Using SecureString to protect Malware

B mez0.cc/posts/environmental-keying-with-securestring

Table of Contents

o Table of Contents
o Introduction
o About SecureString

o Small Proof-of-Concept
o Using SecureString for Keying

o Automating it
o Conclusion

Introduction

Whilst writing a PowerShell Packer, I had a quick look into ConvertTo-SecureString and
quickly remembered it is a feature in Invoke-Obfuscation. Looking into this as a method of

obfuscation then led me to PowerShell Obfuscation using SecureString.

This seems to be a trend now, but what I wanted was to use it in an Environmental Keying
scenario.

But first, what is it...

About SecureString

SecureString, as far as I can tell, is an AES encrypted string which aims to help users mask
credentials. To see how secure SecureString is, Microsoft have a How Secure is

SecureString explanation.

Lets have a look at an example:

1/5

https://mez0.cc/posts/environmental-keying-with-securestring/
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/convertto-securestring?view=powershell-7.2
https://github.com/danielbohannon/Invoke-Obfuscation
https://www.wietzebeukema.nl/blog/powershell-obfuscation-using-securestring
https://docs.microsoft.com/en-us/dotnet/api/system.security.securestring?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.securestring?view=net-6.0#HowSecure

Get-WmiObject win32_operatingsystem johto-dcol

= temp

= temp | ConvertTo-SecureString

= temp New-Object System.Management.Automation.PSCredential

= temp Get-Wmiobject win32_operatingsystem johto-dcel

SystemDirectory : C:\Windows\system32
Organization B

BuildNumber 1 14393

RegisteredUser : Windows User
SerialNumber : PO376-U00EO-00000-AAUT

Version : 10.8.14393

In the above, Get-wWmiObject isused to query a remote computer. It then failed, and a new
credential was created and used; this allowed access.

Small Proof-of-Concept
As an example, here is how data would be encrypted:
1. Get a key: For now, an array of o -> 31 will do.
$key = (0..31)
2. Encrypt the data with ConvertTo-SecureString

ConvertFrom-SecureString -Key $key (ConvertTo-SecureString "Get-Date" -AsPlainText -
Force)

This will produce something like:

76492d1116743f0423413b16050a5345MgB8AGB8AVQBaAGWAUgBPAEKAZQAZAHYAOQBIAEEAdgBKADMAVABQACG

And here is a screenshot of that all executing:

= temp (] (6..31)
m temp #) ConvertFrom-SecureString (ConvertTo-SecureString)
76U492d1116743F04230413b16050a5345MgB8AGIARWBUAGEACQBSAFUAKWBXADgAMAA3ADIAUQABAFOANQBSAHCAdQBNAHCAPQASAHWANIKE

BjADQACQAALAGUAMQAXADAAMQALAGIAYgAXAGUAMgAYAGIANQBjADKAMABLIAGYAMOALIAGYANAA=
= temp ¢

To then decrypt it, the following command can be used:

(New-Object System.Net.NetworkCredential("", (ConvertTo-SecureString -key $key
$encrypted))).Password

Which looks like this:

2/5

= temp ConvertFrom-SecureString (ConvertTo-SecureString)
= temp (New-Object System.Net.NetworkCredential((ConvertTo-SecureString))) .Password
Get-Date

= temp

Quite simple.

Using_SecureString for Keying

Now lets take a quick look at how this can be used with keying... Honestly, its quite simple.
Assume the payload to runis Get-Date , and the keying string is:

$env: USERDNSDOMAIN\$env : USERNAME

In this case, it would be:

johto.locall\lance

To join the string;:
(-join($env:USERDNSDOMAIN, '\', $env:USERNAME)).ToLower ()
To convert this to a byte array:

[system.Text.Encoding]::UTF8.GetBytes(((-
join($env:USERDNSDOMAIN, "\', $env:USERNAME)).ToLower()))

This now has one issue, it is not of length 32. Which, again, is easy to fix with PadRight() :

[system.Text.Encoding]::UTF8.GetBytes(((-
join($env:USERDNSDOMAIN, '"\'', $env:USERNAME)) .PadRight(32,0).ToLower()))

Wrapping this up:
$key = [system.Text.Encoding]::UTF8.GetBytes(((-
join($env:USERDNSDOMAIN, '\"', $env:USERNAME)).PadRight(32,0).ToLower()))

ConvertFrom-SecureString -Key $key (ConvertTo-SecureString "Get-Date" -AsPlainText -
Force)

In my case, it produces:

76492d1116743f0423413b16050a5345MgB8AFYAMQBhAEYARABSAGYAaQBjAEgAeABSAEYAQQAVAESAQQBWAL

Here is an exampl of it all running:

E¥ Windows PowerShell

gl ::UTF8. GetByt] (s 2D AIN Senv:USERNAME)) . PadRight(32,0). ToLower ()))
5tring -Ke (C g A)
«Credential((ConvertTo-Securest $key fencrypted))).Password

3/5

Now that it works, lets automate it.

Automating_it

I was unable to find a good way to do this natively in Linux, and I didn't want to do it on
Windows because of Invoke-Obfuscation, and I tend to work from Linux 99% of the time

anyway.
Here is the script I threw together which relies on PowerShell for Linux:

import subprocess

def get_encrypted_payload(payload: str, password: str) -> str:
base_command: str = f"$key =
[system.Text.Encoding]::UTF8.GetBytes('{password}'.PadRight(32,0));ConvertFrom-
SecureString -Key $key (ConvertTo-SecureString '{payload}' -AsPlainText -Force)"
try:
output = (
subprocess.check_output(["pwsh", "-c",
base_command]).decode().strip("\n")
)
return output
except Exception as e:
print(f"[!] Error: {str(e)}")
return None

def executor(encrypted: str) -> str:

password = "(([System.Text.encoding]::UTF8.GetBytes(((-
join($env:USERDNSDOMAIN, '\\',6 $env:USERNAME)).PadRight(32,0).ToLower()))))"

return f"(New-Object System.Net.NetworkCredential('', (ConvertTo-SecureString -
key ${password} '{encrypted}'))).Password]|Invoke-Expression"

def main() -> None:
password: str = "johto.local\\lance"
payload: str = "Get-Date"

encrypted: str = get_encrypted_payload(payload, password)
if not encrypted:
quit()
cradle: str = executor(encrypted)
print(cradle)

if __name__ == "_ _main__":
main()

4/5

This script is a Python3.9+ utility which automates all of the previous steps discussed.
Running the script will give:

(New-Object System.Net.NetworkCredential('', (ConvertTo-SecureString -key
$(([System.Text.encoding]::UTF8.GetBytes(((-
join($env:USERDNSDOMAIN, '\', $env:USERNAME)) .PadRight(32,0).ToLower()))))
'76492d1116743f0423413b16050a5345MgBSADEAMABOADgAUQBBADQATQBDAEOAZABPAE4AdWA2AFOAdQBiA
Expression

Running on the incorrect target:

= temp @ (New-Object System.Net.NetworkCredential((ConvertTo-SecureString $(([system.Text.encoding] :: UTF8.GetBytes(((C)).PadRight(32,8).ToLower()
D))

1)) . Password

And on the correct host:

EX Windows PowerShell - a had

siLance> (

Conclusion

This isn't new, nor is it particularly exciting. Its just something I ended up spending a few
hours playing with. As PowerShell doesn't really have much usage offensively any more, it is
also widely used in dotnet.

5/5

https://docs.microsoft.com/en-us/dotnet/api/system.security.securestring?view=net-6.0#examples

