SvcctrlMain(); 
   } 
   return 0; 
}

It first tries to open a global Event  object. If it worked, the handle is closed, and the process

terminates. The actual main function SvcctrlMain()  is executed only if this Event  object

does not exist. This makes sense, this simple synchronization mechanism makes sure

services.exe  is not executed twice, which is perfect for our use case as we don’t want to

mess with the Service Control Manager ( services.exe  is the image file used by the SCM).

WinObj – SC_AutoStartComplete global Event

Now, in order to get a first glimpse at the DLLs that are loaded by services.exe , we can

use Process Monitor with a few filters.

Process Monitor – DLLs loaded by services.exe

From this output, we know that services.exe  loads three DLLs (which are not Known

DLLs) but this information, on its own, is not sufficient. We need to also find which functions

are imported. So, we need to take a look at the PE’s import table.

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
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IDA – Import table of services.exe

Here, we can see that only one function is imported from dpapi.dll :

CryptResetMachineCredentials . Therefore, this is the simplest DLL to hijack. We just

have to remember that we will have to export this function, otherwise our crafted DLL will

not be loaded.

But is it that simple? The short answer is “no”. After doing some testing on various

installations of Windows, I realized that this behavior was not consistent. On some versions

of Windows 10, dpapi.dll  is not loaded at all, for some reason. In addition, the DLLs that

are imported by services.exe  on Windows 8.1 are completely different. In the end, I had

to take all these differences into account in order to build a tool that works on all the recent

versions of Windows (including the Server editions) but you get the overall idea.

DLL File Mapping

In the previous parts, we saw how we could trick the CSRSS service into creating an arbitrary

symbolic link object in \KnownDlls  but I intentionally omitted an essential part: the target

path of the link.

A symbolic link can virtually point to any kind of object in the object manager but, in our

case, we have to mimic the behavior of a library being loaded as a Known DLL. This means

that the target must be a Section object, rather than the DLL file path for example.

As we saw earlier, “Known DLLs” are Section objects which are stored in the object directory

\KnownDlls  and this is also the first location in the DLL search order. So, if a program

loads a DLL named FOO.dll  and the Section object \KnownDlls\FOO.dll  exists, then the

loader will use this image rather than mapping the file again. In our case, we have to do this

step manually. The term “manually” is a bit inappropriate though as we do not really have to

map the file ourselves if we do this in the “legitimate way”.

A Section object can be created by invoking NtCreateSection . This native API function

requires an AllocationAttributes  argument, which is usually set to SEC_COMMIT  or

SEC_IMAGE . When SEC_IMAGE  is set, we can specify that we want to map a previously

opened file as an executable image file. Therefore, it will be properly and automatically

mapped into memory. But this means that we have to embed a DLL, write it to the disk, open
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it with CreateFile  to get a handle on the file and finally invoke NtCreateSection . For a

Proof-of-Concept, this is fine, but I wanted to go the extra mile and find a more elegant

solution.

Another approach would consist in doing everything in memory. Similarly to the famous

Process Hollowing technique, we would have to create a Section object with enough memory

space to store the content of our DLL’s image, then parse the NT headers to identify each

section inside the PE and map them appropriately, which is what the loader does. This a

rather tedious process and I did not want to go this far. Though, while doing my research, I

stumbled upon a very interesting blog post about “DLL Hollowing” by @_ForrestOrr. In his

Proof-of-Concept he made use of Transactional NTFS (a.k.a TxF) to replace the content of an

existing DLL file with his own payload without really modifying it on disk. The only

requirement is that you must have write permissions on the target file.

In our case, we assume that we have admin privileges, so this is perfect. We can open a DLL

in the System directory as a transaction, replace its content with our payload DLL and finally

use the opened handle in the NtCreateSection  API function call with the flag

SEC_IMAGE . But I did say that we still need to have write permissions on the target file, even

though we don’t really modify the file itself. This is a problem because system files are owned

by TrustedInstaller , aren’t they? Since we assume we have admin privileges, we could

well elevate to TrustedInstaller  but there is a simpler solution. It turns out some (DLL)

files within C:\Windows\System32\  are actually owned by SYSTEM , so we just have to

search this directory for a proper candidate. We should also make sure that its size is large

enough so that we can replace its content with our own payload.

Exploiting as SYSTEM?

In the exploit part, I insisted on the fact that the DefineDosDevice  API function must be

called as any user other than SYSTEM , otherwise the whole “trick” would not work. But what

if we are already SYSTEM  and we don’t have an administrator account. We could create a

temporary local administrator account, but this would be quite lame. A better thing to do is

simply impersonate an existing user. For instance, we can impersonate LOCAL SERVICE  or

NETWORK SERVICE , as they both have their own DOS device directory.

Assuming we have “debug” and “impersonate” privileges, we can list the current processes,

find one that runs as LOCAL SERVICE , duplicate the primary token and temporarily

impersonate this user. It’s as simple as that.

No matter if we are executing the exploit as SYSTEM or as an administrator, in both cases,

we will have to go back and forth between two identities without losing track of things.

Conclusion

https://www.forrest-orr.net/post/malicious-memory-artifacts-part-i-dll-hollowing
https://twitter.com/_ForrestOrr
https://docs.microsoft.com/en-us/windows/win32/fileio/transactional-ntfs-portal
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In this post, we saw how a seemingly benign API function could be leveraged by an

administrator to eventually inject arbitrary code into a PPL with the highest level using some

very clever tricks. I implemented this technique in a new tool – PPLdump – in reference to

ProcDump. Assuming you have administrator or SYSTEM  privileges, it allows you to dump

the memory of any PPL, including LSASS when LSA Protection is enabled.

This “vulnerability”, initially published in 2018, is still not patched. If you wonder why, you

can check out the Windows Security Servicing Criteria section in the Microsoft Bug Bounty

program. You will see that even a non-admin to PPL bypass is not a serviceable issue.

Windows Security Servicing Criteria

By implementing this technique in a standalone tool, I learned a lot about some Windows

Internals which I did not really have the opportunity to tackle before. In return, I covered a

lot of those aspects in this blog post. But this would have certainly not been possible if great

security researchers such as James Forshaw (@tiraniddo) did not share their knowledge

through their various publications. So, once again, I want to say a big thank you to him.

If you want to read the original publication or if you want to learn more about “DLL

Hollowing“, you can check out the following resources.

@tiraniddo – Windows Exploitation Tricks: Exploiting Arbitrary Object Directory

Creation for Local Elevation of Privilege – link

@_ForrestOrr – Masking Malicious Memory Artifacts – Part I: Phantom DLL

Hollowing – link

 

 

https://github.com/itm4n/PPLdump
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://www.microsoft.com/en-us/msrc/windows-security-servicing-criteria?rtc=1
https://twitter.com/tiraniddo
https://twitter.com/tiraniddo
https://googleprojectzero.blogspot.com/2018/08/windows-exploitation-tricks-exploiting.html
https://twitter.com/_ForrestOrr
https://www.forrest-orr.net/post/malicious-memory-artifacts-part-i-dll-hollowing
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