
1/5

Using SecureString to protect Malware
mez0.cc/posts/environmental-keying-with-securestring

Table of Contents

Table of Contents

Introduction

About SecureString

Small Proof-of-Concept

Using SecureString for Keying

Automating it

Conclusion

Introduction

Whilst writing a PowerShell Packer, I had a quick look into
ConvertTo-SecureString
and

quickly remembered it is a feature in
Invoke-Obfuscation.
Looking into this as a method of

obfuscation then led me to PowerShell
Obfuscation using
SecureString.

This seems to be a trend now, but what I wanted was to use it in an
Environmental Keying

scenario.

But first, what is it...

About SecureString

SecureString,
as far as I can tell, is an AES encrypted string which aims to help users mask

credentials. To see how secure SecureString  is, Microsoft have a How Secure
is

SecureString explanation.

Lets have a look at an example:

https://mez0.cc/posts/environmental-keying-with-securestring/
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/convertto-securestring?view=powershell-7.2
https://github.com/danielbohannon/Invoke-Obfuscation
https://www.wietzebeukema.nl/blog/powershell-obfuscation-using-securestring
https://docs.microsoft.com/en-us/dotnet/api/system.security.securestring?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.securestring?view=net-6.0#HowSecure


2/5

In the above, Get-WmiObject  is used to query a remote computer. It then
failed, and a new

credential was created and used; this allowed access.

Small Proof-of-Concept

As an example, here is how data would be encrypted:

1. Get a key: For now, an array of 0 -> 31 will do.

$key = (0..31)


2. Encrypt the data with ConvertTo-SecureString

ConvertFrom-SecureString -Key $key (ConvertTo-SecureString "Get-Date" -AsPlainText -
Force)


This will produce something like:

76492d1116743f0423413b16050a5345MgB8AG8AVQBaAGwAUgBpAEkAZQAzAHYAOQBIAEEAdgBkADMAVABqAG

And here is a screenshot of that all executing:

To then decrypt it, the following command can be used:

(New-Object System.Net.NetworkCredential("", (ConvertTo-SecureString -key $key 
$encrypted))).Password


Which looks like this:



3/5

Quite simple.

Using SecureString for Keying

Now lets take a quick look at how this can be used with keying... Honestly, its
quite simple.

Assume the payload to run is Get-Date , and the keying string is:

$env:USERDNSDOMAIN\$env:USERNAME


In this case, it would be:

johto.local\lance


To join the string:

(-join($env:USERDNSDOMAIN,'\',$env:USERNAME)).ToLower()


To convert this to a byte array:

[system.Text.Encoding]::UTF8.GetBytes(((-
join($env:USERDNSDOMAIN,'\',$env:USERNAME)).ToLower()))


This now has one issue, it is not of length 32. Which, again, is easy to fix
with PadRight() :

[system.Text.Encoding]::UTF8.GetBytes(((-
join($env:USERDNSDOMAIN,'\',$env:USERNAME)).PadRight(32,0).ToLower()))


Wrapping this up:

$key = [system.Text.Encoding]::UTF8.GetBytes(((-
join($env:USERDNSDOMAIN,'\',$env:USERNAME)).PadRight(32,0).ToLower()))

ConvertFrom-SecureString -Key $key (ConvertTo-SecureString "Get-Date" -AsPlainText -
Force)


In my case, it produces:

76492d1116743f0423413b16050a5345MgB8AFYAMQBhAEYARABsAGYAaQBjAEgAeABSAEYAQQAvAE8AQgBwAD

Here is an exampl of it all running:



4/5

Now that it works, lets automate it.

Automating it

I was unable to find a good way to do this natively in Linux, and I didn't want
to do it on

Windows because of Invoke-Obfuscation, and I tend to work from Linux
99% of the time

anyway.

Here is the script I threw together which relies on PowerShell for Linux:

import subprocess


def get_encrypted_payload(payload: str, password: str) -> str:

   base_command: str = f"$key = 
[system.Text.Encoding]::UTF8.GetBytes('{password}'.PadRight(32,0));ConvertFrom-
SecureString -Key $key (ConvertTo-SecureString '{payload}' -AsPlainText -Force)"
   try:

       output = (

           subprocess.check_output(["pwsh", "-c", 
base_command]).decode().strip("\n")

       )

       return output

   except Exception as e:

       print(f"[!] Error: {str(e)}")

       return None


def executor(encrypted: str) -> str:

   password = "(([System.Text.encoding]::UTF8.GetBytes(((-
join($env:USERDNSDOMAIN,'\\',$env:USERNAME)).PadRight(32,0).ToLower()))))"

   return f"(New-Object System.Net.NetworkCredential('', (ConvertTo-SecureString -
key ${password} '{encrypted}'))).Password|Invoke-Expression"


def main() -> None:

   password: str = "johto.local\\lance"

   payload: str = "Get-Date"


   encrypted: str = get_encrypted_payload(payload, password)

   if not encrypted:

       quit()


   cradle: str = executor(encrypted)


   print(cradle)


if __name__ == "__main__":

   main()




5/5

This script is a Python3.9+ utility which automates all of the previous steps discussed.

Running the script will give:

(New-Object System.Net.NetworkCredential('', (ConvertTo-SecureString -key 
$(([System.Text.encoding]::UTF8.GetBytes(((-
join($env:USERDNSDOMAIN,'\',$env:USERNAME)).PadRight(32,0).ToLower())))) 
'76492d1116743f0423413b16050a5345MgB8ADEAMABOADgAUQBBADQATQBDAEoAZABpAE4AdwA2AFoAdQBiA
Expression


Running on the incorrect target:

And on the correct host:

Voila.

Conclusion

This isn't new, nor is it particularly exciting. Its just something I ended up spending a few

hours playing with. As PowerShell doesn't really have much usage offensively any more, it is

also widely used in dotnet.







https://docs.microsoft.com/en-us/dotnet/api/system.security.securestring?view=net-6.0#examples

